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Obtaining self-similar scalings in focusing flows
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The surface structure of converging thin fluid films displays self-similar behavior, as was shown in the work
by Diez et al. [Q. Appl. Math. 210, 155 (1990)]. Extracting the related similarity scaling exponents from either
numerical or experimental data is nontrivial. Here we provide two such methods. We apply them to experimental
and numerical data on converging fluid films driven by both surface tension and gravitational forcing. In the limit
of pure gravitational driving, we recover Diez’ semianalytic result, but our methods also allow us to explore the
entire regime of mixed capillary and gravitational driving, up to entirely surface-tension-driven flows. We find
scaling forms of smoothly varying exponents up to surprisingly small Bond numbers. Our experimental results are
in reasonable agreement with our numerical simulations, which confirm theoretically obtained relations between
the scaling exponents.
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I. INTRODUCTION

Thin layers of fluid on a solid substrate display surprisingly
rich dynamics, due to the interplay of forces at many length
scales [1–4]. Much progress has been achieved on the study of
thin fluid film systems. They are mostly well characterized by
the lubrication approximation of the Navier-Stokes equations.
This elegant approximate formalism allows for tractable
analysis of a wide range of fluid dynamics problems on many
length scales, such as liquids spreading on flat surfaces [5],
inclined surfaces [6], spin coating applications [7,8], dam
breaks [9], and geophysical [10] contexts: “thin” here means
that the height h of the film is small with respect to the typical
spreading length scale. The dynamics of the spatiotemporal
evolution of the height field h(x,y,t) is of a very general form,
essentially a nonlinear diffusion equation. The equation is a
generalization of the so-called porous medium equation [11],
which is used to describe motion transport in soils. One
interesting problem is that of “focusing flows,” describing the
advancing flow of a surrounding fluid to flood an interior
dry spot. The simplest case would be of an axisymmetric
fluid layer h(r,t) impinging on a circular hole. Solutions for
the porous medium equation were shown to have self-similar
structure [12].

Self-similar solutions are described by the form

h(r,t) = f (t)F

(
r

g(t)

)
. (1)

In this representation, h is decomposed into f (t), describing
the time-dependent scaling of the height profile, an F (ζ )
spatial profile function, and g(t) giving the scaling of the
radial variable. Self-similar solutions occur in many con-
texts [13]. When the scaling functions in Eq. (1) can be
obtained analytically from dimensional analysis and physical
constraints as power laws with rational exponents, Eq. (1) is
called a first-kind similarity solution. However, this approach
applied to the problem for converging flows does not uniquely

determine values for the exponents. Being a second-kind
similarity solution [13], the scaling exponent must be obtained
as part of the solution of a differential equation problem for
the similarity profile F (ζ ). For convergent viscous gravity
currents, in which the main driving force is gravitational,
the radius of the dry spot was predicted to collapse like
Rc(t) ∝ (tc − t)δ with δ = 0.762..., where tc is the point of
collapse [11,12,14].

At smaller length scales, surface tension may also play a
role in the dynamics of gravity currents. Much like gravity,
surface tension also has a similar tendency to smooth out
height variations in h(r,t). The capillary length ld = √

γ /ρg,
the ratio between surface-tension forces and gravity, set by
surface tension γ , and ρg, respectively, gives a typical length
scale on which surface-tension effects are significant. Under
such conditions, surface-tension gradients can dominate the
spreading dynamics of the flow [15–17]. The role of surface-
tension forces in thin films with considerable gravitational
driving has received some attention [18]. The methods to
estimate scaling exponents that we introduce here will allow
us to map out collapse behavior for fluids driven by an
arbitrary ratio of gravitational and capillary forces. We study
converging viscous gravity currents with surface tension
through experiments and numerics. Experimentally, we create
an axisymmetric thin film by fast spin-up of a fluid in a
confined container. Stopping the rotation subsequently yields
a focusing flow of the fluid to re-fill the central region.
We obtain numerical results for comparison by solving the
time-dependent axisymmetric lubrication equation for the
same system.

To compare analytic results to experiments or numerical
results, one must extract such scaling exponents from either
experimental or numerical surface-structure h(r,t) data. This
is often a huge challenge due to the noise on h(r,t) or the
finite accuracy of numerical solutions. Obtaining power-law
exponents is generally difficult [19]. In the case of self-
similar forms, the problem is compounded through the fact
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that multiple exponents have to be obtained simultaneously.1

We present here two practical methods for obtaining such
exponents from experimental or numerical data. We apply the
methods to probe convergent fluid films, which are driven
by both gravity and surface tension. The presence of surface
tension in the driving of the collapse is expected to cause
deviations from the Diez scaling. We indeed observe such
deviations by applying our methods over the entire range
from purely gravity to purely surface-tension-dominated flows.
We find good agreement between the methods, and we find
a reasonable match between numerically obtained data and
experimental results. The scaling form of Eq. (1) can, in fact,
even be used in the regime where both driving forces play a
role in the fluid flow. Our methods are of general interest in
contexts where scaling forms are to be expected and wherever
experimental or numerical data can be cast in scaling form.

The article is arranged as follows: first, we discuss the
practical background of converging fluid films driven by both
gravity and surface tension. Then we discuss, in Sec. II, the
experimental setup used to obtain experimental data, including
the setting up of initial conditions for the collapse. This also
provides the context for the type of numerical analysis we
will do. In Sec. III, we introduce the theoretical background,
the relevant scaling parameters, and the numerical methods,
and we elaborate on the numerical scheme used to obtain
solutions to the thin-film equation. The numerical results
reveal the typical difficulty of extracting exponents with
log-fitting of power laws, both in experimental and numerical
data. We then describe the two methods to extract scaling
exponents, using our numerical data as a guide. The
effectiveness of the methods is then demonstrated and used
to explore the transition in dynamics from gravity-driven to
surface-tension-driven flows. We also compare the numerical
results with some experimental data.

II. EXPERIMENTS

The experimental approach to study these convergent flows
starts by first creating an axisymmetric reservoir of fluid in a
rotating container. Fluid confinement inside the container leads
trivially to the following heuristic picture: during rotation,
centrifugal forces drive the fluid to the outer edge of the
container. Cessation of the rotation then “releases” the fluid and
creates an axisymmetric flow. There are many experimental
advantages of this approach: it creates highly reproducible
initial conditions in a mechanically simple and small setup.
The dependence on experimental parameters such as rotation
rate, fluid viscosity, and precursor film thickness can be
easily tested. There is full optical access to the complete
fluid-film-height profile, via various techniques. Determining
the collapsing surface structure is critical to determining
the collapse dynamics, especially the possibly self-similar
structure of the fluid film close to the time of collapse.

The experimental system consists of an initially
∼1-mm-thick layer of fluid in a shallow cylindrical
container—see Fig. 1(a). The container is rotated using

1Although the exponents are often constrained, as in the work by
Diez.
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FIG. 1. (Color online) (a) Schematic drawing of the container
and all the relevant parameters: �, the rotation speed; H0, the initial
filling height; R, the radius of the container; η and γ , the viscosity
and surface tension of the fluid, respectively. (b) Sketch of the
initial conditions for the collapse dynamics in experiments (upper
figure). These are somewhat different from the initial conditions
used in the numerics (lower figure). (c) Schematic drawing of
the interferometry setup. (d) Schematic of the surface-structure
scanning experiment. (e) A typical interferometry image from a dry
spot. (f) CTF size versus rotation rate: experimental observations
for H0 = 1.4, 1.9, 2.4, 3.2, 3.9 mm, numerical results (solid lines,
see text), and the mass conservation constraint [20] (dash-dot) for
comparison.

a stepper motor with closed-loop controller (Parker Zeta
Drive 6104). The closed-loop stepper-motor controller can be
programed to run any time-dependent rotation speed profile
�(t) with a maximum of two rotations per second (rps). The
container measures 13 cm in diameter and 2 cm in height.
To fix the temperature-dependent viscosity η and surface
tension γ of the fluid, the container is uniformly heated to
a temperature of 24 ◦C unless otherwise noted by running
water at a set temperature through the double-walled rotating
axis—for details see Ref. [15]. On the base of the container, a
silicon wafer (University Wafers) is placed. The wafer is fixed
to the base through the deposition of a small (�1 ml) amount of
fluid between wafer and the container. Suction force remains
even after complete submersion of the wafer. The container is
filled with a volume V of fluid that gives an initial filling height
H0 = V/πR2 with R being the radius of the container. We use
polydimethylsiloxane (PDMS) for all experiments described
in this work; this fluid completely wets the silicon wafer. The
transparency of the PDMS and reflectivity of the silicon wafer
allows for a laser-assisted alignment of the gravity-leveled
fluid surface and the silicon wafer in the container, whose
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orientation can be tuned by set screws. Interferometry provides
access to the spatial structure in the thin film dynamics—see
Figs. 1(c) and 1(e). Container illumination is provided with a
uniform sodium light via a beam splitter. The spatial structure
of the interference pattern of reflected and incoming light
waves is recorded with a high-resolution digital camera.

A. Initial conditions in experiments

In a rotating container, a fluid will set up a parabolic surface
profile to balance gravitational pressure and centrifugal forces.
However, for a shallow fluid layer, above a critical rotation
rate, � > �c =

√
gR2/2H0 [20], the solid base precludes the

parabolic solution and results in a piecewise-defined height
profile with a central “spot.” Outside of the spot, for RS < r �
R, the approximate profile remains parabolic. Within the spot,
the nature of the solution depends on the wetting properties of
the container’s base (the silicon wafer). For fluids that wet the
base, the spot will be covered by a thin film that we call the
central thin film (CTF). For nonwetting fluids, the parabolic
profiles will end at a sharp contact line at r = RS . In this paper,
we discuss only the case of completely wetting fluids, which
sets up a height profile as sketched in Fig. 1(b).

To find the initial conditions before the collapse created by
the rotation, we then solve the steady-state lubrication equation
to obtain the complete surface profile h(r,�,H0) for different
rotation rates and initial volumes set by H0; the CTF radii
extracted from the numerics are in good agreement with the
approximation from Linden [20] that assumes a piecewise
continuous surface structure, consisting of only a flat layer
and a parabolic surface. For such a steady-state solution, mass
conservation implies that

RS = R

[
1 − 1

R

(
2�2H0

g

)1/2
]1/2

, (2)

in which the CTF mass and surface tension at the boundary of
the container [21] are neglected. The size of the central spot
RS depends on the square root of the rotation rate [20] and the
total volume of fluid in the container.

We verify Eq. (2) by using interferometry to characterize
the thin fluid film in the center of the container. Figure 1(e)
shows a typical interferometric image of the CTF. There
are several features in this image. When the container is
properly leveled, the CTF is axisymmetric and flat with only
modest height variations at best [22]. The fine structure of
the edge of the CTF is not visible through interferometry, so
we arbitrarily but consistently define the edge of the CTF by
the faint ring indicated by the arrow in Fig. 1(e), which is
visible in all experiments. The obvious fine structure within
the ring is related to the contact line between the thin film
and the parabolic solution. This fine structure is nontrivial;
it is left for future work. The radius RS of the CTF for
various rotation rates and fluid volumes is shown in Fig. 1(f).
RS ∼ √

� above �c is as predicted by Ref. [20]. Theoretical
and numerical predictions are made with the same R,H0

that produced the best fit to experimental data and produce
reasonable agreement. Figure 1(f) shows also that the two
theoretical methods of determining the CTF size versus � are
consistent with each other.
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FIG. 2. (Color online) (a) Interferometric top view of a collaps-
ing dry spot; the circular shape outlines the edge of the collapsing dry
spot. The intensity profile of the dashed line is shown as a function of
time in the space-time plot of panel (b), contrast enhanced. The spot
size is indicated with the arrow; time progresses toward the right. Total
time of collapse, �150 s. (c) The spot size as a function of the time
to collapse (time increasing to the left) for a typical H0 = 2.9 mm,
η = 10 mPa s after spinning for several minutes at � = 1 rps. Blue
lines for reference are power laws of exponents 0.5 and 0.6.

During the process of establishing a parabolic profile, the
CTF is also continuously draining fluid, making the CTF
change in thickness. This drainage process is governed by
a balance between centrifugal forces and viscous drag in the
thinning layer. The efflux of fluid, radially outward from the
CTF, slows progressively over time toward an equilibrium
height profile, as described by the scaling laws first given by
Emslie, Bonner, and Peck (EBP) [23]. In order to observe the
collapse dynamics, it is, however, important to make sure that
the CTF is as thin as possible. Therefore, in the numerics, we
set up initial conditions as shown in Fig. 1(b), where the total
volume of the triangular surface area is equal to one, which
can then be rescaled with the height factor H0. We choose the
central layer thickness h00 = 10−4H0 sufficiently small that it
does not affect the results.

B. Top-view imaging

The fluid volume under the parabolic profile at the edge of
the container serves as a reservoir that, upon cessation of the
container’s rotation, is “released” in a dam-break fashion. This
creates a fluid flux toward the center of the container.

An example of this behavior is indicated in Fig. 2(a). We
use the following experimental procedure: starting from an
initially flat fluid surface in a static container, the rotation rate
is ramped up to � > �c, which creates the partial parabolic
profile. After rotating at constant � for a finite time, rotation is
stopped virtually instantaneously. This removes the centrifugal
force and initiates the flow of the fluid from the reservoir
at the boundary. Tracer particle tracking on the surface of
the fluid showed that all experiments are at low enough
Reynolds number Re such that rotational flow never persists
more than a small fraction of the initial collapse. The CTF
spot in the center of the container thus disappears relatively
slowly. We denote the size of the dynamically changing spot
with Rc(t) to distinguish it from the steady-state spot size
RS(�). This process is indicated in Fig. 2(b); these experiments
are similar as the one described in Ref. [14]. Note that the
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collapse dynamics of the front over a too-thick CTF layer
ends with a standard diffusive Rc(t) ∼ (tc − t)1/2 exponent
for a fixed-height threshold. This is due to the fact that with
a thick CTF layer, any cavity is simply a dip in the fluid
surface with an approximately parabolic shape; this dip shifts
its vertical position while the fluid is moving to the center.
To avoid having this effect obscure the nontrivial scaling, it
is essential to make the CTF as thin as possible just before
the collapse. The container is spun sufficiently long to ensure
this is the case. Imaging suggests that the typical initial film
thickness is about 100 μm or less.

At the end of the collapse, just before cavity closure, the
spot size versus time is clearly nonlinear: from the data shown
in Fig. 2(b), the size of the shrinking CTF spot is tracked
with an intensity threshold technique. The result is shown in
Fig. 2(c): the spot size varies as Rc(t) ∼ (tc − t)0.55 with an
uncertainty of about 0.05 in the exponent. However, as we will
see below, a log-fitting routine is unable to capture an accurate
exponent for the collapse. To better characterize the collapse
dynamics, we turn to surface-structure imaging.

C. Surface-structure imaging

To obtain full surface-structure data in the experiments,
we step away from interferometry and instead image a cross
section of the (radially symmetric) height profile with a
high -speed camera (Photron)—see Fig. 3. Surface contrast
is created by adding an oil-soluble fluorescent dye in the
fluid (Pyrromethene 567) and illuminating the dye with a
532-nm laser line. There is sufficient dye concentration in the
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FIG. 3. (Color online) (a) Typical image (cropped) obtained by
the camera. From a sequence of such images we can reconstruct the
full height profile h(r,t) as shown in color, indicating the height.
(b) h(r) for different t . t = 0 refers to the rotational forcing stage
which sets up the initial parabolic profile, indicated in blue, from
Ref. [20]. (c) h(t) for different r as indicated. Rs ∼ 0.38R for this
experiment. Rotation is stopped just before t = 1 s. (d) As in (b)
measured for the same fluid at two different temperatures. Time is
rescaled with the temperature-dependent viscosity (η(5 ◦C) ∼ 300
mPa s; η(45 ◦C) ∼ 36 mPa s) to indicate the similarity of the profiles.

PDMS such that only the fluid close to the surface fluoresces
[Fig. 3(a)].

The laser-line scanning method is used to obtain the data in
Figs. 3(a)–3(d): here a 2.9-mm layer of η ∼ 700 mPa s PDMS
was spun for a minute at � = 1 rps before cessation of rotation
at t = 1.1 s. The complete structure and typical behavior of
the thin film surface is shown in Fig. 3(a), much like Ref. [24].
The radial surface profiles, h(r,t), for, e.g., t = 0, 1.4, 6, and
8.8 s are shown in Fig. 3(b). At t = 0 there is a parabolic
surface profile due to centrifugal force, which is quantitatively
in agreement with the prediction from Ref. [20]. The equation
describing the surface profile at � > �c: h(r) = �2

g
(r2 − R2

S),
with r > RS . For r < RS , we expect h ∼ h00, which is below
the vertical resolution shown in Fig. 3(b).

After the collapse, the parabolic surface profile first inverts
its curvature to form the moving front shape as visible in
Fig. 3(b) at 1.4 s. Called waiting-time behavior, the change
in curvature happens while the contact line is essentially
static [25,26]. Beyond this point a symmetric collapse of the
central cavity is observed. In Fig. 3(c), h(t) for r = ±0, ±
10, ± 25, and ±60 mm radial positions along the diameter
marked by the laser line in the 65-mm-radius container is
shown. Contour lines for both positive and negative r are
shown to indicate the radial symmetry in the surface shape;
they overlap almost entirely. As shown in Fig. 3(d), the
time-dependence of the collapse dynamics scales inversely
with the viscosity.

To extract the CTF collapse exponent, we need to measure
both the size Rc(t) and the collapse time tc. We do this by
choosing a single height threshold: we define the radius of the
CTF with

Rc(t) = max
h(r,t)=hT

r,

the largest r for which the experimentally determined height
profile h(r,t) is smaller than threshold hT . The height threshold
also sets tc with some uncertainty. Figure 3(c) shows that
the collapse time is not easy to precisely pinpoint from
experimental data. The precision in determining tc is set by the
slope of time dependence for the height at the origin around the
collapse time. If the slope of h(r = 0,t) around the collapse
time is large, tc does not depend sensitively on the height
threshold hT . We, however, observe in Fig. 3(c) that the slope
of h(r = 0,t) is finite, so every hT threshold comes with its
own estimate of tc.

We show Rc(t) for two different collapse experiments and
four different hT for each experiment in Figs. 4(a) and 4(b).
For the experimental settings used, the data in Fig. 4(b) shows
that Rc(t) ∼ (tc − t)0.65 with an uncertainty in the exponent
of about 0.05, but very similar to the exponent obtained
with the top view experiments. These two front tracking
methods therefore yield consistent results. The exponents
found with these two methods are, however, significantly
different from the 0.762 exponent expected for gravity driven
fluids, suggesting that in our experiment, surface tension plays
a role. To probe the role of both driving forces, we will look
at the thin film equation in more detail in the next section.

Choosing H0,η. As shown below, the collapse time strongly
decreases with the initial layer thickness H0, and as such,
it is favorable to choose thicker layers to keep experimental
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FIG. 4. (Color online) (a) Rc(t) measurement for a H0 = 2.9
mm PDMS layer at 24 ◦C, for which η ∼ 100 mPa s. For the
surface profile obtained in this experiment we extract different
Rc(t) with different height thresholds hT = 0.74, 0.47, 0.37, 0.21 H0.
(b) Rc(t) measurement for a H0 = 2.9 mm PDMS layer at 45 ◦C
with η ∼ 36 mPa s. Rc(t) obtained with different height thresholds
hT = 0.71, 0.67, 0.57, 0.33 H0. In both panels, power laws of 0.55,
0.65, 0.75 indicated for reference. The dash-dotted line indicates the
spatial resolution of the experiment.

timescales manageable. However, for thicker layers the pre-
cursor film needs prohibitively long spinning time to become
sufficiently thin at the time of the collapse. One solution for this
challenge is to speed up the collapse by choosing less viscous
PDMS, but for fluid viscosities of less than ∼50 mPa s the
Stokes flow approximation breaks down during the collapse.2

We are hence limited in choosing η ∼ 100–1000 mPa s and
H0 ∼ 3 mm.

III. THEORY

We consider thin-film dynamics in the geometry shown in
Fig. 1(a). In the low-Reynolds-number, creeping-viscous-flow
limit, the time-dependent film height h(r,t) in the rotating
container is described with a time-dependent axisymmetric
lubrication equation that includes surface tension, gravity,
centrifugal force, and disjoining pressure:

∂h

∂t
+ 1

r

∂

∂r

{
ρ�2

3η
r2h3 − rh3 ∂

∂r

[
ρg

3η
h − A

3ηh3

]

+ γ

3η
rh3 ∂

∂r

[
1

r

∂

∂r

(
r
∂h

∂r

)]}
= 0. (3)

Here, h(r,t) is the axisymmetric surface-height profile
depending on the radial coordinate, r , and time, t . Viscosity is
given by η, � is the rotation rate, and the surface-tension
coefficient is γ . The local pressure inside the fluid layer
depends both on gravity and the disjoining pressure with
the Hamaker constant negative for complete wetting and of
order A ∼ −10−20 J—typically disjoining pressure effects are
insignificant [27].

First, starting from a uniform film of height h = H0, the
system is spun up with rotation rate �. When the profile is
sufficiently close to equilibrium (and the CTF is sufficiently
thin), the rotation is stopped, so � = 0 in Eq. (3) for the rest
of the evolution. The concomitant simplification of Eq. (3)

2This is evidenced by the experimental observation of a brief
emergence of a protrusion of liquid at the end of the collapse.

allows for nondimensionalization. A natural choice is to set
h = H0h̃ and t = T t̃ . We are then left to set a length scale
for the radial coordinate. We can follow Schwartz and Roy
in their drop-spreading analysis for spin-coating context [7]
and Bertozzi et al. [28] and choose r = Rr̃ . This yields
the following equation in the absence of rotation (� = 0),
neglecting the disjoining pressure, and dropping tildes after
rewriting:

1

T

∂h

∂t
+ V

r

∂

∂r

{
−rh3 ∂h

∂r
+ rh3

Bo

∂

∂r

[
1

r

∂

∂r

(
r
∂h

∂r

)]}
= 0,

(4)

with

V = ρgH 3
0

3R2η
, Bo = ρgR2

γ
. (5)

The alternative choice of r = H0r̃ is perhaps more natural, as
one would expect that the container radius is not a relevant
length scale for the convergent flows in the center of the
container. The r = H0r̃ rescaling only modifies the prefactors:

V = ρgH0

3η
, Bo = ρgH 2

0

γ
. (6)

Here the total time it takes for the collapse to complete
scales with tc ∝ H−1

0 with tc the collapse time. We compare
this scaling with experiments introduced in Sec. II B. We
measure the collapse timescale by direct imaging the CTF
during collapse for a η = 1000 mPa s and a range of H = 1.7
to 7.3 mm. Results are shown in Fig. 5(a); in the accessible
range of data, the experimental results are consistent with a
total collapse-time scaling of H−3

0 , clearly incompatible with
scaling from the nondimensionalization through r = H0r̃ . We
therefore choose r = Rr̃ , which does produce a H−3

0 scaling
of the total collapse time. The properties of PDMS, with
density ρ = 965 kg/m3 and γ = 0.02 N/m together with the
container radius R = 6.5 cm fixes Bo = 2 × 103 in all our
experiments, with only a weak dependence on temperature
through dγ /dT ∼ 0.6 × 10−3 N/Km.
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FIG. 5. (Color online) (a) Collapse time versus filling height H0;
indicated is a power law with exponent −3. Green pluses are
experimental results (see text). Red dots are numerical results. The
timescale in the numerics is arbitrary; this limits us to compare only
the scaling of H0 with the top-view experiments. (b) Typical h(r,t)
profile produced by the numerics. Color indicates height, in units of
H0. Initial conditions are as shown in Fig. 1(b).
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A. Numerical results

We use a second-order-accurate implicit finite-difference
scheme to solve the time-dependent axisymmetric lubrication
equation [Eq. (4)]. Time stepping is dynamic to allow us to
resolve the fluid surface motion just before collapse. Numerics
give us access to a wide range of radii R = 0.01 . . . 5 m
(using . . . to indicate a range) and surface tensions γ =
2 × 10−6 . . . 2 × 106 N/m, which allow us to study a large
range of Bo = 10−2 . . . 1010. The ratio of η and the time step
in the numerics is set to keep computation time small. We
ensure mass conservation inside the film to within 10−6 H0 or
better.

A typical h(r,t) is shown in Fig. 5(b). The initial conditions,
set up to mimic the surface profile during rotation, clearly
evolve toward a collapsing CTF upon cessation of the rotation.
From these data, we extract several quantities. First, we extract
the collapse-time scaling by measuring the time it takes for the
thin film height h at r = 0.6R < RS to rise to the substantial
height of 0.75 H0, which is much larger than the initial film
height h00. The results are insensitive to the choice of these
parameters, but they induce an arbitrariness in the timescale
through the choice of threshold and the choice of the viscosity.
We exploit this arbitrariness to shift the timescales obtained by
the numerics to an order of magnitude where they overlap with
experimental data. We can still extract the dependence of the
total collapse time on H0. The numerical collapse dynamics
are indeed consistent with the experimentally observed trends
shown in Fig. 5(a): this timescale is ∝ H−3

0 , as expected from
Eq. (5).

Second, the size, Rc(t), of the CTF or the “spot” in the
center of the container is shown in Fig. 6(a), where Rc(t) is
shown as a function of the time to collapse tc − t with tc the
collapse time, defined as the moment at which all film heights
exceed a minimum threshold level, h(r,tc) > hT .
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R c (t
) [
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it

s 
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]

tc- t [arb. units]
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0.773

108106
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β

(b)

ρgR2/γ

FIG. 6. (a) Rc(t) for a typical numerical at Bo = 4.7 × 109 and
for threshold hT = 1.8 × 10−4 H0. (b) Exponents from log fitting over
a range of Bo where the exponent is expected to be 0.762 (dash-dotted
line). The error in fitting due to hT -threshold variations is of the order
of the symbol size. Grayscale data points have a black border for
visibility (as in other figures).

The extracted scaling exponents tend to the value predicted
by Diez et al. [14] for large values of Bo. However, the
exponents extracted with log fitting show considerable scatter
and no systematic convergence toward the 0.762 predicted by
Diez et al., indicated by the dash-dotted line in Fig. 6(b). We
also find no trend of the extracted exponents with H0 or the
thresholds used for the extraction of Rc(t) (not shown). This
suggests that a better method to extract exponents is needed.

IV. EXTRACTING EXPONENTS FOR SELF-SIMILAR
BEHAVIOR

To extract scaling exponents for the collapse dynamics, we
can make use of the special properties of self-similar functions.
Our two exponent extraction methods rely on assuming that
the thin film equation, Eq. (3), allows for similarity solutions
of the form

h(r,t) = (tc − t)αF

[
r

(tc − t)β

]
, (7)

in which α,β are two scaling exponents, F is a shape function,
and tc is the collapse time. In the notation of Eq. (1), we thus set
f (t) = (tc − t)α and g(t) = (tc − t)β , which means that the dry
spot with diminishing size Rc ∝ g(t). We can use this feature to
find the α,β for a particular experimental or numerical solution
of the h(r,t) profile, given physical variables such as surface
tension, density, etc. In particular, we can find constraints on
α(β). Plugging Eq. (7) into Eq. (4), we find that in the large
Bo limit, a relation

αgrav = (2β − 1)/3, (8)

is required to give self-similar behavior and an ordinary
differential equation (ODE) for the shape function F :

− 1

3ζ
(3VF 3F ′′ζ + 9VF 2F ′2ζ + 3VF 3F ′ − 3F ′βζ 2

+ 2Fβζ − Fζ )(tc − t)(2β−4)/3 = 0. (9)

Here ζ = r/(tc − t)β is the reduced variable and primes
denote dF/dζ , differentiation with respect to the reduced
variable. In the small Bo limit, we can do the same substitution
for h(r,t). In this regime, we find

αcap = (4β − 1)/3 (10)

is needed to do the same separation of the shape-function
dynamics from the time-dependent scaling prefactor. We are
thus left to find α and β over the entire range of Bo.

A. Least-squares method

The first method to generally extract scaling exponents from
numerical or experimental data relies on knowledge of the
spatial and temporal derivatives hr,ht , respectively. For the
solution of the scaling form of Eq. (7), some algebra provides
an expression relating α and β:

(tc − t)ht = −αh + βrhr . (11)

This relation should be valid for all Bo and at each r,t if the
solution is self-similar. Having access to the gradients of h,
especially in the numerics, Eq. (11) provides a set of linearly
independent relations, with only α and β as fit parameters. We
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FIG. 7. (a, b) α,β as a function of band height, extracted with the
least-squares method described in the text. Grayscale indicating the
log10 value of the nondimensionalized least-squares error is shown on
the right. (c) Band height for which the best α,β solution was found,
as a function of Bo. Grayscale is the same as in (a, b). (d) The relation
α(β) found with the least-squares method; the dash-dotted line shows
α = (2β − 1)/3 and the dashed line indicates α = (4β − 1)/3, the
limiting behaviors predicted for high and low Bo (indicated by gray
level), respectively.

can thus determine α,β to solve Eq. (11) in a least-squares
sense.

Equation (11) should be valid for all h(r,t) near collapse;
however, we can further maximize the resolving power of this
exponent extraction method by applying this relationship to
height bands within the surface. The band selection hT i <

h < hT i+1 selects a band of data points with a thickness of
0.01 H0. We choose these bands anywhere between h = 0 to
h = 0.9 H0. For each numerical data set in a particular band
we compute an α,β with Eq. (11). We always use the data for
which tc − t > 0 and limit ourselves to a time period close to
the collapse, of five percent of the total collapse duration:
|tc − t | < 0.05tc. The results for a typical run are shown
in Figs. 7(a) and 7(b) for β and α, respectively. In these
panels, the color coding indicates the least-squares error
LSE ≡ (ht (tc − t) + αh − βrhr )2 of all data in one height
band. Both figures show similar trends: For low and high bands
close to the container base and to the surface, respectively, the
α,β found with the least-squares method give poor fits, as
indicated by the large error. In an intermediate regime the
error has a clear minimum. This minimum is consistently of
order 10−14, as shown in Fig. 7(c). This panel also indicates
at which band the best fit is found; the optimal band is around
0.5 H0 for large Bo, moves up in the intermediate regime and
is lower for small Bo. We verify that the least-squares method
gives the relation between α and β in the large and small Bo
limit in Fig 7(d), where we indicate α(β) and two limiting
behavior in the dashed and dash-dotted line. Interestingly, all
data is to be found on either one of the functions from Eqs. (8)
and (10) in the limiting cases, with the transition occurring
around Bo ∼ 104.

B. Triangulation method

The least-squares method is very useful in finding scaling
exponents for numerical data. However, in experimental
data, obtaining derivatives ∂rh, ∂th is often challenging as
derivatives obtained from experimental data are generally

noisy. Indeed, we found that using the least-squares method
on experimental data does not unambiguously pick an α,β

pair independently of the thresholds required in the analysis.
It would therefore be advantageous to have another method to
extract scaling exponents.

Our second method works by plotting all individual
data points obtained for a measured surface profile h(r,t)
on a rescaled Cartesian coordinate axis {x,y} = {r/(tc −
t)β,h/(tc − t)α}. In general, this plotting method will produce
a scattered set of data points. The crux of this method is
that for the α,β that best represents the scaling function, the
aforementioned scatter plot of all the surface points collapses
to produce a curve in the aforementioned coordinate system.
This curve represents the function F from Eq. (7). For data
points on this line, the Delaunay triangulation [29] of the set
will produce mostly triangles with a very small area and only
a few large triangles to complete the convex hull of the entire
data set. However, for a choice of α,β that does not represent
the scaling behavior, the Delaunay triangulation will produce
a much larger number of large triangles. By optimizing the
number of small triangles in the Delaunay triangulation of the
data points on the scatter plot, we can thus find the α,β pair
that produces the best collapse of the data. In the Delaunay
triangulation, every triangle covers an area V . The entire
dataset makes a set of triangulated areas {V }. An example
of such a set and its triangulation is shown in Fig. 8(a) for
numerical results and a reasonable, but not best choice of
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FIG. 8. (a) Scatter plot of rescaled h obtained for γ = 2 ×
10−6 N/m and R = 1 m; Bo = 4.7 × 109. As an example of a
combination of α,β that give a poor collapse, here we take α =
0.2, β = 0.6. The light gray lines represent the triangulation of the
data points. Grayscale indicates the nondimensionalized log10(h/m).
(b) The probability distribution function of the surface areas within
the triangulation from (a). The dash-dotted line indicates the median
Ṽ of the set V . (c) Ṽ (α,β) for this particular numerical run. Grayscale
indicates ranges from low (black) to high (white). (d) Same as (a),
without triangulations and with α = 0.18, β = 0.78, representing the
collapse properties indicated by the + in (c), the α,β for which Ṽ is
minimal. Note that we suppress dimensions in the various logarithmic
axes.
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the uncertainty in the exponent due to the time range threshold set
in the analysis. The dash-dotted line indicates the 0.762 exponent
expected in the large Bo limit. (b) α(β) with data from (a); grayscale
∼Bo. The dashed and dash-dotted lines indicates the constraint on
α(β), which are clearly satisfied in the large and small Bo limit.

α,β. To maximize the number of small triangles, we look
at the statistical properties of the set {V }. The probability
distribution function for finding a triangle of area V is shown
in Fig. 8(b). This panel shows the distribution of areas found
for the example from Fig. 8(a). We find that the median Ṽ

of the set {V } captures the number of small triangles well:
a smaller median indicates more small triangles are present
in the set. In order to find the best collapse, we thus have to
compute Ṽ (α,β) and find its minimum. In Fig. 8(c), we show
Ṽ (α,β).3 The minimum of the triangulated area is indicated
by the cross, whose collapse is shown in Fig. 8(d): indeed
the minimum in Ṽ (α,β) corresponds to a very good collapse
of the data. Figure 8(d), therefore, also shows the form of
F . Note that in this example, we again extract all h(r,t) for
which tc − t > 0 and |tc − t | < 0.05tc, meaning all t before the
collapse, but sufficiently close to the collapse that the scaling
assumptions should hold.

To verify the triangulation method over a range of Bo,
we apply the method to the series of numerical simulations
on which we also tested the least squares methods. We extract
α,β for each of the simulations. Results are shown in Figs. 9(a)
and 9(b). Figure 9(a) shows β versus the dimensionless ratio
ρgR2/γ (the grayscale indicates the value of α). This panel
shows that there are two regimes: for large Bo, the β that best
describe the shape of h(r,t) asymptotes to the expected value
of 0.762 indicated with the dashed-dotted line. For smaller
Bo there is a large crossover range to a regime in which β ∼
0.5. In Fig. 9(b) we show α(β). Scaling theory predicts the
relationship between the exponents α(β) as indicated by the
two lines. The triangulation method finds the large and small
Bo limiting behavior; at intermediate Bo, the method produces
α,β that deviate from the expected constraints.

The numerical test of the triangulation method showed
that a minimum triangle area median can unambiguously
be defined, which picks a unique α,β pair. We can now
use the triangulation method to extract scaling exponents in
experimental data. For a fluid collapse experiment run at 45 ◦C,
the quantity Ṽ (α,β) for |tc − t | < 0.02tc is shown in Fig. 10(a).
The overall structure of the experimentally determined Ṽ (α,β)

3The Jacobian of the rescaling coordinate transformation is gener-
ally not equal to one. This effect is taken into account in Fig. 8(c),
although its effect is small.
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FIG. 10. (a) Ṽ (α,β) for a particular time cutoff of 0.2 s for
the 45 ◦C PDMS data set shown in Fig. 4(b). The grayscale is
arbitrary; black indicates a low value for Ṽ (α,β). (b) Minima in
Ṽ (α,β) correspond to a pair α,β. Pair location depends on α,β scan
resolution: + = 0.03, ◦ = 0.016, 	 = 0.01, and the percentage of
the total collapse time tc included in the triangulation set (grayscale).
Numerical data is always obtained with 5% of tc (0.05tc). Based on
these thresholds, the error bars on the determination of α,β are as
indicated in Figs. 11(a) and 11(b).

is very similar to the numerical one; for comparison, see
Fig. 8(c). The triangulation method is sensitive to the total
amount of surface-structure data used in the triangulation of
F , and for the resolution at which we test all pairs of α,β to
work. This sensitivity is quantified in Fig. 10(b). We show there
Ṽ (α,β) for several time ranges |tc − t | < 0.01 . . . 0.08tc and
three different resolutions at which we looked for minima in
α,β space. For 0.01tc, the α,β pairs found approach the low Bo
limit function α = (4β − 1)/3. However, if we include more
data before the collapse point into account to estimate the
minimum median triangulation area, we find that α,β quickly
deviate from this low Bo limit. The best collapse data should
be available just before the collapse, so we conservatively
estimate α = 0.25 ± 0.05 and β = 0.6 ± 0.05.

V. DISCUSSION

We summarize the results of the analysis, the two methods
to extract scaling exponents and the experimental data in
Fig. 11(a). There are a few important observations: (i) the
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FIG. 11. (a) α(β) for both least squares method (•) and the
triangulation method (+). Grayscale indicates log(Bo); the dash-
dotted line shows α = (2β − 1)/3 and the dashed line indicates α =
(4β − 1)/3. The experimental data point in (a, b) comes from analysis
discussed in Sec. IV B; the error bars are conservative. (b) β(Bo) for
both least squares (filled circles) and the triangulation method (+).
The asymptotic 0.762 limit is indicated with the dash-dotted line.
Grayscale indicates log(R) used in each numerical datapoint (filled
circles only). The black datapoint again indicates the experimental
value obtained from triangulation analysis.
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least-squares method very well satisfies the derived relations
for α(β) at all Bo, even though these relations are technically
only valid in the limits of very small and very large Bo. (ii)
the triangulation method results are in agreement with the
least-squares method in the large and small Bond number
limits. (iii) the single experimental data point that we have
at Bo = 2 × 103, although representative for many repeated
experiments, only agrees with the predicted relations for
the most favorable choice of tc-cutoff in the analysis [see
Fig. 10(b)]. Especially point (iii) warrants a discussion. In the
triangulation method, we can only get full agreement between
experiment and theoretical values expected for α,β for the
most favorable cutoff in tc. This can hardly be called a robust
result. However, for just the exponent β, the consistency with
numerical results is reasonable. Apart from the triangulation
method, also the independent top-view experiments and simple
thresholding techniques we described in Sec. II give us
values for β. We obtained an exponent 0.5 < β < 0.7. With
Bo = 2 × 103, the experiments are in an intermediate regime
of Bond numbers, where β is expected to deviate from the
Diez result, as can be seen in Fig. 11(b). The value obtained
for β in our experiment is thus not entirely unrealistic.

Nevertheless, α is not matching, even though the trian-
gulation method is expected to work as per our calibration
of the triangulation method on the numerical data. There are
two possible explanations for the deviation: either we have
missed a systematic experimental bias in our methods, or the
thin film equation Eq. (3) does not describe the dynamics
very well close to the collapse. One approximation in the thin
film equation is that surface gradients are small ∂h/∂r 
 1.
Close to the collapse moment, the fluid surface, however, forms
an axisymmetric “funnel” touching the base of the container,
in which this approximation seems less valid. In particular
the strength of the loop curvature contribution will become
relevant close to the collapse. The strength of this term in the
Laplacian of the surface shape also depends on the smallness
of the surface-gradient terms, which in the current expression
may not be fully appreciated.

The Bond number that we used to quantify the transition
from gravity to surface-tension-driven dynamics does not
allow one to experimentally probe a large range, as the material
parameters included are difficult to vary over many orders of
magnitude. We chose this Bond number definition to make

the collapse timescale dependence on the filling height H0

consistent with experiments. It can, however, be argued that
just before the collapse the dynamics is indeed not anymore
dependent on boundary conditions such as the total volume
(and hence R) and that a different length scale should be chosen
to nondimensionalize the thin film equations. For example, one
could let the Bond number scale with H 2 instead of R2. In these
thin film applications typically H < 0.01R, which would push
Bo at least four orders of magnitude lower, and the transition
point between gravity driven and surface-tension-driven flows
to Bo ∼ 1, a more reasonable number. Given the mentioned un-
certainties of the curvature approximations already included in
the current modeling, we leave these questions for future work.

VI. CONCLUSION

We studied the effect of surface tension on viscous gravity
currents in a novel experimental setup, quantifying the relative
strength of the surface tension with a Bond number that
depends on the reservoir radius. We show that the converging
surface profile is of self-similar form in the surface-tension-
dominated regime, and we derive relations between exponents
for both Bo limits. Extracting power-law exponents on log-log
scale turns out to not be accurate enough in the context of
the exponents of similarity solutions. We thus develop two
complementary methods to extract scaling information from
the self-similar structure of the converging surface profile.
These methods allow us to analyze numerical data over the
complete range of purely gravity driven, to purely surface-
tension-dominated flows, and allow for a comparison with
experimental data. Our experimental data seems to suggest
that the collapse regime is perhaps not well described by
the thin-film approximation. However, the exponent extraction
methods developed work very well for the numerical data and
give results in excellent agreement with the theory.
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