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Thermohydrodynamics of boiling in binary compressible fluids
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We numerically study the thermohydrodynamics of boiling for a CO2 + ethanol mixture on lyophilic and
lyophobic surfaces in both closed and open systems, based on a diffuse interface model for a two-component
system. The corresponding wetting boundary conditions for an isothermal system are proposed and verified in
this paper. New phenomena due to the addition of another component, mainly the preferential evaporation of the
more volatile component, are observed. In the open system and the closed system, the physical process shows
very different characteristics. In the open system, except for the movement of the contact line, the qualitative
features are rather similar for lyophobic and lyophilic surfaces. In the closed system, the vortices that are observed
on a lyophobic surface are not seen on a lyophilic surface. More sophisticated wetting boundary conditions for
nonisothermal, two-component systems might need to be further developed, taking into account the variations of
density, temperature, and surface tension near the wall, while numerical results show that the boundary conditions
proposed here also work well even in boiling, where the temperature is nonuniform.
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I. INTRODUCTION

Boiling is of great importance due to its efficiency in
heat transfer and has numerous applications in chemical or
process industries, thermal power plants, and refrigeration sys-
tems [1,2]. Physically speaking, boiling is a complex process
in which various physical phenomena are involved, like phase
transitions, heat and mass transfer, nucleation, growth and
departure of bubbles, and motion of the contact line on the solid
surface [3]. Due to its importance in a variety of applications,
as well as many complex and interesting associated physical
phenomena, boiling has generated extensive research, both
experimentally and numerically. Boiling involves very small
spatial and temporal scales; making a precise experimental
study rather limited [4]. Numerical simulation is thus of
great significance as another effective way to study the
thermohydrodynamics aspects of the boiling in detail.

Different methods have been applied to simulate the boiling
process, like molecular dynamics [5] on a molecular scale, the
lattice Boltzmann method [6,7] on a mesoscopic scale, and
the continuum method [3,4,8–12] on a macroscopic scale. A
big class of continuum methods is the front-capturing method,
which captures the interface on a fixed grid [13]. The volume-
of-fluid (VOF) method [14,15], the level set method [16,17],
and the diffuse interface method [18] belong to this class.
Examples of the simulation of boiling for incompressible flows
include the work done by Kunkelmann and Stephan [10,11]
using the VOF method, the work done by Son and Dhir [8] and
Mukherjee and Kandlikar [9] using the level-set method, and
the work done by Tomar et al. [4] using a coupled level-set
and VOF method. In both the level-set method and the VOF
method, the movement of the interface is described by an ad-
vection equation of an artificial variable, which is the distance
function in the level-set method and the volume fraction func-
tion in the VOF method. The hyperbolic character of the ad-
vection equation sets a high demand on the numerical scheme.

The diffuse interface method is a different front-capturing
method. It is generally more computationally expensive, but
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it has the advantages that other interface-capturing scheme do
not have. It does not suffer from problems with an accurate
calculation of surface tension [19]. Moreover, it is derived from
a free-energy-based variational formalism, thus the resulting
system of equations is well posed and satisfy thermodynamics-
consistent energy dissipation laws [20]. Neither the level-set
method nor the VOF method could maintain energy conser-
vation [21]. It could be used to explore essential interfacial
physics at the interfacial region [22]. Furthermore, the order
parameter which could describe the position and thickness of
the interface satisfies an advection-diffusion equation and thus
is numerically easier to implement.

The idea of a diffuse or a nonzero-thickness interface could
be traced back to van der Waals [23], whose work made the
description of liquid-gas coexistence and transition possible.
Since the work of Cahn and Hilliard [24], who introduced
the gradient of composition into the free energy in order to
study the interfacial structure of isothermal binary alloys,
the diffuse interface method gained lots of attention and
has now become one of the major tools to study a variety
of interfacial phenomena [20]. Anderson et al. [18] gave a
review of the contemporary diffuse interface method, and a
general method to derive the hydrodynamic equations from
the conservation laws and the second law of thermodynamics.
Onuki [25] extended the van der Waals theory by considering
that the liquid-gas transition could also happen in nonuniform
temperature. Later, Onuki [26] extended his dynamic van
der Waals theory to two-component systems by adding the
gradient of density of each component to the free-energy
functional, but without giving any hydrodynamic equations
to describe the system with such a form of free energy.

Recently, Laurila et al. [12] and Xu and Qian [3] used
diffuse interface method, which is the dynamic van der Waals
model [25], to simulate the boiling process. Laurila et al. [12]
studied the thermodynamics of boiling of water. Their main
objective was to observe the difference between a closed and
an open system, as well as the dynamics on hydrophobic
and hydrophilic surfaces. Xu and Qian [3] also numerically
investigated the boiling dynamics of a single vapor bubble in
a pure fluid. They mainly studied the dynamics of a bubble on
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a homogeneous surface with different contact angles or on a
patterned surface, with or without an artificial gravity included.

All of the simulations we mentioned above are for a single-
component fluid. It is found that some binary systems have
better thermodynamic efficiency and heat transfer performance
because they might show better resistance to dry out and the
onset of film boiling [1,2]. Although boiling of a binary fluid
is at least as significant as boiling of a single-component fluid,
numerical study of a two-component boiling system is rather
rare in literature, to the author’s knowledge. With the addition
of another component, more physical phenomena appear in
the boiling process, like the interaction of different species,
the preferential evaporation of the more volatile component,
or the Marangoni flow that might be generated.

Following the idea in previous works [18,25,26], using
the conservation laws and the principle of positive entropy
production, as well as the thermodynamic relation for two
components, Liu et al. [27] derived the hydrodynamic equa-
tions for two-component, compressible system. Based on this
model, we are going to study the boiling of two-component
fluids. Our main purpose here is to extend the boiling study
for the pure fluid done by Lauria et al. [12] to two-component
fluids and to observe some new phenomena that are caused by
the addition of another component. With the use of the diffuse
interface model, the multiple physical phenomena involved in
the complex binary boiling process will appear automatically
as an outcome of calculation.

The rest of this paper is organized as follows: We present
the dimensional diffuse interface model for a two-component
system in Sec. II A and the corresponding dimensionless model
in Sec. II B. Wetting boundary conditions for an isothermal,
two-component system are derived and verified in Secs. II C
and II E, respectively. Section II D is about the numerical
scheme. In Sec. III we shows our numerical simulation of
the boiling in open and closed systems, with the surface being
lyophilic or lyophobic. Section IV is the discussion. Section V
is the conclusion.

II. PROBLEM FORMULATION

A. Governing equations in the bulk

The governing equations that we use is a model that has
been proposed in our previous paper [27]. This model is
derived based on the conservation laws (mass conservation,
momentum conservation, energy conservation) and the second
laws of thermodynamics (the positive entropy production), as
well as the fundamental thermodynamic relation of a binary
system. A detailed derivation can be found in the paper [27].
Here, we only give the resulting governing equations.

For a binary system, the Helmholtz free-energy functional
can be defined as [26] (in the following, variables with or
without ∼ are dimensional or dimensionless, respectively)

F̃(ρ̃1,ρ̃2)

=
∫

Ṽ

⎡
⎣f̃ (ρ̃1,ρ̃2) + 1

2

∑
i,j∈{1,2}

kBT̃ D̃i,j

m̃im̃j

∇̃ρ̃i · ∇̃ρ̃j

⎤
⎦dṼ , (1)

where Ṽ is a control volume, f̃ (ρ̃1,ρ̃2) is the bulk free-energy
density with ρ̃i being the density of the component i. m̃i

represents the molecular mass of component i, coefficients
D̃i,j in front of the gradient terms are related to the interfacial
thickness and surface tension. The Helmholtz free-energy
density f̃ (ρ̃1,ρ̃2) is given by [26]

f̃ (ρ̃1,ρ̃2) = T̃
∑

i

ρ̃i

m̃i

[
ln

(
ρ̃i λ̃

3
i

m̃i(1 − φ̃)

)
− 1

]

−
∑
i,j

ãi,j

ρ̃i

m̃i

ρ̃j

m̃j

, (2)

where λ̃i = ( 1
2πm̃i

˜kBT
)1/2h̄ are the de Broglie length and h̄ is the

Planck constant. φ̃ = ∑
i b̃i

ρ̃i

m̃i
is the volume fraction occupied

by the molecules with b̃i being the molecular volume of
component i [26]. The coefficients ãij measures the attraction
forces between molecules of component i and component j .

The governing equations are the following:
Mass balance equation:

∂̃ ρ̃

∂̃ t̃
+ ∇̃ · (ρ̃ �̃v) = 0, (3)

∂̃ ρ̃1

∂̃ t̃
+ ∇̃ · (ρ̃1 �̃v) = ∇̃ ·

[
M̃J ∇̃

( ˜̂μ1 − ˜̂μ2

T̃

)]
. (4)

Momentum equation:

∂̃(ρ̃ �̃v)

∂̃ t̃
+ ∇̃ · (ρ̃ �̃v�̃v) = ∇̃ · (

←̃→
P + ←̃→τ ). (5)

Full energy equation:

∂̃(ρ̃ẽT )

∂̃ t̃
+ ∇̃ · (ρ̃ẽT �̃v)

= ∇̃ · [(
←̃→
P + ←̃→τ ) · �̃v] + ∇̃ · (κ̃∇̃T̃ )

−
∑

i,j∈{1,2}
∇̃ ·

(
kBT̃ D̃i,j

m̃im̃j

dρ̃i

dt̃
∇̃ρ̃j

)
. (6)

In the equations above, the generalized pressure tensor
←̃→
P

in equations (5) and (6) is

←̃→
P = −p̃

←̃→I + ←̃→
P D, (7)

←̃→
P D = L̃D

←̃→I − ∂L̃D

∂∇̃ρ̃1
⊗ ∇̃ρ̃1 − ∂L̃D

∂∇̃ρ̃2
⊗ ∇̃ρ̃2, (8)

where

L̃D(ρ̃1,ρ̃2) =
∑

i,j∈{1,2}
ρ̃i∇̃ ·

(
kBT̃ D̃i,j

m̃im̃j

∇̃ρ̃j

)

+ 1

2

∑
i,j∈{1,2}

kBT̃ D̃i,j

m̃im̃j

∇̃ρ̃i · ∇̃ρ̃j . (9)

The thermodynamic pressure p̃ in Eq. (7) is

p̃ = ρ̃1
∂̃ f̃ (ρ̃1,ρ̃2)

∂̃ ρ̃1
+ ρ̃2

∂̃ f̃ (ρ̃1,ρ̃2)

∂̃ ρ̃2
− f̃ (ρ̃1,ρ̃2). (10)
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The generalized chemical potential ˜̂μi in Eq. (4) is

˜̂μi = μ̃i −
∑

j

kBT̃ D̃i,j

m̃im̃j

∇̃2ρ̃j , (11)

with

μ̃i = ∂f̃ (ρ̃1,ρ̃2)

∂ρ̃i

(12)

being the chemical potential of species i in the bulk.
M̃J in Eq. (4) is defined as

M̃J = M̃f

ρ̃1ρ̃2

ρ̃2
, (13)

where M̃f is the mobility coefficient [28].
The viscous stress tensor in Eqs. (5) and (6) is

←̃→τ = η̃(∇̃�̃v + ∇̃�̃v⊥) + (ξ̃ − 2η̃/3)
←̃→I ∇̃ · �̃v, (14)

where η̃ and ξ̃ are the shear and bulk viscosity, respectively, and
are assumed to be the same in this paper. For a one-component
system, Onuki [25] and Laurila et al. [12] assumed that
both η̃ and the heat conductivity κ̃ linearly depend on the
density, i.e., η̃ = η̃0ρ, κ̃ = κ̃0ρ, where η̃0 is the kinematic
viscosity, κ̃0 is the heat conductivity per unit density. For
two-component systems, for simplicity, we assume that η̃ =
η̃0,1ρ1 + η̃0,2ρ2, κ̃ = κ̃0,1ρ1 + κ̃0,2ρ2, where η̃0,i , κ̃0,i are the
kinematic viscosity and the heat conductivity per unit density
for component i.

The specific total energy ẽT in Eq. (6) satisfies

ρ̃ẽT = ρ̃ẽ + 1
2 ρ̃ �̃v2. (15)

And the specific internal energy ẽ in Eq. (15) satisfies

ρ̃ẽ = f̃ − T̃
∂f̃

∂T̃
. (16)

B. Dimensionless formulation

The equations (3)–(6) and related formulas (7)–(16) are
made dimensionless based on the following scaling

ρ̃ = ρ∗ρ, �̃v = v∗�v, x̃ = L∗x, ỹ = L∗y,
(17)

p̃ = p∗p, T̃ = T ∗T , ẽ = p∗

ρ∗ e.

The characteristic variables that we choose are basically
similar to those chosen by Laurila et al. [12]. Now we have
two components in the system, we choose the property of the
second component for the scaling. ρ∗, p∗, T ∗ is the critical
point of the second component, so ρ∗ = m̃2

3b̃2
, p∗ = ã22

27b̃2
2
, and

T ∗ = 8ã22

27kB b̃2
. The characteristic length L∗ = 2b̃

1/3
2 , which is

on the order of interfacial thickness. Characteristic velocity
v∗ is chosen to be the sound speed at the critical point of
the second component. By introducing the scaling (17) into
equations (3)–(6) and other formulas (7)–(16), we obtain their
corresponding dimensionless form:

The mass balance equation,

0 = ∂ρ

∂t
+ ∇ · (ρ�v), (18)

∂ρ1

∂t
+ ∇ · (ρ1�v) = ∇ ·

[
Mf

ρ1ρ2

ρ2
∇

(
μ̂1 − μ̂2

T

)]
, (19)

the momentum balance equation,

∂(ρ�v)

∂t
+ ∇ · (ρ�v�v) = R∇ · ←→

P + 1

Re
∇ · ←→τ , (20)

and the full energy equation,

∂(ρeT )

∂t
+ ∇ · (ρeT �v)

= ∇ ·
[(←→

P + 1

Re · R
←→τ

)
· �v

]

+B∇ · [(κ12ρ1 + ρ2)∇T ]

−
∑

i,j∈{1,2}
∇ ·

(
T Di,j

mimj

dρi

dt
∇ρj

)
, (21)

In the equations above, the generalized pressure tensor
←→
P in

equations (20) and (21) is

←→
P = −p

←→I + ←→
P D, (22)

←→
P D = LD

←→I − ∂LD

∂∇ρ1
⊗ ∇ρ1 − ∂LD

∂∇ρ2
⊗ ∇ρ2, (23)

where

LD =
∑

i,j∈{1,2}
ρi∇ ·

(
T Di,j

mimj

∇ρj

)

+ 1

2

∑
i,j∈{1,2}

T Di,j

mimj

∇ρi · ∇ρj . (24)

The thermodynamic pressure p in Eq. (22) is

p = ρ1
∂f (ρ1,ρ2)

∂ρ1
+ ρ2

∂f (ρ1,ρ2)

∂ρ2
− f (ρ1,ρ2). (25)

X

y

ξ

η

← interface

Liquid mixtureGas mixture

θπ/2−θ

n

FIG. 1. Sketch of the geometry of an interface.
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FIG. 2. (Color online) CO2 + ethanol in an isothermal system, T = 0.957, P = 0.4. At the lower and upper wall, the equilibrium contact
angles are θe = 45◦ and θe = 135◦, respectively. (a) Total density ρ at t = 0; (b) total density ρ at t = 15 000. (c) The apparent contact angle
θ measured at a distance h above the bottom wall, h is the interfacial thickness. (d) The difference between the apparent contact angle and the
equilibrium contact angle θ − θe vs time t .

The generalized chemical potential μ̂i in equation (19) is

μ̂i = μi −
∑

j

T Di,j

mimj

∇2ρj . (26)

The viscous stress tensor in equations (20) and (21) is

←→τ = (η12ρ1 + ρ2)(∇�v + ∇�v⊥) + 1
3 (η12ρ1 + ρ2)

←→I ∇ · �v.

(27)
The specific total energy eT in equation (21) satisfies

ρeT = ρe + 1

2Rρ�v2, (28)

and the specific internal energy e in equation (28) satisfies

ρe = f − T
∂f

∂T
. (29)

Dimensionless parameters introduced in Eqs. (18)–(29)
are the Reynolds number Re = L∗v∗

η̃2
, which is the ratio

between the inertial force and viscous force, the parameter
R = p∗

ρ∗v∗2 , which is proportional to the ratio of the attractive
potential energy to the molecular kinetic energy, the parameter
B = κ̃2ρ

∗T ∗
e∗v∗L∗ , the ratio of the kinematic viscosity between two

components η12 = η0,1

η0,2
, the ratio of the thermal conductivity

κ12 = κ0,1

κ0,2
, the parameter Di,j = D̃i,j kBT ∗ρ∗2

m∗2L∗2p∗ , which is related to
the surface tension and interfacial thickness, and the mobility

coefficient Mf = p∗M̃f

L∗v∗ρ∗2T ∗ .

C. Wetting boundary condition

For the Cahn–Hilliard model, a wetting boundary condition
can be derived from the total free energy of the system [29].
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FIG. 3. (Color online) Dimensionless surface tension σ vs initial
uniform mesh size 
x, where 
x = 24, 12, and 6, respectively. The
minimum mesh size in the adaptive region is hm = 1.

A similar methodology was applied to a one-component van
der Waals fluid by Laurila et al. [12]. In this section, starting
from the total free energy of the system, we are going to
derive the wetting boundary condition for the two-component
system.

Assume that γsg and γsl represent the surface energy per
unit area between the solid and the gas and the solid and the

liquid, respectively. By including the surface energy at the
wall, the total free energy of the two-component system is

F̂(ρ1,ρ2)=
∫

V

f̂ (ρ1,ρ2)dV +
∫

S

[γsg + (γsl − γsg)g(ρ)]dA,

(30)

where

f̂ (ρ1,ρ2) = f (ρ1,ρ2) + 1

2

∑
i,j∈{1,2}

κij∇ρi · ∇ρj , (31)

κij = kBT Di,j

mimj
is constant for an isothermal system, and g(ρ)

is a function which satisfies g(ρg) = 0 and g(ρl) = 1, where
ρ = ρ1 + ρ2. So

δF̂ =
∫

V

dV

{[
∂f̂

∂ρ1
− ∇ ·

(
∂f̂

∂(∇ρ1)

)]
δρ1

}

+
∫

S

dA

(
∂f̂

∂(∇ρ1)
· n + (γsl − γsg)

∂g

∂ρ1

)
δρ1

+
∫

V

dV

{[
∂f̂

∂ρ2
− ∇ ·

(
∂f̂

∂(∇ρ2)

)]
δρ2

}

+
∫

S

dA

(
∂f̂

∂(∇ρ2)
· n + (γsl − γsg)

∂g

∂ρ2

)
δρ2, (32)

FIG. 4. (Color online) CO2 + ethanol system at T = 0.957, P = 0.4, time t = 0. (a) Total density ρ, (b) density of ethanol ρ1,
(c) temperature T .
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FIG. 5. (Color online) Case A: CO2 + ethanol, open system, lyophobic surface; t = 500. (a) Total density ρ, (b) density of ethanol ρ1 (a
minimum value 0.7 is set in order to show the variation of ρ1 around the interface), (c) contour of temperature T ; black line represents the
interface, (d) total mass flux ρ�v.

and the wetting boundary conditions are

∂f̂

∂(∇ρ1)
· n + (γsl − γsg)

∂g

∂ρ1
= 0, (33)

∂f̂

∂(∇ρ2)
· n + (γsl − γsg)

∂g

∂ρ2
= 0. (34)

From the definition (31), Eqs. (33) and (34) become

(κ11∇ρ1 + κ12∇ρ2) · n + (γsl − γsg)
∂g

∂ρ1
= 0, (35)

(κ21∇ρ1 + κ22∇ρ2) · n + (γsl − γsg)
∂g

∂ρ2
= 0. (36)

We will show soon that, for our two-component system,
the following relationship that is applicable to Cahn–Hilliard
system still holds:

γsg − γsl = σ cos θe, (37)

where σ is the surface tension between the liquid and gas
mixture of the two components, θe is the equilibrium contact
angle, defined as the angle between the liquid-gas interface
and the solid wall on the liquid side. So finally, the wetting
boundary conditions of the two component system (35)

and (36) become

(κ11∇ρ1 + κ12∇ρ2) · n = σ cos θe

∂g

∂ρ1
, (38)

(κ21∇ρ1 + κ22∇ρ2) · n = σ cos θe

∂g

∂ρ2
. (39)

In the rest of the section, we are going to first prove
the formula (37) and then shortly discuss the conditions for
constructing the function g(ρ).

Suppose the interface shape at the equilibrium is as shown
in Fig. 1. The solid wall coincides with the x axis. The interface
of the liquid and gas mixtures intersects with the solid wall at
some point. n is the outward normal. The equilibrium contact
angle satisfies θe = π − θ .

Rotate the current x-y coordinate system by an angle π
2 − θ ,

and assume that the new coordinates are ξ -η. From Fig. 1, we
know that

ξ = x sin θ + y cos θ,
(40)

η = −x cos θ + y sin θ.

Clearly, ξ is the direction normal to the interface, and η is the
direction parallel to the interface. It is reasonable to assume
that there is no variation in densities ρ, ρ1, and ρ2 in the η

direction, so we can consider them to be a one-dimensional
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FIG. 6. (Color online) Case A: CO2 + ethanol, open system, lyophobic surface; t = 1500. (a) Total density ρ, (b) density of ethanol ρ1

(a minimum value 0.7 is set in order to show the variation of ρ1 around the interface), (c) contour of temperature T ; black line represents the
interface, (d) total mass flux ρ�v.

function in ξ . Then we have

(κ11∇ρ1 + κ12∇ρ2) · n = −
(

κ11
∂ρ1

∂ξ
+ κ12

∂ρ2

∂ξ

)
∂ξ

∂y
, (41)

(κ21∇ρ1 + κ22∇ρ2) · n = −
(

κ21
∂ρ1

∂ξ
+ κ22

∂ρ2

∂ξ

)
∂ξ

∂y
. (42)

So the wetting boundary conditions (35) and (36) become

−
(

κ11
∂ρ1

∂ξ
+ κ12

∂ρ2

∂ξ

)
∂ξ

∂y
= (γsg − γsl)

∂g

∂ρ1
, (43)

−
(

κ21
∂ρ1

∂ξ
+ κ22

∂ρ2

∂ξ

)
∂ξ

∂y
= (γsg − γsl)

∂g

∂ρ2
. (44)

Multiplying the formula (43) by ∂ρ1

∂ξ
and the formula (44) by

∂ρ2

∂ξ
, adding them together, and noticing that ∂ξ

∂y
= cos θ , we

obtain

−
[
κ11

(
∂ρ1

∂ξ

)2

+ κ12
∂ρ1

∂ξ

∂ρ2

∂ξ
+ κ22

(
∂ρ2

∂ξ

)2]
cos θ

= (γsg − γsl)
dg

dξ
. (45)

Integrating formula (45) along the ξ direction from the gas
mixture to the liquid mixture, applying the conditions g(ξg) =

0 and g(ξl) = 1, and noticing the fact that

σ =
∫ ξl

ξg

κ11

(
∂ρ1

∂ξ

)2

+ κ12
∂ρ1

∂ξ

∂ρ2

∂ξ
+ κ22

(
∂ρ2

∂ξ

)2

dξ (46)

is nothing else but the formula to calculate the surface tension
for a binary system [30], we finally obtain

γsg − γsl = −σ cos θ = σ cos(π − θ ) = σ cos θe. (47)

By now, we finish the proof of the formula (37).
Now the remaining question is how to choose the function

g in the conditions (38) and (39). Note that, in the Cahn–
Hilliard model, the bulk free energy is F (C) = ∫

β�(C) +
α
2 |∇C|2dV , where �(C) is a fourth-order polynomial, and C

represents the composition [29,31]. Thanks to the simple ana-
lytical solution of the equilibrium profile C(ξ ) = [ 2β

α
�(C)]1/2

in the direction ξ , as well as the simple relationship that can
be obtained between the surface tension σ and the parameters
of the C-H model σ = 2

√
2

3

√
αβ, g(C) can be derived starting

from the boundary condition α∇C · n = σ cos θeg
′(C), giving

a third-order polynomial of C. For more details, please refer
to Carlson’s work [31]. In a one- or two-component van der
Waals fluid, due to the complicated form of the bulk free
energy, no such a simple analytical solution of the equilibrium
profile ρi(ξ ),i = 1,2 can be obtained. Actually, it can be shown
that, for the two-component system, at equilibrium, the inverse
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FIG. 7. (Color online) Case B: CO2 + ethanol, open system, lyophilic surface; t = 500. (a) Total density ρ, (b) density of ethanol ρ1 (a
minimum value 0.7 is set in order to show the variation of ρ1 around the interface), (c) contour of temperature T ; black line represents the
interface, (d) total mass flux ρ�v.

functions of ρ1(ξ ), ρ2(ξ ) satisfy [30,32]

ξ (ρi) = ξ
(
ρ

g

i

) +
∫ ρi

ρ
g

i

√√√√∑2
j,k=1 κkj

dρk

dρi

dρj

dρi


f
dρi, (48)

and dρ2

dρ1
satisfies the following differential equation:

0 =
[
κ11 + 2κ12

dρ2

dρ1
+ κ22

(
dρ2

dρ1

)2]

×
[
∂(
f )

∂ρ2

(
κ11 + κ12

dρ2

dρ1

)
− ∂(
f )

∂ρ1

(
κ12 + κ22

dρ2

dρ1

)]

− d2ρ2

dρ2
1

[2(κ11κ22 − κ12)
f ], (49)

where


f = f (ρ1,ρ2) − μe
1ρ1 − μe

2ρ2 + P cx, (50)

and μe
i is the chemical potential for component i at the

coexistence pressure P cx . No analytical solution for ρ1(ξ ),
ρ2(ξ ) can be obtained from Eqs. (48)–(50). So no analytical
formula of g(ρ) can be obtained from the form of the bulk
free energy f if following the same method of deriving the
function g(C) in the C-H case. But, just as what was done by
Laurila et al. [12] for the one-component case, we can still use
a third-order polynomial g(ρ) as an approximation. In addition
to the two conditions that have been proposed at the beginning

of the Sec. II C, i.e., g(ρg) = 0 and g(ρl) = 1, the other two
requirements on g are ∂g

∂ρ
(ρl) = 0 and ∂g

∂ρ
(ρv) = 0 far from the

interface, which are obvious from formulas (43) and (44).

D. Numerical scheme

A finite element numerical toolbox FEMLEGO [33] together
with the DEAL.II [34] have been used for all simulations.
FEMLEGO is a symbolic tool for solving partial differential
equations by using the finite element method. Equations, initial
conditions and boundary conditions, and a linear solver are
defined in a single Maple sheet. The source code that works
with the DEAL.II library, will be generated automatically after
compiling the Maple sheet. With two-component system, the
generalized pressure tensor is more complicated than that
of one-component system, and we have one more equation
to describe the density variation of component 1. Other
than these, other equations are similar to the one-component
system. The numerical scheme is basically the same as used
previously for a one-component van der Waals fluid [12,35,36],
the characteristic-based split (CBS) method. Variables are
discretized in space with piece-wise linear base functions.
Time marching is the first-order Euler forward scheme. The
numerical steps are the following, where the variables with
a superscript n represent their values at time n � t , �U = ρv,
�U1 = ρ1

ρ
U, 0 � θ1, θ2 � 1 (in this paper, we set θ1 = θ2 = 1,

so the scheme is fully explicit):
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FIG. 8. (Color online) Case B: CO2 + ethanol, open system, lyophilic surface; t = 1500. (a) Total density ρ, (b) density of ethanol ρ1 (a
minimum value 0.7 is set in order to show the variation of ρ1 around the interface), (c) contour of temperature T ; black line represents the
interface, (d) total mass flux ρ�v.

(1) Solve equation (51) to obtain the intermediate mass
flux �U∗,

�U∗ − �Un

�t
=

[
−∇ · ( �U�v) + R∇ · ←→

P + 1

Re
∇ · ←→τ

]n

+ �t

2
�vn · ∇[∇ · ( �U�v) − R∇ · ←→

P ]n. (51)

(2) Solve equation (52) to obtain pressure tensor
←→
P

n+1
,

←→
P n+1 =

[
−p(ρ1,ρ2,T )

←→I + LD

←→I

− ∂LD

∂∇ρ1
⊗ ∇ρ1 − ∂LD

∂∇ρ2
⊗ ∇ρ2

]n

. (52)

(3) Solve equation (53) to obtain difference between the
generalized chemical potential μ̂1 − μ̂2,

(μ̂1 − μ̂2)n = (μ1 − μ2)n

−
⎛
⎝∑

j

T D1,j

m1mj

∇2ρj −
∑

j

T D2,j

m2mj

∇2ρj

⎞
⎠

n

.

(53)

(4) Solve equation (54) to obtain density at the new time
step ρn+1,

ρn+1 − ρn

�t
= −∇ · [ �Un + θ1( �U∗ − �Un)

+ θ1θ2R�t∇ · (
←→
P n+1 − ←→

P n)]. (54)

(5) Solve equation (55) to obtain density of component 1
at the new time step ρn+1

1 ,

ρn+1
1 − ρn

1

�t
= −∇ · [ �Un

1 + θ1
( �U∗

1 − �Un
1

)]

+∇ ·
[
Mf

ρ1ρ2

ρ2
∇

(
μ̂1 − μ̂2

T

)]n

. (55)

(6) Solve equation (56) to obtain mass flux at the new time
step �Un+1,

�Un+1 − �U∗

�t
= R∇ · [θ2(

←→
P n+1 − ←→

P n)]

− �t

2
�vn · ∇{R∇ · [θ2(

←→
P n+1 − ←→

P n)]}.
(56)
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FIG. 9. (Color online) Case C: CO2 + ethanol, closed system, lyophobic surface, t = 100. (a) Total density ρ, (b) density of ethanol ρ1

(a minimum value 0.7 is set in order to show the variation of ρ1 around the interface), (c) contour of temperature T ; black line represents the
interface, (d) total mass flux ρ�v.

(7) Solve equation (57) to obtain the temperature at the
new time step,

(ρeT )n+1 − (ρeT )n

�t

=
{
−∇ · (ρeT �v) + ∇ · [(

←→
P + Re−1R−1←→τ ) · �v]

+B∇ · [(κ12ρ1 + ρ2)∇T ]

−
∑

i,j∈{1,2}
∇ ·

(
T Di,j

mimj

dρi

dt
∇ρj

)}n

. (57)

E. Verification of the wetting boundary condition

To verify the wetting boundary conditions (38) and (39) for
the two-component system, we measure the apparent contact
angle θ with time t for a simple isothermal system. Suppose
a rectangular isothermal system is filled with a mixture of
CO2 and ethanol at T = 0.957, P = 0.4. Initially, the liquid
and gas mixture is on the right and left half separately, with
a straight interface in the middle, i.e., the initial contact angle
is 90 degrees, as Fig. 2(a) shows. Assuming that the lower
and the upper wall has an equilibrium angle θe = 45◦ and
θe = 135◦ respectively, the interface at equilibrium would
be a straight line. Figure 2(b) shows the interface profile at
equilibrium. Figure 2(c) shows the way we extract the apparent
contact angle. The solid line with red star represents the

isocontour for the density (ρg + ρl)/2. The apparent contact
angle is the angle between the isocontour and the solid wall,
measured at a distance h above the solid wall, where h is the
interfacial thickness. Figure 2(d) shows the difference between
the measured contact angle θ and the equilibrium contact angle
θe with time. It shows that the contact angle decreases very
quickly initially due to the diffusion near the interface. It
then decreases further, but at a much slower speed. Finally,
at equilibrium, the difference between the contact angle and
the equilibrium angle becomes very small.

To have a good balance between the computational cost and
the accuracy of the solution, for all simulations in this paper,
we use an adaptive mesh. Initially, the mesh is uniform and
relatively coarse over the whole domain. It is then refined in the
liquid-gas interfacial region during the evolution according to
the local density gradient. Our previous paper about the rapid
expansion process of CO2 on a uniform mesh [36] has shown
that the simulations were independent of the grid. For the
adaptive mesh used in this paper, we check the influence of
the initial uniform mesh size on the surface tension of CO2

at T = 0.9 through Laplace tests. The initial mesh size 
x

is set to 24, 12, and 6, respectively. The minimum mesh size
hm in the adaptive region is set to 1 for all cases. As shown
in Fig. 3, surface tension σ does not change as 
x decreases
from 12 to 6.

When using the Cahn–Hilliard model to simulate the inter-
facial problem for incompressible fluids, the model parameters
α, β in the free-energy functional can be determined if the
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FIG. 10. (Color online) Case C: CO2 + ethanol, closed system, lyophobic surface; t = 300. (a) Total density ρ, (b) density of ethanol ρ1

(a minimum value 0.7 is set in order to show the variation of ρ1 around the interface), (c) contour of temperature T ; black line represents the
interface, (d) total mass flux ρ�v.

surface tension and the interfacial thickness are given, and
vice versa. So the interfacial thickness can be arbitrarily
chosen and enlarged. But for this new diffuse interface method
for compressible fluid, there is no such simple relationship
between those parameters. It is difficult to artificially enlarge
the interfacial region. This sets a limitation in our simulation,
i.e., the interfacial thickness in our simulation is, strictly
speaking, the physical one, on the nanoscale. The capillary
coefficient Dij is related to both the surface tension and the
interfacial thickness. We have shown in Ref. [27] that the
numerical surface tension matches well with the experimental
one for CO2 + ethanol systems when we take D11 = 12 for
ethanol, D22 = 4 for CO2, and D12 = 6.9282. These values
are also used in this paper, and the interfacial thickness is then
determined automatically by these values of Dij . Numerical
results for the planar case show that, with hm = 1, there are
almost six grid points covering the interfacial region.

III. DYNAMICS OF BOILING

In this section, we show numerical results for the boiling
process of a two-component fluid in a closed system and an
open system, both for lyophilic and lyophobic surfaces. By
“lyophilic” or “lyophobic,” we mean that the contact angle
formed between the interface and the solid wall on the liquid
side is less or larger than 90◦. In the following, the equilibrium
contact angle θe is set to be 45◦ for a lyophilic surface,
and 135◦ for a lyophobic surface. Notice that the wetting

boundary conditions (38) and (39) derived in Sec. II C are for
an isothermal system. For simplicity, we apply them here to
simulate the boiling process which happens in nonisothermal
systems, just as has been done for a one-component van der
Waals fluid [12].

When the bottom wall is heated, the temperature there and
the density of each component might change. This might cause
the surface tension between the liquid and gas mixture to
change too, resulting in the boundary conditions (38) and (39)
being not as accurate as in an isothermal system. However, our
numerical results in this section shows that, even in a heated
system, the boundary conditions (38) and (39) can still be used
as a good approximation.

The computational domain is two dimensional, � =
[−150,150] × [−300,0]. Since L∗ = 8.287e − 10m, our sys-
tem is very small, thus the gravity effect can be ignored.
Carbon dioxide is considered as component 2, and ethanol
is considered as component 1. Initially, the temperature is
linearly distributed from T = 0.957 at the bottom wall to
T = 0.9 at the top wall. The density of each component
over the whole domain is the saturated density of the binary
system at T = 0.957, P = 0.4, which is ρ

g

1 = 0.0276, ρ
g

2 =
0.1712 for the gas mixture in the bubble, and ρl

1 = 0.8512,
ρl

2 = 0.6734 for the liquid-mixture surroundings the bubble.
The total density is thus ρg = 0.1988 in the bubble and ρl =
1.5246 in the liquid. With those conditions, the dimensionless
parameters in the model are Re = 1.2506, R = 0.5617,
B = 18.8598, η12 = 27.4550, λ12 = 0.2244, m21 = 0.8356,

043017-11



JIEWEI LIU, MINH DO-QUANG, AND GUSTAV AMBERG PHYSICAL REVIEW E 92, 043017 (2015)

x

y

−100 0 100
−300

−250

−200

−150

−100

−50

0

0.9

0.91

0.92

0.93

0.94

0.95

0.96

−150 −100 −50 0 50 100 150
−300

−250

−200

−150

−100

−50

0

x

y

(a) (b)

(c) (d)

FIG. 11. (Color online) Case C: CO2 + ethanol, closed system, lyophobic surface; t = 1000. (a) Total density ρ, (b) density of ethanol ρ1

(a minimum value 0.7 is set in order to show the variation of ρ1 around the interface), (c) contour of temperature T ; black line represents the
interface, (d) total mass flux ρ�v.

b1 = 2.0276, a11 = 3.4262, a12 = 1.75, D11 = 12, D22 = 4,
D12 = 6.9282, σ = 1.7992. Figure 4 shows the initial profile
of the density ρ of the mixture [Fig. 4(a)], the density ρ1

of the component 1 [Fig. 4(b)], and the temperature T of
the system [Fig. 4(c)] for all of our simulations in this
section.

In all simulations, the temperature at the top and bottom
boundaries are kept constant. The left and right boundaries are
insulated walls with no heat flux. No slip condition for the
velocity is imposed on all walls. In the open system, we allow
mass flux to flow out of the top boundary.

A. Open system, lyophobic surfaces

First, let us consider the evolution of a mixture-gas bubble
on a lyophobic surface in the open system. By “open system”
we mean that the top boundary is open, and the fluid can flow
out of the system through the open boundary. The bottom wall
attracts the gas phase more strongly than the liquid phase.
Figures 5 and 6 show the total density ρ of the mixture, the
density ρ1 of component 1, the temperature T , and the mass
flux ρ�v at different stages. For each variable, we use the same
color bar in order to have a good comparison. To show the
variation in the density of component 1, we set a threshold 0.7
as the minimum value when we plot ρ1. The real value of ρ1

in the gas bubble is usually less than 0.1.

Figure 5(a) shows that, as the bubble spreads on the bottom
wall, it also quickly grows. Figure 5(b) shows that, around the
interface, there is a thin layer where the density of ethanol in
the liquid phase increases. The preferential evaporation of the
more volatile component is a typical phenomenon in the binary
boiling problems [37]. Around the interface, the phase changes
from liquid to gas for both CO2 and ethanol. Since CO2 is
more volatile, more liquid CO2 changes to gas CO2 or, in
other words, more liquid ethanol remains in the liquid mixture,
resulting in an increased density of ethanol in the liquid from
0.1712 at t = 0 to greater than 0.9 at t = 500. Figure 5(c)
shows that, as the bubble grows, the temperature within the
bubble decreases a lot due to the latent heat absorbed, except
for the region just above the bottom wall. Corresponding to
the thin layer around the bubble where the density of ethanol
increases, the temperature there is higher than in the gas
bubble, but lower than other parts of the liquid. Due to the
fact that the heat conductivity of the gas is much smaller than
that of the liquid, the temperature variation in the gas is much
larger than in the liquid. Figure 5(d) shows the mass flux in
the open system. The mass flux in the gas phase is very small.
But there is a large mass flux in the interfacial region and the
liquid region. Phase change happens mainly in the interfacial
region, so we can see large mass flux there. As the bubble
grows, it pushes the liquid out of the system through the top
boundary, which then results in the mass flux in the liquid
mixture.
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FIG. 12. (Color online) Case C: CO2 + ethanol, closed system, lyophobic surface; t = 8000. (a) Total density ρ, (b) density of ethanol ρ1

(a minimum value 0.7 is set in order to show the variation of ρ1 around the interface), (c) contour of temperature T ; black line represents the
interface, (d) total mass flux ρ�v.

Figure 6 shows the total density ρ, the density of ethanol ρ1,
the temperature T and total mass flux ρ�v at a much later time,
t = 1500. It is seen that the bubble grows more rapidly than
it spreads on the bottom wall. The denser ethanol in the thin
liquid layer around the bubble is more obvious; see Fig. 6(b).
The mass flux just above the top of the bubble is much larger
than the mass flux in the foot region; see Fig. 6(d).

B. Open system, lyophilic surfaces

Next, we simulate binary boiling on a lyophilic surface for
a open system. The bottom wall favors the liquid phase over
the gas phase. The bubble, instead of spreading rapidly on the
bottom wall, prefers to be rolled up; see Fig. 7 at t = 500.
Except for the movement of the contact line, no other physical
phenomena that are essentially different from the boiling on
a lyophobic surface above are visible. For example, there is a
thin layer around the bubble where the density of the ethanol
becomes greater [Fig. 7(b)]. The temperature of the liquid in
this thin layer is higher than the gas bubble, but lower than its
surroundings liquid [Fig. 7(c)]. Also, the mass flux within the
gas bubble is very small. Around the interface, there is a large
mass flux pointing from the gas bubble to the liquid. From the
foot region of the bubble to the top of the bubble, the mass
flux increases. The liquid mixture in the domain is pushed out
of the system due to the growth of the bubble [Fig. 7(d)].

Figure 8 shows the distribution of the total density ρ, the
density of ethanol ρ1, the temperature T , and the total mass flux
ρ�v at a later time, t = 1500. Compared with Fig. 6, only the
spreading distance of the moving contact line and the shape of
the interface near the bottom wall are different; other physical
characteristics are the same.
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FIG. 13. (Color online) Relative change of the total mass m(t)−m0
m0

with time t . m(t) is the total mass of the systems at time t , m0 is the
initial total mass.
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FIG. 14. (Color online) Case D: CO2 + ethanol, closed system, lyophilic surface. (a) Density of ethanol ρ1 at t = 100, (b) density of
ethanol ρ1 at t = 2000, (c) contour of temperature T at t = 100, (c) contour of temperature T at t = 2000, (e) total mass flux ρ�v at t = 100,
(f) total mass flux ρ�v at t = 2000. For ρ1 in panels (a) and (b), a minimum value 0.7 is set in order to show the variation around the interface.

C. Closed system, lyophobic surfaces

Binary boiling in a closed system shows very different
dynamics. Unlike in the open system, where the thin layer
with denser ethanol around the bubble exists and becomes
more obvious during the whole evolution time, the thin layer
in the closed system becomes thicker and less concentrated
in ethanol very quickly and finally becomes indistinguishable
from its surroundings. Figures 9–12 show the distribution of
the total density ρ, the density of ethanol ρ1, the temperature
T , and the total mass flux ρ�v at different time. Figure 9(b)
shows that at very early time t = 100, we can observe a very
thin layer around the bubble as well as near the top wall

where ethanol becomes denser. In a short time, ethanol in
the denser region diffuses very quickly to its surroundings; see
Figs. 10(b) and 11(b). At t = 7000, the thin layer around the
bubble has disappeared, and the density of ethanol from the
top wall to the bottom decreases smoothly, as Figure 12(b)
shows. In the open system, temperature variation is obvious
during the whole process, as the results in Secs. III A and III B
show. But in the closed system, temperature variation is only
appreciable in the early stage. Figure 9(c) tells us that, at
t = 100, the temperature inside the bubble is lower, especially
in the central region of the bubble. After a short while, at
t = 300 [see Fig. 10(c)], the temperature in the central region
of the bubble increases to the same temperature as on the
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bottom wall, except for a relative low temperature in the layer
around the bubble as well as near the foot region. As the boiling
process proceeds, the thin layer around the bubble disappears,
and the temperature in the foot region of the bubble becomes
almost the same as its surroundings; see Figs. 11(c) and 12(c).
For the mass flux in the open system, we have not observed
any vortices during the whole boiling process, so it is a pure
evaporation process. In the closed system, we can clearly see
from Fig. 11(d) that two vortices have already been generated
around the bubble at t = 1000, indicating evaporation near the
foot region of the bubble and condensation at the top of the
bubble. As the bubble spreads, these two vortices persist and
move, as Fig. 12(d) shows.

A big difference between the open and the closed system is
that the pressure increases in the closed system. For the boiling
of a pure fluid, this would increase the boiling temperature
and thus delay the nucleation process. In this paper, we do not
consider the early nucleation process. Instead, we start from
the point where a bubble has already formed in the system. For
the boiling of a binary fluid, the increase of pressure would
change the equilibrium composition of each component in the
liquid and gas phase. We have shown [27] that for the binary
system CO2 + ethanol, as pressure increases, the mass fraction
of CO2 in the liquid phase would increase. This might be the
reason why the preferential evaporation of CO2 in the open
system is much more obvious than in the closed system, as
Figs. 6(b) and 11(b) show.

Another difference between the open and the closed system
is the change of the total mass of the system. Figure 13 gives
the relative change of the total mass m(t)−m0

m0
with time t . Red

circles represent the closed system, blue upward triangles
represent the open system. The total mass decreases in the
open system since the growing bubble takes more and more
space. In the closed system, no fluid can escape, so the total
mass does not change.

D. Closed system, lyophilic surfaces

By making the bottom wall attract the liquid mixture more
than the gas mixture, the gas bubble would not spread much.
Basic characteristics like a thin layer with denser ethanol
around the bubble and the variation of temperature are also vis-
ible at early times, such as t = 100; see Figs. 14(a) and 14(c).
Those characteristics disappear at later times, such as t =
2000, see Figs. 14(b) and 14(d), just the same as the boiling on
the lyophobic surface in Sec. III C. However, the phenomenon
we have observed on a lyophobic surface in Fig. 10(c) that the
temperature is relative low near the foot region of the bubble
at early time has not been observed on a lyophilic surface.
Furthermore, the mass flux does not show any vortices during
the whole process; see Figs. 14(e) and 14(f).

We measure the apparent contact angle and compare it with
the equilibrium contact angle we set. Figure 15 shows that, as
time passes, the difference between the apparent contact angle
and the equilibrium angle approaches zero.

IV. DISCUSSION

There are several possible mechanisms through which heat
is transferred and the bubble grows, such as the evaporation of a
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FIG. 15. (Color online) θ − θe vs time t for CO2 + ethanol
mixture in the closed system on a lyophilic surface.

thin microlayer of liquid which might form between a growing,
hemispherically shaped bubble and the superheated wall, or the
evaporation of the superheated liquid layer surrounding the
bubble cap, or the evaporation of the liquid at the contact line,
or microconvection [38]. Although all of those mechanisms
contribute to the bubble heat transfer to some degree, there is
not a single model available which can incorporate all these
submodels [38]. For the numerical simulation of bubble growth
in the literature, some were based on an assumed heat transfer
mechanism, like the work done by Lee and Nydahl [39], some
treated the microregion and the macroregion separately, like
the work done by Son et al. [40], or Kern and Stephan [37].
In this paper, no assumption on the heat transfer mechanism is
made and the whole computational domain is treated the same.
All phenomena appear naturally as a result of the model and
the simulation. In this paper, we are not concerned with details
of the heat-transfer mechanisms, but we want to point out that,
in all the cases considered in this paper, we have not observed a
microlayer below the bubble. Previous studies on boiling using
diffuse interface method have not reported such a microlayer,
either [3,12]. This might due to the diffuse interface model
itself, or due to the parameters used in the model.

V. CONCLUSION

We have presented numerical results of boiling of
CO2 + ethanol mixture in open and closed systems, on both
lyophilic and lyophobic surfaces, based on a two-component
diffuse interface model. Wetting boundary conditions for
an isothermal, two-component system are also derived and
verified, following the same methodology used in the Cahn–
Hilliard modeling of wetting [29] and the boiling of a pure
van der Waals fluid [12]. For a nonisothermal system, a
more sophisticated and accurate wetting boundary condition
might be needed to take into account the variation of density,
temperature, and surface tension near the bottom wall. But our
numerical results show that the derived boundary conditions
could also serve as a good approximation even in a boiling
system, where the temperature is nonuniform.
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Our model is able to capture the typical phenomena in
binary boiling, i.e., the preferential evaporation of the more
volatile component. For the CO2 + ethanol mixture, we
observed that there is a thin layer around the bubble where
the density of ethanol increases. The temperature within this
layer is higher than that of the bubble but lower than its
surroundings. The evolution of those physical characteristics
in an open systems is very different from a closed system. The
thin layer becomes more obvious in the open system as time
progresses and exists during the whole process. In the closed
system, however, this layer becomes less concentrated in early
time and finally disappears. Similarly, temperature variation in
the open system is obvious during the whole process. But in the
closed system, the temperature variation is only appreciable in
the early stage, and the temperature quickly becomes nearly

uniform close to the bottom wall. Moreover, vortices are never
generated in the open system, but we observed vortices in the
closed system on a lyophilic surface.

For boiling in an open system, except for the difference
in the movement of the contact line, other essential physical
characteristics, such as the evolution of the composition,
the temperature, or the mass flux, do not differ strongly
between lyophilic surfaces and lyophobic surfaces. In the
closed system, however, the vortices that are observed on a
lyophobic surface are not observed on a lyophilic surface.
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