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Unified Strouhal-Reynolds number relationship for laminar vortex streets generated by
different-shaped obstacles
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A structure-based Strouhal-Reynolds number relationship, St = 1/(A + B/Re), has been recently proposed
based on observations of laminar vortex shedding from circular cylinders in a flowing soap film. Since the
new St-Re relation was derived from a general physical consideration, it raises the possibility that it may
be applicable to vortex shedding from bodies other than circular ones. The work presented herein provides
experimental evidence that this is the case. Our measurements also show that, in the asymptotic limit (Re → ∞),
St∞ = 1/A � 0.21 is constant independent of rod shapes, leaving B the only parameter that is shape dependent.
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When a flowing fluid encounters an obstacle, two staggered
rows of vortices form downstream. This so-called von Kármán
vortex street has been studied by scientists for many years
[1–5], but our basic understanding of vortex wake formation,
its stability and evolution remains incomplete. At the heart
of the problem is why and how vorticity, which is created
in the boundary layer and discharged into a bulk of fluid,
self-organizes into spatiotemporally periodic patterns. In this
paper, we wish to address this issue by studying vortex
shedding and street formation using rods of different geometric
cross-sectional areas but with their aspect ratios close to unity.
The experiment is conducted in freely flowing soap films
that strongly suppresses instabilities and turbulence, which are
commonly encountered in three-dimensional (3D) fluids when
the Reynolds number Re is large. Our quasi-2D experiments
therefore allow laminar vortex streets to be studied over a
broad range of Re.

In an earlier paper, we showed that a St-Re relation can be
derived based on simple observations of vortex streets beneath
a circular rod [6]. Specifically, if the flow speed U is held
constant and Re is varied by changing the diameter D of the
rod, the experiment shows that the wavelength of the vortex
street λ is a linear function of D, λ = λ0 + αD, that spans the
entire range of Re (10 − 3 × 103) in the measurement, where
λ0 � 0.1 cm and α � 4 are constant. Another simplifying
feature observed in the experiment is that over the same span
of Re, vortex street travels at a constant speed vst relative to the
background flow U so c(≡vst/U ) � 0.8 remains constant for
different D. Since the laminar vortex street represents a single
global mode of fluid dynamics, its frequency must satisfy
f = vst/λ. Using the definition of St(≡f D/U ), it follows
immediately that St = 1/(A + B/Re) or, more concisely,

1

St
= A + B

1

Re
, (1)

where A = α/c and B = λ0U/(cν) are constant.
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Equation (1) works well for measurements using circular
rods in 3D fluids as well as in 2D soap films as discussed in
Ref. [6]. Unlike previously proposed St-Re relations that are
either applicable to vortex streets near an onset [7–9] or very
far from it [3], the remarkable fact is that Eq. (1) is applicable
to both low and high Re. The robustness of this relationship is
a testament to the fact that our empirical approach is capable
of capturing important features of vortex street behind a bluff
body. The purpose of the current research is therefore twofold:
(i) to further explore this approach by investigating vortex
streets created by (blunt) bodies of different shapes and (ii)
to determine how the shape affects the wake parameters, such
as α, λ0, and c and, ultimately, the St-Re relationship. Aside
from its scientific interest, the inquiry is useful to a variety
of engineering problems where vortex shedding and wake
formation play an important role.

Our experiment was carried out in an inclined soap-film
channel depicted in Fig. 1(a) [10,11]. The soap solution
consisted of 2% Dawn detergent, 5% glycerol, and water,
giving a bulk kinematic viscosity ν � 0.013 cm2/s. The film
was 2 m long and 5 cm wide and flowed continuously with
a mean speed U � 60 ± 3 cm/s. At this speed, the film has
a thickness ∼3 μm as determined by a laser transmission
method and is weakly compressible with a Mach number Ma �
0.12 [12]. Our flowing soap film therefore served as a quasi-
2D fluid medium with its slight compressibility facilitating
instantaneous flow visualization using a low-pressure sodium
lamp and a high-speed video camera. In this regard, the use
of a soap film is very attractive because the boundary layer
separation can be readily visualized without using dyes or
other agents. The physical basis of such flow visualization is
that for a weakly compressibility fluid, such as a soap film,
the conserved quantity is ω/ρ2, where ω is the vorticity and
ρ2 = ρh is the 2D density of the film [13]. The variation of
ω is thus accompanied by a variation in h, since the water
density ρ is constant. The technique is also very sensitive
because the film thickness variation �h is measured in terms
of wavelength of the sodium lamp (589 nm); a mere change
of λ/4 in the thickness will cause a change from constructive
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FIG. 1. (a) Experimental setup. The soap film channel is inclined
at 12◦ from horizontal. A fast video camera C1 (Vision Research,
Phantom V5) and a microscope C2 (Wild M5A) equipped with a com-
plementary metal-oxide-semiconductor (CMOS) camera (DCM130,
Oplenic) are mounted directly above the film. Four different-shaped
rods, circular (C), square (S), diamond (D), and triangular (T), are
used for measurements, and their characteristic sizes are defined as
D. Panels (b) and (c) display the vortex streets created by a circular
rod and a square rod, respectively. The Reynolds number, Re � 170,
is about the same for both cases.

(bright) to destructive (dark) interference in our video images.
As Figs. 1(b) and 1(c) illustrate, this technique allows us to
directly measure flow structures, such as the wavelength λ and
the street width h, and dynamic parameters, such as U , vst, and
f . These measurements were made without postprocessing of
images. Here the shedding frequency f was determined by
two methods: (i) directly counting the number of vortices shed
per second and (ii) using the ratio vst/λ at a fixed downstream
distance y. Both methods yields essentially the same result as
in Ref. [6].

Vortex streets were created using tapered rods of dif-
ferent geometrical cross sections, circle (C), square (S),
diamond (D), and equilateral triangle (T), as depicted in
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FIG. 2. (Color online) The downstream-distance-dependent
wavelength λ(y) vs y for all different rods. For circular (C) and
square (S) rods, the wavelength of their vortex streets depend on
the downstream distance y and can be accurately described by
λ(y) = λ(1 − e−y/y0 ), which is shown by the solid line. The inset
shows that the decay length y0 depends on the size of the rods, D,
and scales approximately as D3/2 as delineated by the solid line.
This scaling behavior is predicted by Eq. (6).

Figs. 3(a)–3(d). A circular rod was made of glass using a
glass puller. All other rods, including another circular one,
were made of titanium carefully machined to have the tip
size �50 μm; the small tips allow vortex street to be studied
at small Re. Two circular rods, made of glass and titanium,
give identical results, suggesting that the surface chemistry
may not play a crucial role (also see Fig. 4.3(e) of Ref. [14]).
To significantly reduce run-to-run variations, we maintained a
constant film thickness by keeping the flow speed U fixed. As
delineated in Fig. 1(a), Re(≡UD/ν) can be varied by changing
the size D of the rod using a translation, and D is measured
by a complementary metal—oxide—semiconductor (CMOS)
camera mounted on a long-working distance microscope.

As depicted in Figs. 1(b) and 1(c), directly beneath the rods,
vortices detach periodically from the rod, undergo a transient
relaxation over a downstream distance y, and, finally, organize
into a steady-state confirmation. The wavelength λ(y) of a
vortex street therefore depends on y and reaches a constant
value λ for y � 10D. When 1 − λ(y)/λ is plotted against
y, as depicted in Fig. 2 for C and S rods, all the data for
different D follow a linear behavior, suggesting an exponential
dependence,

λ(y) = λ(1 − e−y/y0 ), (2)

where y0 is the decay length. Systematic measurements, such
as this one, were carried out for the four rods, C, S, D, and
T, and their steady-state wavelengths λ as a function of D are
displayed in Figs. 3(a)–3(d). For all the cases we found that
λ, to a good degree, depends on D linearly, and the results of
fitting using λ = λ0 + αD are delineated by the red lines in
the figures. Our experiment shows that the intercepts λ0 vary
from rod to rod, but they are all very small about a millimeter
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TABLE I. Measured wake parameters. For each shape [circle (C),
square (S), diamond (D), and triangle (T)] of the rod, parameters c,
α, and λ0 are determined from Figs. 3(a)–3(h). Coefficients A and
B are determined using the plots in the insets of Figs. 3(i)–3(l). For
comparison, α/c and λ0U/cν are also tabulated, and they provide an
alternative means to obtain A and B coefficients.

C S D T

c 0.81 ± 0.04 0.86 ± 0.05 0.63 ± 0.05 0.71 ± 0.07
α 4.3 ± 0.1 3.9 ± 0.1 3.2 ± 0.1 3.1 ± 0.1
λ0 (mm) 1.00 ± 0.03 0.85 ± 0.06 0.75 ± 0.04 1.2 ± 0.1
A 5.1 ± 0.2 4.4 ± 0.2 5.0 ± 0.2 4.6 ± 0.2
B 580 ± 32 468 ± 25 456 ± 29 549 ± 44
α/c 5.3 ± 0.3 4.5 ± 0.4 5.1 ± 0.5 4.4 ± 0.6
λ0U/cν 577 ± 77 456 ± 81 549 ± 104 791 ± 200

or so (see Table I). The slope α also depend on the shape of
the rods with the largest α = 4.3 ± 0.1 for the C rod and the
smallest α = 3.1 ± 0.1 for the T rod.

In Figs. 3(e)–3(h), velocity of vortex streets relative to the
mean flow, vst/U , is plotted as a function of Re. Physically,
the speed vst by which a vortex street travels in the background
flow U depends on the vortex strength κ . Since κ is small near
the onset, one expects vst/U → 1, i.e., vortices are passively
convected by the mean flow. However, as Re increases and
circulation in vortices becomes larger, one expects vst/U to
decrease. This qualitative behavior is indeed observed for D
and T, where vst/U decays monotonically as Re increases and
levels off vst/U → c for Re > 400. Curiously, this behavior
is absent for C and S rods, where vst/U is nearly constant for
the whole range of Re; the quantity vst/U may even increase
slightly with Re, which results from mixing of vorticity of
opposite signs at very large Re. The plateau value c is found to
depend on the shape of rods as detailed in Table with c � 0.81,
0.86, 0.63, and 0.70 for C, S, D, and T, respectively. The small
c values for D and T rods suggest that vorticity κ is more
efficiently encapsulated into vortices by the rods with a trailing
edge than rods without it. Since in our experiment, the mean
flow U is fixed, the above findings cannot be a result of air
damping. The effect can be understood, however, by the fact
that a trailing edge reduces the base suction pressure and keeps
the two separated boundary layers physically apart, reducing
their mixing. This results in a wider wake or a larger Kármán
ratio, Kr ≡ h/λ, as will be discussed later.

It is useful at this point to compare our measurements
with von Kármán’s point vortex model that makes predictions
about the speed ratio of the vortex street: vst/U = 1 −
(κ/2Uλ) tanh(πh/λ) [3]. Assuming that Kármán’s stability
condition [17], tanh( hπ

λ
) = 1/

√
2, holds in the experiment and

vorticity created in the boundary layer is 100% encapsulated
into the eyes of vortices, κ = λU [18], we found vst/U =
1 − 1

2
√

2
� 0.65. This value is remarkably close to the plateau

value c measured for D and T rods, suggesting that these
geometries permit nearly maximum preservation of vorticity
in the wake region. It also suggests that when Re is not large
or when objects do not have a trailing edge, such as C or S rod,
a noticeable amount of vorticity is annihilated before a stable
vortex street is formed.

We now turn our attention to the St-Re relation for different
rods. Here the frequency f was determined by counting
the number N of vortices shed per second (f = N/2) and
then nondimensionalized to obtain the Strouhal number, St =
f D/U . We found that in all cases laminar vortex streets
persist over a wide range of Re, 10 < Re < 1200, which
is in sharp contrast with 3D measurements [19–21]. As
delineated in Figs. 3(i)–3(l), different rods exhibit similar
St-Re dependence, i.e., St increases rapidly for small Re and
levels off for large Re. These behaviors can be accurately
captured by Eq. (1) as delineated by the solid red lines in
the figures. The appropriateness of Eq. (1) is further checked
by plotting St−1 vs Re−1 as displayed in the inset, where
indeed good linear relationships are found. The A and B

coefficients extracted from these plots are listed in Table I, and
overall they compare quite well with those calculated based
on structural measurements using A ≡ α/c and B ≡ λ0U/cν.
The largest discrepancy of ∼30% is for coefficient B of D and
T rods, and it is due to approximating vst/U by a constant
c, which, according to Figs. 3(c) and 3(d), is valid only for
large Re. Surprisingly, even in these cases, parametrization
of the St-Re relation using only two parameters (A and B)
appears to be adequate based on linearity of the data in the
insets of Figs. 3(k)–3(l). The most noteworthy feature of these
measurements is the fact that asymptotically (Re 	 1) the
Strouhal number St∞ � 0.21 ± 0.02 turns out to be nearly
the same for different rods. This suggests that St∞ (or A) is
a property of the downstream wake rather than properties of
the obstacle that creates it. In Ref. [8], it has been proposed
that street formation is a global instability of the wake, and
our measurement is consistent with this physical picture. Our
finding furthermore suggests that for blunt bodies, the mode
selection in the high-Re regime is independent of the body
shape, indicating that this mode may be universal.

Inspection of a vortex street near a rod reveals a streak
of fluid that oscillates periodically in a fashion similar to
a physical pendulum (see Fig. 4). This observation was
exploited by Birkhoff to explain the experimentally observed
St-Re relationship when Re 	 1 [3]. Below we generalize
Birkhoff’s simple model to include viscous damping. With
such a modification, certain features of vortex streets observed
in our experiment can be described. For a lamina inclined at an
angle θ to the stream, it is well known that the lift coefficient
is CL = 2πθ [22]. This gives the cross-force per unit length
Fl = 1

2ρU 2CL = πρU 2θ . For the fluid element of width d

and length � behind the rod, the inertia force per length is
ρd(�θ̈ ), where ρ is the 2D density. As for the damping term,
the drag force per unit length is Fd = 1

2ρU 2CD , where CD

is the drag coefficient. For a cylinder, measurements showed
CD ∝ 1/

√
Re over a broad range of Re, 10 � Re � 103 [23].

It follows from a simple dimensional analysis that the damping
force per length is γ0ρν

√
Re′θ̇ , where Re′ = U�/ν and γ0 is

a dimensionless constant characterizing the overall magnitude
of damping. Balancing these forces yields

θ̈ + 2τ−1
0 θ̇ + ω2

0θ = 0. (3)

This equation describes the damped harmonic oscillations with
a decay time τ0 = 2d�/γ0ν

√
Re′ and a natural frequency ω0 =

U
√

π/d�. If one assumes θ = θ0 exp (�t), the characteristic
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FIG. 3. (Color online) Experimental results. The top panels (a)–(d) display λ vs D for circular (C), square (S), diamond (D), and triangular
(T) rods, respectively. In all the cases, λ varies linearly with D but with a finite intercept λ0 that varies little among different rods. The middle
panels (e)–(h) are vst/U vs Re for the same set of rods. For C and S rods, vst/U is approximately constant throughout the whole range of
Re. However, for D and T rods, vst/U decreases monotonically with Re and eventually reaches a plateau value defined as c. The bottom
panels (i)–(l) display St vs Re for the four rods. The red solid line, green dashed line, and blue dotted lines in (i)–(l) are fitting curves using,
respectively, Eq. (1), St = a′ − b′/

√
Re [15,16], and the classical relation St = a(1 − b/Re). The corresponding residuals of the fits are shown

in (m)–(p). In the insets of (i)–(l), the same graphs are replotted using St−1 vs Re−1. The linear relation suggests the validity of Eq. (1), and,
moreover, the intercepts, St−1

∞ � 4.6, are about the same for all the rods.

FIG. 4. The free-body diagram representing Birkhoff’s pendulum
model. Swing of a fluid element in the near wake region is
approximated by a physical pendulum of length � and width d as
indicated. The restoring force is the lift indicated by Fl and the
damping force is indicated by Fd .

value � is given by

� = −τ−1
0 ± i

√
ω2

0 − τ−2
0 . (4)

Since the width of the wake is approximately the size D of
a rod, we make an ansatz d = D and � = kD, where k is a
phenomenological parameter [3]. It follows from Eq. (4) that
the oscillation frequency f of the wake is given by

f = Im(�)

2π
= U

2
√

πd�

(
1 − γ 2

0 ν

4πUd

)1/2

� U

2D
√

kπ

(
1 − γ 2

0

4πRe

)1/2

, (5)

where Re ≡ UD/ν. In the small-damping limit
[γ 2

0 /(4πRe) � 1], Eq. (5) gives St−1(≡U/f D) =
St−1

∞ (1 + γ 2
0 /8πRe), which has the same mathematical form

as the phenomenologically derived St-Re relation, Eq. (1).
Here St∞ ≡ 1/2

√
kπ is the asymptotic Strouhal number

and is identical to Birkhoff’s result [3]. Since St∞ � 0.2
is nearly a constant for different rods [see Figs. 3(i)–3(l)],
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it may be concluded that k = 2 and St∞ = 1/2
√

2π is
universal for a laminar vortex wake. We also notice that in the
same small-damping limit, Eq. (5) yields the experimentally
observed linear D dependence for λ, λ = λ0 + αD, where
α = 2

√
2πc and λ0 = cγ 2

0 ν/2
√

2πU . For a circular rod and
using c = 0.81 in Table I, we found α � 4.1, which is in
reasonable agreement with the slope α � 4.3 seen in Fig. 3(e).

Finally, the real part of Eq. (4) gives the characteristic
relaxation time τ0 of the oscillation,

τ0 = 1

Re(�)
= 2

√
kRe

γ0

D

U
. (6)

If one associates τ0 with the decay length y0 of the wake
defined in Eq. (2), i.e., y0 � vstτ0, Eq. (6) suggests the scaling
y0 ∝ D3/2. In the inset of Fig. 2, this predicted relationship
(solid line) is compared with the measured decay length y0

vs D for the C rod. The agreement is fair considering that
uncertainties in the measurement are quite large.

In summary, we showed that the phenomenologically
derived St-Re relation, Eq. (1), is applicable to vortex shedding
behind blunt bodies other than circular ones. Specifically,
the A and B coefficients in the equation are determined,
respectively, by two characteristic length scales D and λ0

in the flow. A significant finding of this work is that in
the high-Re regime, the wake oscillation frequency f is
uniquely determined by the largest length scale D in the
problem, resulting in St∞ → 1/A � 0.21 (or f � 0.21U/D)
for all different rods. On the other hand, in the low- and

intermediate-Re regimes, where the fluid viscosity cannot
be neglected, λ0 also contributes to vortex shedding, and St
becomes shape dependent. There exists a strong correlation
between the street velocity vst, characterized by c = vst/U at
large Re, and the shape of a body, e.g., for bodies with a trailing
edge, such as D and T rods, c are significantly lower than that
of C and S rods. Since c is a measure of the vortex strength κ , it
can be concluded that the trailing edge allows more powerful
vortices to be shed and better preserved downstream. We
noticed, moreover, that when c is small, the wake parameter α

is also small. This gives rise to interesting properties of a wake,
such as St∞ = 1/A � c/α being weakly shape dependent
but the Kármán ratio Kr = h/λ strongly shape dependent.
The latter can be seen by noticing that since h � D and
λ = λ0 + αD � αD, the Kármán ratio is given by Kr � α−1.
For C, S, D, and T rods, we obtained Kr � 0.23, 0.25, 0.31,

and 0.32, respectively. In Kármán’s classical calculation, it
was found that the point vortex street is stable when Kr =
1
π

cosh−1
√

2 � 0.28. Our experiment shows that vortex streets
generated with different-shaped rods have Kr not exactly as
Kármán had predicted, but, interestingly, they all appear to be
stable.
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