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Linné FLOW Center, Department of Mechanics, The Royal Institute of Technology, 100 44 Stockholm, Sweden
(Received 25 June 2015; revised manuscript received 11 September 2015; published 5 October 2015)

We conduct numerical experiments on spreading of viscoelastic droplets on a flat surface. Our work considers
a Giesekus fluid characterized by a shear-thinning viscosity and an Oldroyd-B fluid, which is close to a Boger
fluid with constant viscosity. Our results qualitatively agree with experimental observations in that both shear
thinning and elasticity enhances contact line motion, and that the contact line motion of the Boger fluid obeys the
Tanner-Voinov-Hoffman relation. Excluding inertia, the spreading speed shows strong dependence on rheological
properties, such as the viscosity ratio between the solvent and the polymer suspension, and the polymeric
relaxation time. We also discuss how elasticity can affect contact line motion. The molecular migration theory
proposed in the literature is not able to explain the agreement between our simulations and experimental results.
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I. INTRODUCTION

Wetting of non-Newtonian fluids is an important industrial
process in inkjet printing, coating, cleaning, and additive
manufacturing to name a few. The spreading of a non-
Newtonian droplet on a horizontal surface is a benchmark
problem rising from the aforementioned applications. A
reduced problem, the spreading of Newtonian droplets, follows
some universal rules such as the Tanner’s law that describes
the spreading radius as a function of time [1], and the
Tanner-Voinov-Cox relation that reveals the dependence of
contact line speed on dynamic contact angle [2–4], both
of which are valid for the late time spreading behavior.
However, for non-Newtonian fluids, studies have reported very
different observations and drawn contradictory conclusions
on both spreading (receding) dynamics and contact line
dynamics.

Two rheological features have attracted major interest in the
study of non-Newtonian wetting: the shear thinning which is
commonly present in power-law fluids, and the normal stress
effect that characterizes elastic fluids.

Experiments have found that the wetting kinetics of power-
law, shear-thinning droplets shows strong deviation from
the behavior of Newtonian droplets [5–7]. Rafaı̈ et al. [6]
reported that a xanthan solution spreads slightly slower than
a Newtonian fluid, in terms of the spreading radius over time.
Their interpretation of this observation was that the apparent
contact angle is reduced by shear thinning; hence the capillary
force driving the contact line becomes smaller. There is,
however, evidence that proves that shear-thinning fluids spread
faster than Newtonian fluids. Wei et al. discovered shear-
thinning fluids have much weaker dependence of spreading
speed on the apparent contact angle. In their experiment the
shear thinning 0.15 wt % xanthan gum solution spreads much
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faster than the Newtonian 10P polydimethylsiloxane (PDMS)
solution [8].

Research on the normal stress effect on contact line motion
tells an attractive story. It is believed that Boger fluids,
which show viscoelasticity without shear thinning, follow
the Tanner-Voinov-Hoffman (COX) relation [9]. Han and
Kim [10] further stated that the contact line motion can be
enhanced by increasing polymer concentration, i.e., providing
higher degree of elasticity. They suggested, with supportive
proof from the experiment by Fang et al. [11] on DNA
molecules, that the stretched polymers near the contact line
may migrate away from the wall, reducing the effective
viscosity in the contact region. An interesting debate rises
from the discussions on wetting involved in the non-Newtonian
droplet impact. In the experiment by Bergeron et al. [12], the
droplet of dilute polyethylene oxide (PEO) solution spreads
similar to Newtonian droplets, but its receding speed is
dramatically reduced. More excitingly, the rebound of droplets
of high impact speed is suppressed. This result has promising
commercial perspectives because one can enhance the droplet
deposition on a hydrophobic surface, which is an important
process for the agrochemical industry. Early studies believed
that the slowing down of contraction is due to the extensional
viscosity contributed by the polymeric fluid [13,14]. Bartolo
et al. pointed out later that the deceleration of contraction
is caused by the normal stress difference that developed
near the contact line [15]. However, Smith and Bertola [16]
measured the actual receding speed and proved that given the
same spreading radius, the droplet of 200-ppm PEO solution
contracts as fast as the water droplet. They proposed that the
slowing down is due to the stretching of polymer molecules
inside a thin film beyond the droplet when the contact
line sweeps over the surface. This finding is supported by
Bertola [17].

Non-Newtonian rheology also influences the contact line
morphology. Given a constant contact line speed, the viscous
bending of the vapor-gas interface near the wall is reduced
for shear-thinning fluids [18] but is enhanced by elasticity
[9,19].
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We notice that in order to clarify the rheological impact on
wetting, it is important to isolate the rheological effect from the
combined effect from multiple factors such as viscosity ratio,
inertia, gravity, etc. However, few among previous studies
has considered fluids with equal static properties such as
density, zero-shear viscosity, molecular weight of polymer
additives, etc. In non-Newtonian droplet impact experiments,
inertia usually dominates the effects created by the polymeric
fluid, and thus little deviation from Newtonian behavior was
observed, despite the strong extensional flow present in the
spreading stage [20]. Practically, it is difficult to exclude inertia
or gravity in an experiment. Numerical simulation, to this
extent, is competitive since one can easily switch on or off
certain physics. However, the published numerical efforts to
resolve non-Newtonian wetting is very limited compared to
the large number of simulations on wetting of Newtonian
fluids. The existing contact line models and non-Newtonian
constitutive models do not account for some physics that are
discussed by experiments, e.g., depleted molecules near the
wetting substrate, molecules stretched in the thin film left
behind a receding contact line. Will they be able to capture
the wetting behavior of non-Newtonian droplets qualitatively
or even quantitatively?

In this work we numerically simulate the spreading of
non-Newtonian droplets. The diffuse interface method has
been used to describe the moving contact line, a viscoelastic
constitutive model to present the rheology of a polymeric
solution and the Stokes equations that characterize inertialess
flow. We examine the influence of both viscoelasticity and
shear thinning on wetting dynamics.

II. MODELS

We focus on a viscoelastic droplet made of Oldroyd-B fluid
and Giesekus fluid in an axisymmetric plane, spreading on a
horizontal surface, depicted in Fig. 1. We assume the surface is
completely homogeneous without contact line hysteresis. The

FIG. 1. Computational domain and initialization of the droplet.

droplet is immiscible with the ambient Newtonian fluid. The
interface between two phases is described by the phase field
variable φ, where φ = 1 denotes the droplet phase and φ = −1
denotes the ambient fluid. The evolution of φ is governed by
the Cahn-Hilliard equations [21]:

∂φ

∂t
+ ∇ · (uψ) = γ�ψ, (1)

ψ = −ζ

(
�φ + φ3 − φ

ε2

)
, (2)

where γ is the mobility parameter, ζ is the mixing energy
density, ε is the characteristic width relating to the interfacial
thickness, and the surface tension coefficient is determined as
σ = 2

√
2ζ/3ε. We assume local equilibrium at the liquid-solid

interface. The equilibrium contact angle can be implemented
by the boundary condition for Eq. (2) [22,23]:

ζ∇φ · n + σcos(θe)g′(φ) = 0, (3)

where g′(φ) is the derivative of the local surface energy g(φ) =
0.25 − 0.75φ + 0.25φ3, and n is the unit vector normal to the
substrate. Besides, we assume that there is no mass flux from
the substrate, i.e., n · ∇ψ = 0. The flow is governed by the
Stokes equations that account for momentum conservation
and mass conservation of a mixed incompressible system:

−∇p + ∇ · βη[∇u + (∇u)T] + ∇ · τ d + ψ∇φ = 0, (4)

∇ · (ρu) = 0, (5)

where the term ψ∇φ represents the surface tension force [24],
and η is the mixed viscosity interpolated by ηd (1 + φ)/2 +
ηm(1 − φ)/2. Here the subscript d denotes the droplet phase
and m the ambient fluid. ρ = ρd (1 + φ)/2 + ρm(1 − φ)/2
is the mixed density. For simplicity, we assume the droplet
fluid and ambient fluid have the same viscosity and density,
i.e., ρm = ρd = ρ,ηm = ηd = η. β = βd (1 + φ)/2 + βm(1 −
φ)/2 is the viscosity ratio of the polymer solution, and βm = 1
for the ambient fluid. The no-slip condition u = 0 is applied
to the substrate. The term τ d is the polymeric stress calculated
by the constitutive equations:

τ d + λτ d (l) + λα

η(1 − β)
(τ d · τ d ) = η(1 − β)[∇u + (∇u)T],

(6)

where τ d (l) is the upper-convected time derivative of τ d [25],
and η(1 − β) is the viscosity contributed by the polymer chains
in the polymeric solution. λ is the polymeric relation time
that reflects elasticity, interpolated by λd (1 + φ)/2 + λm(1 −
φ)/2, and λm = 0 for the ambient fluid. α is a model parameter
from the Giesekus model, and α = 0 gives the Oldroyd-B
model.

Scaling Eqs. (1)–(6) by the capillary speed U0 = σ/η, the
initial droplet radius R, the capillary time scale Rη/σ , and
the reference stress σ/R, we obtain the following nondimen-
sional parameters: the Pèclet number Pe = 2

√
2U0εR/3σγ ,

expressing the ratio between advection and diffusion of the
interface; the Cahn number Cn = ε/R that expresses the ratio
between the interfacial thickness and the droplet initial radius;
the capillary number Ca = ηU0/σ that controls the relative
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importance of viscosity over capillarity, Ca = 1 throughout
our simulation; and the Weissenberg number Wi = λU0/R

that denotes the degree of elasticity. Cn, Pe are phase field
parameters that influence interface width and bulk diffusion.
Following the guidelines for picking proper values for them
in the literature [19,26], we fix Pe = 100 and Cn = 0.005
to maintain a stable sharp interface in the simulation. In the
following, we use nondimensional quantities. Note that we
use a reference time of 10Rη/σ in the following figures,
considering it will give a more clear vision of our data.

III. NUMERICAL METHODS

Equations (1) and (6) are discretized in a finite element
space by the standard Galerkin method. We apply the forward
Euler method to all the time derivatives above. The resulting
system in a weak formulation is solved by a segregated routine.
First, the Cahn-Hilliard group, i.e., coupled Eqs. (1) and (2),
is solved by the Newton method. Second, the constitutive
equations, i.e., Eq. (6), is solved by the Newton method. In
each Newton iteration we applied the direct solver MUMPS

[27,28]. Thereafter the augmented Stokes system, i.e., coupled
Eqs. (4) and (5), is also solved by MUMPS directly. The DEVSS-G

scheme is adopted to enhance the numerical stability of solving
the constitutive equation [29].

An adaptive mesh refinement routine is applied in our
simulation, which provides spatial resolution around the
droplet-ambience interface and helps to resolve the high
polymeric stress gradient in the contact region.

The above numerical system is implemented using the finite
element toolbox FEMLEGO [30]. FEMLEGO allows customized
setup of weak formation, initial and boundary conditions, and
solver types in a single MAPLE worksheet.

IV. RESULTS AND DISCUSSION

A. Droplet spreading

The spreading of a droplet can be considered as divided
into three regimes: the initial short time spreading when the
droplet starts to touch the substrate; the inertial or the viscous
wetting in which the bulk droplet spreads onto the surface,
characterized by the Reynolds number Re showing the relative
dominance between inertia and viscosity (in this simulation
we focus on the viscous spreading and we neglect inertia,
i.e., Re = U0R/η � 0.1); and the late time spreading when
the contact angle is very near to the equilibrium angle. The
dissipative mechanism of the initial spreading of a viscous
droplet is still not clear [31,32]; therefore we skip this stage
in our simulation and focus on the viscous wetting and late
time dynamics to better compare with the existing studies.
Droplets are initialized such that they are already attached to
the horizontal surface, with an initial contact angle θ0 = 120◦
(see Fig. 1). The prescribed boundary condition in Eq. (3)
sets the equilibrium contact angle to be 43◦. The discrepancy
between the apparent contact angle θ and the microscopic
contact angle creates a curved interface in the contact region
[see Fig. 2(a)]. The resulting capillary force driving the contact
line moves to the right and droplets start spreading from the
initial position to reach their equilibrium state in which θe = θ .
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FIG. 2. (Color online) Spontaneous plot of droplet profiles. θe =
43◦, droplet profiles are plotted as contours of φ = 0, the black dash-
dot curve represents the Newtonian droplet, and the red solid curve
represents the Giesekus droplet of Wi = 5,β = 0.2.

A clear observation from Fig. 2 is that the Giesekus droplet
spreads faster than the Newtonian droplet throughout the
process, starting from the same initial displacement. The
Giesekus droplet starts to overtake the Newtonian droplet
already at the beginning of spreading, with its contact line
a bit ahead of the Newtonian contact line, as seen in Fig. 2(a).
When the bulk of the Giesekus droplet accelerates, at T = 0.5
the two droplets show evident discrepancy upon displacement,
shown in Fig. 2(b). The gap between contact lines increases
until it reaches the maximum at around T = 1.5 when the
Newtonian droplet has an apparent contact angle around 90◦.
Thereafter the Newtonian droplet starts to catch up with the
Giesekus droplet when the Giesekus droplet decelerates as
it is approaching the equilibrium contact angle, and the gap
between the contact lines closes up. The above observation
agrees with several experimental observations on wetting of
shear-thinning fluids [5–7]. In the presented results droplets
always have identical final spreading radius, while in the
droplet impact experiments the maximum spreading radius
depends on inertia through the impact speed. In the viscous
spreading regime studied here, the non-Newtonian effect is
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FIG. 3. (Color online) θe = 43◦, Giesekus droplet with Wi = 5,β = 0.2: contours plot the normalized polymeric first normal stress
difference 10(τprr − τpzz)/(σ/R), the two solid lines correspond to φ = −0.9 and φ = 0.9, respectively, and vectors are scaled by velocity
magnitude.

quite visible throughout the spreading process, while during
droplet impact, inertia always overcomes non-Newtonian ef-
fects and viscoelastic droplets spread like Newtonian droplets
[15,33]. However, it is not clear whether shear thinning or
viscoelasticity causes faster spreading since the Giesekus fluid
possesses both features.

The first normal stress difference τprr − τpzz has been
extracted to examine the viscoelasticity, and its distribution
in the vicinity of the contact line is plotted in Fig. 3. The
polymeric stress concentrates in a thin layer near the wall, in
accordance with the literature [19,34]. Initially the contact
line is subject to great forcing because the contact angle
is far away from equilibrium. This generates the largest
advancing velocity along the wall, shown in Fig. 3(a), and

consequently, the largest velocity gradient along the wall. Due
to the acceleration of the contact line, the polymer molecules
around the contact region are stretched along the advancing
direction. Given the no-slip condition at the wall, this implies
the largest shear rate ∂ur/∂z, where ur is the r component of u.
The normal stress difference increases accordingly, since it has
a quadratic relation with shear rate τprr − τpzz ∝ (∂ur/∂z)2.
Therefore we observe the maximum value of normal stress in
the beginning of spreading. While spreading, the curvature
of the contact line decreases, the driving force is weaker,
and the advancing velocity decreases accordingly. Polymer
chains in the contact region relax so the first normal stress
difference goes down [see Figs. 3(b)–3(d)]. In the late time
spreading in the contact line relaxes towards the equilibrium
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FIG. 4. Dependence of spreading radius on model parameters, θ = 43◦. The left column: (a) Spreading radius for different Wi, α, and β are
fixed to be 0.2 and 0.5, respectively. (b) Spreading radius for different β, Wi, and α are fixed to be 5.0 and 0.2, respectively. (c) Spreading radius
for different α, Wi, and β are fixed to be 5.0 and 0.5, respectively. The right column shows calibration of η vs γ of the Giesekus model against
15 wt% xanthan gum under steady shear, and circles present measured data [18]. (d) β = 0.2, α = 0.2. (e) Wi = 50, α = 0.2. (f) Wi = 50,
β = 0.2.
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FIG. 5. (Color online) θe = 43◦,Wi = 5.0,β = 0.2,α = 0.2. Contours plot shear rate γ̇ , and the small chart shows the shear viscosity η/η0

along the red dashed line, computed by both analytical expression and τp/γ̇ . The solid lines are the contour lines of φ = −0.9 (right) and
φ = 0.9 (left). The interface is advancing from left to right. Vectors show the flow field around the contact line.

and finally becomes static, the interface becomes straight, i.e.,
θ is consistent with θe, the stress region shrinks to a tiny area,
and the value of stress is nearly zero, shown in Fig. 3(e).
To summarize the observation above, the shear rate near the
contact line during spreading is the key factor that introduces
the viscoelastic effect.

B. Effects of model parameters

The properties of Giesekus fluids represented by Eq. (6)
are adjusted by Wi, β, and α. Increasing Wi or β or both
enhances fluid elasticity, while α sets the weight of the
quadratic nonlinearity and is a regulation parameter that sets

the plateau of the growth of τ d . Both Wi and α have a
mild impact on the spreading [see Figs. 4(a) and 4(c)]. The
enhanced polymer relaxation which normally results in a larger
extensional viscosity does not decelerate the spread but instead
speed up the contact motion. Variation of α introduces an
almost invisible difference on the spreading radius over time.
By reducing the weight of solvent viscosity among the total
viscosity, we observe a growth of the spreading radius [see
Fig. 4(b)].

Figures 4(d)–4(f) show the dependence of shear viscosity
on Wi, β, and α under a flow geometry of steady shear.
One can see that the Giesekus fluid remains Newtonian in
a certain range of shear rate. The critical shear rate where
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shear thinning starts to take place depends on Wi and α.
Increasing Wi or α can trigger shear thinning with a smaller
critical shear rate [see Figs. 4(d) and 4(f)]. The minimum
shear viscosity after shear thinning does not depend on Wi or
α, as all curves in Figs. 4(d) and 4(f) eventually converge to
the same value of shear viscosity, given the identical β. On
the other hand, fixing Wi and α gives identical critical shear
rate, while the lowest limit of shear viscosity is decided by
β, i.e., smaller β gives smaller minimum shear viscosity [see
Fig. 4(e)]. The above observations explain to some extent the
reason why the spreading is enhanced by larger Wi and α,
as the shear thinning happens earlier during droplet spreading
and reduces resistance at the contact line. Besides, since β

decides the actual viscosity in the shear-thinning region, it
is straightforward to understand that the droplet of β = 0.1
experiences the least drag force during spreading and therefore
spreads faster, as shown in Fig. 4(b).

To verify the observations above, we zoom at in the contact
region and examine the shear viscosity there. Assuming
the parameters presented here can make the Giesekus fluid
shear-thinning dominant, and the spreading is affected by
the actual shear viscosity in the contact region. If one looks
close into the contact region of a shear-thinning fluid, the
shear-thinning region only occupies a thin layer covering the
wall while the rest of the contact region remains Newtonian
[18]. The flow near the contact line is close to simple shear;
see snapshots of the velocity field in Fig. 3. The actual shear
viscosity can be estimated by η/η0 = τrz/γ̇ , where τrz is the
shear component of the normalized polymeric stress tensor
τ dR/ηU0, and γ̇ is the normalized shear rate defined by
∂urR/∂zU0. The presented Giesekus model has an analytical
solution for viscosity in simple shear flow geometry. For our
two-phase system the shear viscosity of Giesekus fluid as a
function of shear rate is given by [25,35]

η/η0 = β + (1 − β)
(1 − �)2

1 + (1 − 2α)�
, (7)

where � = 1−χ

1+(1−2α)χ ,χ2 = [1+16α(1−α)Wi]0.5−1

8α(1−α)(Wiγ̇ )
2 . Extracting γ̇

from the simulation and subtracting it into Eq. (7), the viscosity
from the analytical function is obtained. As shown in Fig. 5, it
is clear that the shear viscosity continuously decreases towards
the interface due to the shear thinning, then increases sharply
within the interface, and is finally constant in the Newtonian
fluid ahead of the interface. The shear rate concentrates in the
interfacial region which spans around two interface thickness
in the radial direction. Shear-thinning effects are restricted in
this area. In early stage spreading, the bending of the interface
causes a downward flow in the droplet phase and upward flow
outside the droplet, shown in Fig. 5(c). Due to the mismatch
of flow field, the analytical result based on simple shear
flow underestimates the actual shear viscosity [see Fig. 5(a)].
During viscous spreading, shown in Fig. 5(b), the interface is
less curved, the flow geometry in the shear-thinning region
is more likely steady shear [see Fig. 5(d)], and therefore
the calculated viscosity fits the analytical result well. The
implementation of the Giesekus model correctly predicts the
shear viscosity in the shear-thinning region near the contact
line. The shear rate is smaller compared to the early stage as the
advancing of the contact line becomes mild. We can conclude

TABLE I. Measurement of 1/k in Fig. 6 and the literature.

Case Wi α 1/k

N/N 0 0 0.5054
O/N 5 0 0.8251
O/N 45 0 1.041
O/N 450 0 1.0842
G/N 5 0.2 1.0797
G/N 450 0.2 1.0799
4.2 M [10] 12.73 0 0.3208
500k [10] 1.5818 0 0.1058

that the underlying mechanism that makes the Giesekus droplet
faster than the Newtonian droplet is the rheological property
of Giesekus fluid under simple shear.

Considering that the onset of shear thinning depends on
the shear rate around the contact line, it is rational to expect
that the spreading speed converges in the late spreading as
the viscosity of Giesekus fluid recovers to the Newtonian
viscosity, given the small shear rate, and then the droplet shall
spread as fast as the Newtonian droplet; however, this is not
the case in our simulation, and we visit this problem in the next
section.

C. Contact line speed

The late time spreading dynamics of Newtonian fluids are
characterized by the linear dependence of Ca on θ , with 1/k

indicating the speed of spreading, shown in Table I, where
k is the slope depicted in Fig. 6(b). Here we measured the
apparent contact angle at a fixed distance of d > Cn, where
the measurement does not depend on d (see Fig. 1). In Fig. 6,
for several viscoelastic fluids and the Newtonian fluid of
the same zero shear viscosity, we measure the contact line
speed as a function of dynamic contact angle. Note, here
we use the local capillary number defined by Ca = Uη/σ to
represent the contact line speed, where U is the spontaneous
advancing velocity of the contact line in the simulation. The
corresponding apparent angle is recorded simultaneously. It
is clear that both the Oldroyd-B fluid and the Giesekus fluid
spread faster than their Newtonian counterpart, even when
they are near the equilibrium state, and they all hold a linear
relation between Ca and θ . For the shear-thinning-dominated
Giesekus droplet, the contact line motion shows no dependence
on elasticity since the variation of Wi does not affect the
slope k. The slope is only decided by the viscosity of the sol-
vent fluid. For the Oldroyd-B droplet, the contact line motion is
enhanced by the increase of Wi. The droplet with small poly-
mer relaxation (Wi = 5.0) spreads as fast as the Newtonian
droplet. 1/k increases with Wi, but its growth is limited by
a maximum value which coincides with that of the Giesekus
fluid.

Our observation on the Oldroyd-B fluid agrees with the
results reported by Han and Kim, who conducted measurement
on Boger droplet spreading on a flat surface [10]. They
reported that for the polyisobutylene (PIB) Boger fluid, which
is close to the Oldroyd-B fluid, Ca varies linearly with θ .
The spreading speed increases with polymer concentration, or
relaxation time, for solution with high molecular weight. More
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FIG. 6. (Color online) Ca vs θ of the Newtonian droplet (squares)
and viscoelastic droplets of different Wi, triangles: Wi = 5, circles:
Wi = 45, stars: Wi = 450. Lines of different styles represent linear
fits of the data of each case. Fixed parameters are β = 0.1,θ =
90◦,α = 0.1. (a) Comparisons between the Newtonian droplet and
Oldroyd-B droplets, and (b) comparison between the Newtonian
droplet and Giesekus droplets (α = 0.2).

specifically, for their PIB/PB solution with higher molecular
weight of 4.2 M, k continuously increases with polymer
concentration from 620 to 2500 ppm. Given their measurement
of physical properties, this corresponds to Wi = 2–13 using
our scaling. While for the low-molecular-weight solution of
500k, k seems not to be sensitive to polymer concentration
and the solution acts like a Newtonian fluid. If we examine
Wi of the 500k solution, the concentration shifting from
3500 to 14 000 ppm results only in a variation of Wi from
0.58 to 2.9, far below the range where one can observe an
evident viscoelastic effect in our simulation, say, beyond
Wi = 5. This explains why elasticity only takes effect in
their high-molecular-weight solution and the 4.2-M solution
spreads faster (see in Table I).

If one revisits the molecule immigration theory explained
by Han and Kim [10], Fang et al. [11], and Ma and Graham

[36], saying the polymer molecules subject to shear will move
away from the near wall layer and this motion is enhanced
by elasticity, one can imagine that given a certain degree of
elasticity all molecules will move out of the layer, leaving the
effective viscosity of the contact region as the solvent viscosity
β. Beyond this point elasticity will not affect the spreading
speed, as predicted by our simulation, where the variation of
k from Wi = 45 to Wi = 450 is small.

However, the Oldyrod-B model does not account for
molecule migration. The faster motion of contact line may rise
from the fact that given the same contact line speed (Ca), the
elastic interface is more bent than the Newtonian one [9,19],
which results in a larger driving force that pulls the contact
line harder.

The results of the shear-thinning Giesekus fluid are less
comparable to the experimental data from literature because
most studies on wetting of shear-thinning fluids used power-
law fluids, which are rheologically different from the Giesekus
fluid we present in this study. In fact, the shear-thinning xan-
than gum is found not to follow the Tanner-Voinov-Hoffman
relation [18]. The reason the Tanner-Voinov-Hoffman relation
is valid for the Giesekus fluid may stem from the fact that
the presented Giesekus model has very similar form as the
Oldroyd-B model, except for the nonlinear term that sets the
plateau of τp. In the late time dynamics, the contact area
is of low shear rate, except for the contact point where the
flow creates singularity. Thus we will still have high shear
rate at the contact point, which lies at a distance ε away
from the wall. Around this point the polymeric stress does not
depend on Wi, as it has reached the plateau. We expect some
future spreading experiments on Giesekus fluids will verify our
conclusion.

V. CONCLUSION

We conducted simulations on droplet spreading of vis-
coelastic fluids, specifically, the Oldroyd-B fluid and the
Giesekus fluid. We observed that viscoelastic droplets spread
faster than the Newtonian droplets, given identical density
and zero shear viscosity. The non-Newtonian effect takes
place in the interfacial region near the contact line, and
both shear thinning and elasticity can enhance contact line
motion during droplet spreading; however, the contact speed
is limited by the solvent viscosity. Shear thinning reduces
viscous drag on the contact line, while the reason elasticity can
speed up the contact line remains mysterious. The presented
numerical model combining the phase field method and
viscoelastic constitutive laws successfully predicts several
spreading behaviors discovered by experiments, despite the
fact that some physics, e.g., molecule migration, are missing
in our model.
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