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Shape anomaly detection under strong measurement noise:
An analytical approach to adaptive thresholding
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We suggest an analytical approach to the adaptive thresholding in a shape anomaly detection problem. We
find an analytical expression for the distribution of the cosine similarity score between a reference shape and
an observational shape hindered by strong measurement noise that depends solely on the noise level and is
independent of the particular shape analyzed. The analytical treatment is also confirmed by computer simulations
and shows nearly perfect agreement. Using this analytical solution, we suggest an improved shape anomaly
detection approach based on adaptive thresholding. We validate the noise robustness of our approach using
typical shapes of normal and pathological electrocardiogram cycles hindered by additive white noise. We show
explicitly that under high noise levels our approach considerably outperforms the conventional tactic that does
not take into account variations in the noise level.
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I. INTRODUCTION

Detection and classification of shape anomalies is a ubiq-
uitous problem arising in the analysis and interpretation of
various experimental data. Prominent examples include pattern
analysis and classification in such applications as microscopic
imaging, mass spectrometry, nondestructive testing, and many
others (see, e.g., [1–8], and references therein). Anomalous
shape detection is also essential in the analysis of time
series exhibiting periodic patterns superimposed by irregular
stochastic fluctuations. Common examples include detection
of significant changes in the shapes of complex vital signals
such as an electrocardiogram (ECG) or electroencephalogram
exhibiting quasiperiodic variability [9] as well as finding
deviations of certain physiological parameters from typical
patterns, e.g., the circadian blood pressure profile that is
different from typical for a given individual [10–12]. More
applications of atypical shape detection could be found in
the analysis of short-term cycles in atmospheric, climatic,
hydrologic, geomagnetic, and other geophysical data sets
[13–16]. Recently, several sophisticated methodologies to
handle shape analysis and classification in quasiperiodic
time series have been suggested, including dynamic time
warping [17,18], a complex-network-based approach [19,20],
the Bayesian framework-based approach [21], dimensionality
reduction techniques [22], and some others. While demon-
strating improved performance and often providing additional
information for the shape anomaly classification, many of these
techniques require considerable computational efforts as well
as initial data accumulation. In contrast, online monitoring
systems such as ECG analyzers often require an immediate
reaction to the shape anomaly occurrence by algorithms that
are able to run on low-performance wearable devices over
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a long time. Therefore, despite the drastic increase in the
performance of wearable devices in recent years, there is
still a demand for simple online shape anomaly detection
methods.

The most straightforward approach to either detection or
classification of various shape anomalies in the observational
data is performed by its comparison to either single or multiple
reference shapes using a certain similarity score. In the detec-
tion problem the similarity score is next compared to a certain
threshold that provides the level of dissimilarity that should
be treated as an anomaly, while in the classification problem
the shape with the highest similarity score is selected. Widely
used similarity scores are commonly based on the variants of
the inner product such as the cosine similarity score, cross
covariance, or the cross-correlation coefficient [19,23–28].
In the experimental data, moderate shape anomalies can
be either imitated or hindered by the measurement noise.
Accordingly, the reduction in the similarity score can be caused
either by the true shape anomaly or by the increase in the
noise level as well as by the combination of these effects. A
prominent example is the long-term ECG analysis where the
measurement noise level can vary rapidly and drastically with
the changes in the muscle activity [29]. Therefore, variations
in the noise level require considerable adjustments of the
decision threshold.

In this paper we suggest an analytical approach to the
threshold adjustment with changes in the noise level. We note
that the cosine similarity score is equivalent to the correlation
coefficient for data sets with zero mean value. Since both
the mean value and slow observational data variations (like
the baseline drift in the observational ECG) can be easily
eliminated as a preliminary step to prepare the data for further
analysis, we next focus on the cosine similarity score and
additive white noise model [30,31]. We compare our analytical
treatment with the computer simulation results and show that
there is a perfect match. Using several typical ECG shapes as
prominent examples, we also provide the characteristics of the
efficiency and noise robustness of the adaptive thresholding in
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FIG. 1. (Color online) (a) Noise-free sample shape of an ECG cycle corresponding to a normal heartbeat (dashed line). (b)–(d) Same
ECG cycle (dashed line) with different levels of additive Gaussian white noise (solid lines): (b) h = 7.46 × 10−4, (c) h = 4.61 × 10−3, and
(d) h = 1.19 × 10−2.

comparison with the fixed thresholding under significant noise
level variations.

II. ANALYTICAL TREATMENT

Let us consider a complex shape of a typical normal ECG
cycle shown in Fig. 1(a) as a reference signal Sref(i). The
observational signal S(i) is hindered by additive Gaussian
white noise n(i) with zero mean value and σ 2

n variance. Both
signals are sampled at time points i = 1, . . . ,N . Then the
cosine similarity score r between Sref(i) and S(i) + n(i) is
given by

r =
∑N

i=1 Sref(i)[S(i) + n(i)]√∑N
i=1 S2

ref(i)
∑N

i=1 [S(i) + n(i)]2

=
ρ + ∑N

i=1

[
Sref(i)/

√
ESref

]
[n(i)/

√
ES]√∑N

i=1 [S(i)/
√

ES + n(i)/
√

ES]
2

= ρ + ∑N
i=1 x(i)�(i)√

1 + 2
∑N

i=1 y(i)�(i) + ∑N
i=1 �2(i)

, (1)

where ESref = ∑N
i=1 S2

ref(i) is the energy of the reference signal,
ES = ∑N

i=1 S2(i) is the energy of the (assumed noise-free)
observational signal, ρ is the cosine similarity score between
the reference signal and the (noise-free) observational signal,
x(i) = Sref(i)√

ESref

is the normalized reference signal, y(i) = S(i)√
ES

is

the normalized (noise-free) observational signal, �(i) = n(i)√
ES

is the normalized noise with variance σ 2 = σ 2
n

ES
, and �(i) =

N (0,σ ).
Obviously, r will decrease with increasing the noise level,

even when Sref(i) and S(i) exhibit identical shapes. For an
approximate calculation of r , we next replace the radicand in
the denominator of Eq. (1) with

ξ = 1 + 2
N∑

i=1

y(i)�(i) +
N∑

i=1

�2(i) (2)

and focus on the expansion of 1√
ξ

by the nth-order polynomial

1√
ξ

≈ dξn + · · · + aξ 2 + bξ 1 + c. (3)

To find the polynomial coefficients, let us first consider the
typical range of the random variable ξ . The second term in

the expression (2) is a Gaussian random variable and the third
term is approximately Gaussian for N > 30 [32]. Thus we next
consider ξ as a Gaussian random variable with mean m(ξ/h) =
hN + 1 and variance D(ξ/h) = 2h(hN + 2), where

h = σ 2 = σ 2
n

ES

is a parameter characterizing current noise level.
Next one can determine the probability p that the random

variable ξ fits within a given range. For example, the
probability that ξ deviates from its mean value by more than
two of its standard deviations is given by

p(|ξ − m{ξ/h}| > 2
√

D{ξ/h}) < 0.05,

while the deviation range is given by

ξl(h) = 2
√

2h(hN + 2). (4)

Equation (4) shows that this range depends on the number
of data points N and on the noise level parameter h. In the
following we define the range using (4). The range of typical ξ

values is given by [m{ξ/h} − ξl(h),m{ξ/h} + ξl(h)] and the
condition m(ξ/h) − ξl(h) > 0 has to be fulfilled.

With the knowledge of the range for ξl(h), one can find
the approximation coefficients d, . . . ,a,b,c for a given h and
N [(ξl) = ξl(h),m(ξ ) = m(ξ/h)] using the least-mean-squares
algorithm as the minimum of the function

f (m{ξ},ξl,d, . . . ,a,b,c)

=
∫ m{ξ}+ξl

m{ξ}−ξl

(
1√
ξ

− dξn − · · · − aξ 2 − bξ 1 − c

)2

dξ.

(5)

At a first approximation we next reduce to the polynomials of
the first and the second order. The minimum of expression (5)
for the second-order polynomial will be achieved at

c = 1

2ξl

(E − aC − bD),

a =
[
b

(
DC

2ξl

− B

)
+ P − EC

2ξl

]
2ξl

2ξlA − C2
, (6)

b = (2ξlT − ED)(2ξlA− C2) − (2ξlB − CD)(2ξlP − EC)

(2ξlC − D2)(2ξlA− C2) − (2ξlB − CD)2
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TABLE I. Statistical characteristics of the random variable ξ and of the first- and second-order polynomial approximation coefficients for
the sample shapes shown in Figs. 1(b)–1(d).

Second-order polynomial First-order polynomial

h m{ξ} D{ξ} a b c b c

7.46 × 10−4 1.052 0.055 0.331 −1.162 1.831 −0.464 1.464
4.61 × 10−3 1.326 0.147 0.189 −0.837 1.644 −0.322 1.314
1.19 × 10−2 1.836 0.260 0.086 −0.522 1.407 −0.206 1.124

and for the first-order polynomial at

b = 2ξlT − ED

2ξlC − D2
,

c = 1

2ξl

(
E − 2ξlT − ED

2ξlC − D2

)
,

(7)

where A = ∫ m{ξ}+ξl

m{ξ}−ξl
ξ 4dξ , B = ∫ m{ξ}+ξl

m{ξ}−ξl
ξ 3dξ , C =∫ m{ξ}+ξl

m{ξ}−ξl
ξ 2dξ , D = ∫ m{ξ}+ξl

m{ξ}−ξl
ξdξ , E = ∫ m{ξ}+ξl

m{ξ}−ξl

1√
ξ
dξ ,

T = ∫ m{ξ}+ξl

m{ξ}−ξl

ξ√
ξ
dξ , and P = ∫ m{ξ}+ξl

m{ξ}−ξl

ξ 2√
ξ
dξ .

Remarkably, expressions (5)–(7) indicate that the polyno-
mial coefficients depend only on the parameters h and N

and thus are independent from the shape itself. Thus, in the
following we denote a, b, and c by ah,N , bh,N , and ch,N ,
respectively.

Table I summarizes the statistical characteristics of the
random variable ξ and of the polynomial coefficients for
the first- and second-order approximations for the sample
shape consisting of N = 70 data points shown in Fig. 1(a)
calculated for h = 7.46 × 10-4 [Fig. 1(b)], h = 4.61 × 10-3

[Fig. 1(c)], and h = 1.19 × 10-2 [Fig. 1(d)]. Figure 2 shows
the approximation of 1/

√
ξ as a function of ξ exemplified for

the noisy sample shape shown in Fig. 1(d) (h = 1,19 × 10-2).
The solid line is the 1/

√
ξ function, the triangles are its

second-order polynomial approximation, and the circles are
its first-order polynomial approximation. The approximation
error (defined as the normalized maximum absolute value
deviation of the approximation function from the original
function) for the second-order polynomial fitted on the interval
[m{ξ} − ξl,m{ξ} + ξl] is below 0.01% and for the first-order
polynomial it is below 1%.

Since r is given by (1), an approximation of ξ by the first-order polynomial leads to the ansatz

r1 =
(

ρ +
N∑

i=1

x(i)�(i)

)[
bh,N

(
1 + 2

N∑
i=1

y(i)�(i) +
N∑

i=1

�2(i)

)
+ ch,N

]
. (8)

Simple calculations lead to the expression for the mean value of the random variable r1,

m{r1} = r =
(

ρ +
N∑

i=1

x(i)�(i)

)[
bh,N

(
1 + 2

N∑
i=1

y(i)�(i) +
N∑

i=1

�2(i)

)
+ ch,N

]

= ρ

⎡
⎣bh,N

⎛
⎝1 + 2

N∑
i=1

y(i)�(i) +
N∑

i=1

�2(i)

⎞
⎠ + ch,N

⎤
⎦ + bh,N

N∑
i=1

x(i)�(i)

+ 2bh,N

N∑
i=1

x(i)�(i)
N∑

i=1

y(i)�(i) + bh,N

N∑
i=1

x(i)�(i)
N∑

i=1

�2(i) + ch,N

N∑
i=1

x(i)�(i)

= ρ[bh,N (1 + hN ) + ch,N ] + 2bh,Nh

N∑
i=1

x(i)y(i)

= ρ[bh,N (1 + hN ) + ch,N ] + 2bh,Nhρ = ρ[bh,N (h(N + 2) + 1) + ch,N ], (9)

where the overline denotes averaging. For N � 1 the expression (9) can be replaced by m(r1) = ρ[bh,N (hN + 1) + ch,N ]. Again,
the expression (9) shows that the mean value depends only on h and N but not on the shape itself.

By using the second-order polynomial approximation of ξ one obtains

r2 =
(

ρ +
N∑

i=1

x(i)�(i)

)⎡
⎣ah,N

(
N∑

i=1

[y(i) + �(i)]2

)2

+ bh,N

(
N∑

i=1

[y(i) + �(i)]2

)
+ ch,N

⎤
⎦. (10)

In this case, after some routine calculations, the mean of the random variable r2 can be expressed as

m(r2) = ah,N {h2[N2 + 2N + 4ρ(N + 2)] + ρh(2N + 8) + ρ} + ρ{bh,N [h(N + 2) + 1] + ch,N }.
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FIG. 2. (Color online) Approximation of the denominator of (1)
exemplified for the sample ECG cycle shape with additive Gaussian
noise [shown in Fig. 1(d)]. The solid line is the 1/

√
ξ function,

while the circles and the triangles are its first- and second-order
approximations, respectively.

For N � 1 the approximations 2N + 8 ≈ 2N , N + 2 ≈ N ,
and N2 + 2N + 4ρ(N + 2) ≈ N2 lead to the ansatz

m(r2) ≈ ah,N [ρ + h2(N2 + ρ2N )]

+ ρ[bh,N (hN + 1) + ch,N ]. (11)

Once the reference and the (noise-free) observational
shapes Sref(i) and S(i) are identical (ρ = 1), one next
obtains

m(r2) ≈ ah,N (hN + 1)2 + bh,N (hN + 1) + ch,N .

Figure 3 shows the dependence of the mean value on
the noise level parameter h for the identical reference and
observational shapes (ρ = 1), now corresponding to the shape
of a typical pathological ECG cycle displayed in Fig. 4(a). The
triangles show the results of computer simulations (20 000
iterations), while the solid lines show the approximations by
the first-order polynomial [Fig. 3(a)] and by the second-order
polynomial [Fig. 3(b)].

Based on the series of simulations for various reference
and analyzed observational shapes corresponding to various
ECG modifications that are typical for ventricular arrhythmia
[shown in Fig. 4(a)] and other disorders such as myocardial
infarction (not shown), we conclude that in most cases the
first-order polynomial (8), or simply a linear approximation,
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FIG. 4. Typical shapes corresponding to two single ECG cycles
with different pathologies.

is sufficiently accurate. While we realize that in some cases a
second-order polynomial approximation (10) may be required,
in the following example we find that the linear approximation
(8) is sufficiently accurate and thus employ it to find the
variance of the random variable r obtaining

M2(r1) = h3b2
h,N (N2 + 6N + 8)

+h2[2bh,N (bh,N + ch,N )(N + 2) + 4b2
h,N (2ρ2 + 1)

+ 8b2
h,Nρ2(6 − N )

] + h
[
(bh,N + ch,N )2

+ 4bh,Nρ2(bh,N + ch,N ) + 4b2
h,Nρ2

]
.

For N � 1, since N + 2 ≈ N , 6 − N ≈ −N , and N2 + 6N +
8 ≈ N2 + 6N , the above expression can be replaced by

M2(r) ≈ b2
h,Nh3(N2 + 6N ) + [

b2
h,N (6ρ2 + 2)

+ 2bh,Nch,N

]
h2N + [

b2
h,N (8ρ2 + 1)

+ 2bh,Nch,N (1 + 2ρ2) + c2
h,N

]
h. (12)

For ρ = 1 this expression can be further simplified

M2(r1) ≈ b2
h,Nh3(N2 + 6N ) + (

8b2
h,N + 2bh,Nch,N

)
h2N

+ (3bh,N + ch,N )2h. (13)

Figure 5 shows the dependence of the variance of the
random variable r on the noise level parameter h for the
identical (ρ = 1) reference and observational shapes [shown
in Fig. 4(a)] for N = 70. The triangles correspond to the
computer simulation data (20 000 iterations), while the solid
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FIG. 3. (Color online) Dependence of the mean value of the cosine similarity score r on the noise level parameter h for the identical
reference and observational shapes (ρ = 1), in particular, the typical shape of a single pathological ECG cycle, displayed in Fig. 4(a). The
triangles correspond to the results of computer simulations (20 000 iterations), while the solid line shows the approximations by (a) the
first-order polynomial [see Eq. (9)] and (b) the second-order polynomial [see Eq. (11)].
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FIG. 5. (Color online) Dependence of the variance of the cosine
similarity score r on the noise level parameter h for the identical
(ρ = 1) reference and observational shapes [shown in Fig. 4(a)] at
N = 70. The triangles correspond to the computer simulation results
(20 000 iterations), while the solid line shows the analytical treatment
[see Eq. (13)].

line shows the analytical treatment (13). The figure shows that
the analytical approximation of the variance and the results of
computer simulations are in good agreement.

Next we focus on the estimate of the correlation coefficient
r∗ between the random variables r1 (8) and η = ∑N

i=1 �2(i)
[33]. The mean and the variance of r∗ are given by

m(η) = hN, M2(η) = 2h2N.

Then taking into account (9), the covariance function between
r and η is given by

K(r,η) = 2bh,Nρh2(N + 2) ≈ 2bh,Nρh2N.

Therefore, the correlation coefficient r∗ can be estimated
as

r∗ = bh,Nρ
√

2hN√
b2

h,Nh2(N2 + 6N ) + (
8b2

h,N + 2bh,Nch,N

)
hN + (3bh,N + ch,N )2

. (14)

Figure 6 shows the dependence of r∗ on the noise level
parameter h for the reference and observational shapes of
the same type shown in Fig. 1 (ρ = 1 and N = 70). The
triangles were obtained by computer simulations (20 000
iterations), while the solid line shows an analytical treatment
according to (14). The figure shows that for h ∈ [0; 3.45 ×
10−3], r and η exhibit pronounced negative correlation r∗ <

−0.8. Therefore, at a first approximation we consider r ≈
− M2(r)

M2(η) [η − m(η) + m(r)]. Expression (14) can be fitted by
the Gaussian distribution with the probability density function
W (r). In a more general case, for an arbitrary r∗, a certain ap-
proximation can be given by an Edgeworth expansion [34]. As
the null hypothesis we assume that the empirical distribution is
described by the first three terms of the Edgeworth expansion.
To test this, we used the χ2 test and the Kolmogorov-Smirnov
test. The returned p = 0.22 in the χ2 test and p = 0.10 in the
Kolmogorov-Smirnov test indicate that both tests fail to reject
the null hypothesis with 95% confidence level.
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FIG. 6. (Color online) Dependence of the correlation coefficient
estimate r∗ on the noise parameters h for the identical reference and
observational shapes shown in Fig. 1(a) (ρ = 1 and N = 70). The
triangles were obtained by computer simulations (20 000 iterations),
while the solid line shows the analytical treatment according to
Eq. (14).
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FIG. 7. (Color online) Probability distribution functions w(r) of
the cosine similarity score r for different noise parameters h

(annotated by arrows in the figure) for (a) the same reference and
analyzed ECG shapes shown in Fig. 1(a) (ρ = 1 and N = 70),
(b) the reference shape shown in Fig. 1(a) and analyzed shape shown
in Fig. 4(b) (ρ = 0.84 and N = 70), and (c) the reference shape
shown in Fig. 1(a) and analyzed shape shown in Fig. 4(a) (ρ = 0.505
and N = 70). Circles correspond to the computer simulation results
(20 000 iterations), while the solid lines show their approximations
by a Gaussian distribution.
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FIG. 8. (Color online) (a) Comparison of the quantiles from the empirical cumulative distribution function (CDF) F (r) of the cosine
similarity score r (qE , solid line) and the Gaussian CDF (qN , circles), respectively. The horizontal dash-dotted line corresponds to the chosen
false negative rate (equal to 0.05 in this example). The vertical dashed lines show the determined quantile values. (b) Same as in (a) but the plot
is zoomed in on the area of the intersection of lines. The solid line corresponds to the empirical CDF of the cosine similarity score r , while the
dash-dotted line shows the Gaussian CDF. The difference between the quantiles is defined as δ = |qN − qE |. (c) Linear regression line between
the quantiles qN and qE (solid line), with the squares corresponding to the sample data, dash-dotted line showing the qE = qN line, and the
dashed line corresponding to the 95% confidence interval (all lines are very close to each other). (d) Dependence of the difference between the
quantiles δ on the false negative rate p.

III. ADAPTIVE THRESHOLDING EFFICIENCY

Figure 7 shows the distribution of the cosine similarity
score r as a function of h [Fig. 7(a)] for the identical reference
and observational shapes [ρ = 1; see Fig. 1(a)] as well as
for different reference and observational shapes characterized
by Fig. 7(b) [ρ = 0.84; see Fig. 4(b)] and Fig. 7(c) [ρ =
0.505; see Fig. 4(a)]. Circles correspond to the computer
simulation results (20 000 iterations), while solid lines show
approximations by a Gaussian distribution. As one can see
from Fig. 7, the Gaussian distribution is almost identical to the
empirical distribution. Thus we next check whether the second
and third terms in the Edgeworth expansion could be ignored.
This leads to a simple Gaussian distribution that makes it
easier to find the quantiles. To further test whether such a
substitution by a Gaussian distribution is legitimate, we next
compare the quantile estimate qE obtained from the empirical
cosine similarity score distribution and a similar estimate qN

from the respective Gaussian approximation [shown by open
symbols and a solid line in Fig. 8(a), respectively]. While
visual inspection indicates data collapse, the discrepancy can
be observed in a zoomed plot [see Fig. 8(b)]. We next test
the accuracy of the approximation for various thresholds that
correspond to the quantiles between 0.1 and 0.01 by linear
regression analysis [the corresponding quantile-quantile plot
with the linear regression fit and its confidence intervals are
shown in Fig. 8(c)] and confirm that very good agreement
can be observed in all studied cases. Finally, Fig. 8(d)
shows that the relative quantile estimation error is about
three orders of magnitude below the threshold level for all

ten quantiles studied. Thus it seems justified to conclude
that the Gaussian approximation is legitimate for the cases
studied.

The above example has a straightforward practical implica-
tion, provided the reference shape corresponds to the normal
ECG cycle, while the observational shapes correspond to two
different pathological ECG cycles. Accordingly we suggest
that in the shape anomaly detection algorithm the decision
threshold level should be adaptively adjusted with the changes
in the noise level. The decision threshold can be defined
as a quantile of the analytical distribution that corresponds
either to a fixed false positive rate or to a fixed false negative
rate. In life-threatening issues such as online ECG analysis
where the cost a single error is high, the false negative rate
is usually fixed. In our case, since the final distributions can
be well approximated by Gaussian distributions (as shown
above), instead of estimating the quantile numerically, one
can calculate the threshold from the mean and the standard
deviation of the final distribution. In particular, according to
Eqs. (9) and (12), one obtains

qadapt = m(r) − x
√

M2(r),

where x is a fixed prefactor that depends on the chosen false
negative rate.

Figure 9 exemplifies the adaptive thresholding for four
different noise levels. For weak noise conditions [see Figs. 9(a)
and 9(b)], when the distributions do not overlap, finding a
fixed optimized threshold is trivial. However, if the noise level
changes with time, a fixed threshold that appears perfect for
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FIG. 9. (Color online) Probability density functions w(r) of the cosine similarity scores r for (a) h = 2.92 × 10−4, (b) 8.95 × 10−4,
(c) 0.0018, and (d) 0.0047. The solid line corresponds to the distribution of the cosine similarity between the same reference and analyzed
shapes shown in Fig. 1(a), while the dash-dotted line corresponds to the normal reference [Fig. 1(a)] and the pathological observational [Fig.
4(b)] shapes. Vertical lines exemplify the adaptive threshold qadapt corresponding to the fixed false negative rate.

Fig. 9(a) (e.g., 0.9) becomes less and less adequate when
the noise level increases [see Figs. 9(b)–9(d)]. In contrast,
the suggested adaptive thresholding procedure guarantees the
fixed false negative rate and this way outperforms the fixed
thresholding tactic under strong noise conditions. Of course,
the implementation of this solution in practical issues requires
an online noise level estimation algorithm to be running to feed
the decision making algorithm with the current noise level.
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FIG. 10. (Color online) (a) True positive and (b) true negative
rates as a function of the noise level parameter h. Solid lines refer to
the constant thresholding q, while dashed lines refer to the suggested
adaptive thresholding algorithm. The reference signal is always given
by the same normal ECG shape shown in Fig. 1(a), while the
observational signal is given (with equal probability) either by the
same normal (ρ = 1) or by the pathological ECG shape shown in
Fig. 4(b) with a cross-cosine similarity score of ρ = 0.84 between
them.

Finally, we analyzed the noise robustness of the suggested
approach in comparison with the fixed threshold tactic.
Figure 10(a) shows the true positive rate (TPR) as a function
of the noise level parameter h for three different x = 1.5, 2,
and 3. The solid lines refer to three different fixed thresholds
q, while the dashed lines correspond to the suggested adaptive
thresholding procedure. Figure 10(a) illustrates the case where
the reference shape is given by the normal ECG and the ob-
servational shape is given either by the normal or by the
pathological ECG with cross-cosine similarity scores between
them ρ = 1 and 0.84, respectively. The figure shows that
the true positive rate decreases with the increase of the
noise level parameter h. In contrast, when using an adaptive
threshold (dashed lines) the false negative rate is fixed and
can be determined analytically from Eqs. (9) and (12). Thus,
by using the adaptive threshold, it is possible to achieve a
constant true positive rate. Figure 10(b) shows the true negative
rate (TNR) as a function of the noise level parameter h.
The figure shows that by using the suggested approach with
adaptive thresholding, a higher shape detection performance
can be achieved under high noise levels.
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FIG. 11. (Color online) Empirical distribution of Eq. (2) (circles)
and the approximation of this distribution by a Gaussian distribution
(solid line) for the uniform noise scenario.
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FIG. 12. (Color online) Distribution of the cosine similarity
score r for the uniform noise scenario. The circles show the empirical
distribution while the solid line corresponds to the approximation by
the Gaussian distribution.

We note that our approach can be straightforwardly ex-
tended to the non-Gaussian noise case. According to the
central limit theorem, the radicand in the denominator of
Eq. (1) ξ can be described by a Gaussian distribution for
large N . As an example, for the uniform distribution we
obtain the probability distribution of ξ shown in Fig. 11. The
circles show the empirical distribution of ξ , while the solid
line corresponds to its Gaussian approximation. By using the
Kolmogorov-Smirnov test, we obtained p = 0.28, indicating
that the null hypothesis that the empirical data can be described
by the Gaussian distribution cannot be rejected with 95%
confidence level. Carrying out similar transformations, we
can obtain analogs of the expressions (9)–(12) in the case
of the uniform distribution. The distribution of the cosine
similarity score r in the case of non-Gaussian noise according
to the central limit theorem can also be described by a
Gaussian distribution (see Fig. 12), as we have also confirmed
empirically by a Kolmogorov-Smirnov test (p = 0.22).

IV. CONCLUSION

In summary, we have obtained an analytical solution of the
cosine similarity score distribution between a given reference
shape and an observational shape hindered by additive white
noise. Shape similarity measures such as the cosine similarity
score and the correlation coefficient are common in many
applications, especially in those where the analyzed signals
exhibit pronounced amplitude variations with time, since these
measures are not sensitive to such variations. We also found
analytical expressions for the mean and the variance of the
cosine similarity score. We further confirmed our theoretical
calculations by computer simulations and found a nearly

perfect match. As a practical example, we considered shapes
that correspond to either healthy or pathological ECG cycles.
We have shown explicitly that our findings lead to the en-
hancement of the pathological ECG shape detection accuracy
that can be applied to further improvements in the automatic
ECG analysis algorithms. We think that our findings might also
be helpful in detecting atypical patterns in short-term cycles
of various physiological quantities, either directly measured
such as heart rate or blood pressure [11,12] or derived from
noisy observational records such as baroreflex sensitivity [35],
that might be indicators of serious physiological disorders.
They might also be useful in detecting anomalies of short-
term cyclic patterns in atmospheric, climatic, hydrological,
geomagnetic, and other geophysical data sets exhibiting
pronounced quasiperiodic cycles. However, we note that many
of these data sets exhibit long-term correlations [36–39] that
are superimposed to quasiperiodic oscillations and thus linear
and nonlinear correlations in their fluctuations should be
additionally taken into account.

The proposed approach may also be used as part of a
more complex problem, for example, in the construction
of a network where the nodes are characterized by the
noisy observational quasiperiodic data sources and the links
between the nodes are considered as significant once the cross
correlation between them exceeds a given threshold [40].
Very recently, network-based solutions found a number of
successful applications in various quasiperiodic data analysis
and event prediction such as sleep stages recognition and
classification by the analysis of coupling between different
physiological signals [41] as well as the El Niño prediction
using the analysis of climate network dynamics where the
links have been determined by the correlations between the
individual nodes given by observational sea surface temper-
ature records [42–45]. Finally, we believe that our solutions
could appear useful in shape comparison problems arising in
the analysis and interpretation of microscopic images, mass
spectrometry data, and many other applications where the
stochastic noise exhibits significant and fluctuating levels that
cannot be ignored.
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