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Stable spatial and spatiotemporal optical soliton in the core of an optical vortex
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We demonstrate a robust, stable, mobile, two-dimensional (2D) spatial and three-dimensional (3D)
spatiotemporal optical soliton in the core of an optical vortex, while all nonlinearities are of the cubic (Kerr) type.
The 3D soliton can propagate with a constant velocity along the vortex core without any deformation. Stability
of the soliton under a small perturbation is established numerically. Two such solitons moving along the vortex
core can undergo a quasielastic collision at medium velocities. Possibilities of forming such a 2D spatial soliton
in the core of a vortical beam are discussed.
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I. INTRODUCTION

A bright soliton is a self-bound object that travels at a
constant velocity in one dimension, due to a cancellation
of nonlinear attraction and defocusing forces [1–3]. A one-
dimensional (1D) dark soliton is a dip in uniform density,
which also moves with a constant velocity maintaining its
shape [1,4]. The 1D soliton has been observed in nonlinear
optics [1,2] and in a Bose-Einstein condensate (BEC) [3].
Specifically, optical temporal solitons were observed by Di
Trapani et al. [5] for a cubic Kerr nonlinearity. However,
a three-dimensional (3D) spatiotemporal soliton cannot be
formed in isolation with a cubic Kerr nonlinearity due to
collapse [1,6]. The same is true about a two-dimensional
(2D) spatial soliton with a Kerr nonlinearity. Under special
condition a 2D spatiotemporal optical soliton has been ob-
served [7]. However, the solitons can be stabilized in higher
dimensions for a saturable or a modified nonlinearity [8,9]
or by a nonlinearity [10,11] or dispersion [12] management
among other possibilities [13].

In this paper we demonstrate the formation of a 2D spatial
and a 3D spatiotemporal bright soliton with Kerr nonlinearity
in the core of an optical beam hosting a quantized vortex
(vortical beam) in a Kerr medium, which we call a binary
optical vortex-soliton. A 2D spatial vortex in an infinite
repulsive Kerr medium has been experimentally observed [14]
and theoretically studied [15]. A 3D spatiotemporal optical
vortex in an infinite repulsive Kerr medium suffers from
transverse instability and vortex-line bending similar to a
3D superfluid vortex [16]. However, in a binary beam the
vortex-soliton is found to be dynamically stable under a small
perturbation not only in the 2D spatial case but also in the 3D
spatiotemporal case. In our simulation no transverse instability
of the vortex line is noted. The nonlinear interaction between
the optical soliton and the vortical beam is always taken to be
repulsive. This mutual repulsion stabilizes the soliton in the
x-y plane and also prevents the vortex line from bending. The
soliton can swim freely along the t direction with a constant
velocity along the core of the vortical beam. Because of a
strong localization of the soliton due to interbeam repulsion,
the soliton can move without visible deformation along the
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vortex core. At medium velocities the collision between two
such solitons is found to be quasielastic.

A related study by Law et al. [17] of stable vortex-
soliton structure in a two-component BEC bears some formal
similarity with the present study. However, that study should
be considered to be complementary to the present study rather
than overlapping. In the present study in nonlinear optics
there are no traps, whereas in Ref. [17] a trapped BEC has
also been considered. In the 2D case, they [17] consider only
repulsive nonlinearity in the soliton, whereas we consider both
focusing (attractive) and defocusing (repulsive) nonlinearities
in the soliton and establish stable solitons in both cases. The
2D vortex-soliton with focusing nonlinearity was predicted in
Ref. [18] from an analytic consideration. However, no stability
analysis of these vortex-solitons was presented in Ref. [18]
for the Kerr nonlinearity, whereas we present convincing
numerical tests of stability. In the 3D case, Law et al. [17]
present numerical results for the trapped case only, whereas
the present results are obtained in the absence of any trapping
potential. In the 3D trapless case, they argue in favor of a
stable vortex-soliton structure with repulsive nonlinearity in
the soliton, whereas we find a stable vortex-soliton structure
only for attractive nonlinearity in the soliton. Further studies
of the 2D vortex-bright-soliton structure of Ref. [17] are
presented in Ref. [19].

The vortex-soliton in higher dimensions is a generalization
of the 1D optical dark-bright soliton [1,20]. Hence we
present the nonlinear Schrödinger (NLS) equations used in
this study in two and three dimensions in Sec. II together
with a discussion of the 1D optical dark-bright soliton. The
numerical procedure for including a vortex in a uniform
system is explicitly presented. In Sec. III we present the
numerical results for stationary profiles of 2D spatial and 3D
spatiotemporal vortex-solitons. We present numerical tests of
stability of the vortex-soliton under a small perturbation. The
quasielastic nature of collision of two solitons moving along
the vortex core is also established. We end with a summary of
our findings in Sec. IV.

II. NONLINEAR SCHRÖDINGER EQUATIONS

A vortex in an optical beam [14,15] bears similarity with
a 1D dark soliton in generating a hole along the axial t

direction and is often called a 3D dark soliton [1]. Hence,
the present binary optical vortex-soliton is the 3D analog of
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the well-known 1D dark-bright soliton [20]. To understand
how a 3D vortex-soliton can appear, we consider the following
integrable binary 1D dark-bright soliton model in all-repulsive
Kerr medium, in the form of a coupled NLS equation:[

i
∂

∂z
+ 1

2

∂2

∂t2
−

∑
i

|ψi |2
]
ψj (t,z) = 0, (1)

in scaled units where i,j = 1,2, represents the dark and the
bright solitons, respectively. The solitons of Eq. (1) are 1D
temporal while t and z denote time and space variables,
respectively. When the time variable t is replaced by the spatial
variable x the model becomes 1D spatial. Equation (1) hosts
the analytic dark-bright soliton [1]

ψ1(t,z) =β tanh[α(t − vz)]eivt−i(v2/2+β2)z, (2)

ψ2(t,z) =γ sech[α(t − vz)]eivt+i[(α2−v2)/2−β2]z, (3)

where α and β (β > α) are constants which control the
intensity and width of the solitons, γ =

√
β2 − α2, and v

determines the velocity. The bright soliton (3) is formed in
the all-repulsive Kerr model (1) due to the accompanying dark
soliton (2).

The 1D bright soliton (3) stays in the central hollow of
the dark soliton (2) and is confined due to the repulsive
nonlinearity between the (outer) dark and (inner) bright
solitons. Similarly, the soliton of a 2D spatial or a 3D
spatiotemporal binary vortex-soliton can be confined in the
radial x-y plane by the repulsion between the vortex and
the soliton. In the 2D spatial case, the confinement of the
soliton in the vortex-soliton is possible for a moderately
self-focusing nonlinearity or all self-defocusing nonlinearity
in the soliton. For a large self-focusing Kerr nonlinearity the
soliton collapses [8]. In the 3D spatiotemporal case, a stable
soliton in the vortex-soliton can be obtained only provided we
consider a weak self-focusing Kerr nonlinearity in the bright
soliton. The soliton escapes to infinity for a self-defocusing
Kerr nonlinearity in the soliton and collapses for a large
self-focusing Kerr nonlinearity [9].

For the formation of a 3D spatiotemporal vortex-soliton we
consider the following binary dimensionless NLS equations
with self-focusing nonlinearity in the soliton [1]:

[
i

∂

∂z
+ ∇2

⊥
2

+ 1

2

∂2

∂t2
− |φ1|2 − |φ2|2

]
φ1(r,z) = 0, (4)

[
i

∂

∂z
+ ∇2

⊥
2

+ 1

2

∂2

∂t2
+ |φ2|2 − |φ1|2

]
φ2(r,z) = 0, (5)

∇2
⊥ = ∂2

∂x2
+ ∂2

∂y2
, (6)

in scaled units where r ≡ {x,y,t}. Both in two and three
dimensions the first component i = 1 will host the vortex
and the second component i = 2 will host the soliton. The
numerical simulation is performed in a cubic box (of length
2L) limited by |x|,|y|,|t | < L. The beams have powers Pi

defined by Pi = ∫
|x|,|y|,|t |<L

dr|φi(r)|2. In the limit L → ∞ the
power P1 diverges. This is not of concern. The vortex-soliton
is controlled by the finite power density p1 ≡ P1/(2L)D of the
vortex, where D is the dimension: D = 2 for two dimensions

and = 3 for three dimensions. We will classify the vortex states
by their finite power density p1. There are three nonlinearities
in this binary optical system, two of which are fixed by the
powers Pi , and the third by the length scale, thus making
Eqs. (4) and (5) free of parameters. The plus sign before |φ2|2
in Eq. (5) denotes a self-focusing nonlinearity in component
2 which will host the soliton. All other nonlinearities with a
negative sign denote self-defocusing.

Similarly, a 2D spatial vortex-soliton is described by the
following scaled NLS equations:

[
i

∂

∂z
+ ∇2

⊥
2

− |φ1|2 − |φ2|2
]
φ1(r,z) = 0, (7)

[
i

∂

∂z
+ ∇2

⊥
2

± |φ2|2 − |φ1|2
]
φ2(r,z) = 0, (8)

obtained after removing the time variable from Eqs. (4)–(5),
where now r ≡ {x,y}. The numerical simulation in this case
is performed in a square (of length 2L). The powers Pi in this
case are defined by Pi = ∫

|x|,|y|<L
dr|φi(r)|2. The plus sign in

Eq. (8) before |φ2|2 corresponds to a self-focusing nonlinearity
and the minus sign to a self-defocusing nonlinearity.

To find a stationary quantized vortex of charge C in
component 1, also called a dark soliton with circular symmetry,
we look for a circularly symmetric spatiotemporal solution
�1(r,z) in the x-y plane: φ1(r,z) ≡ �1(r,z)eiCϕ , where ϕ is
the azimuthal angle and �1(r,z) satisfies [14,15][
i

∂

∂z
+ 1

2

∂2

∂t2
+ ∇2

⊥
2

− C2

2(x2 + y2)
− |�1|2 − |φ2|2

]
�1 = 0,

(9)

with boundary conditions �1(x = 0,y = 0,t) = 0,�1(x →
∞,y → ∞,t) = const [15]. The boundary conditions on the
1D dark soliton (2) are very similar: ψ1(t = 0) = 0,ψ1(t →
∞) = constant. In the 2D spatial case the time derivative in
Eq. (9) is dropped and one has[

i
∂

∂z
+ ∇2

⊥
2

− C2

2(x2 + y2)
− |�1|2 − |φ2|2

]
�1 = 0, (10)

with boundary conditions �1(x = 0,y = 0) = 0,�1(x →
∞,y → ∞) = const [15]. For a bright soliton of component
2 in the vortex core of component 1 we solve Eqs. (9) and (5)
in the 3D spatiotemporal case or Eqs. (10) and (8) in the 2D
spatial case. We take C = 1 in this paper. Vortices with charge
C > 1 are usually unstable and decay into two vortices of unit
charge.

III. NUMERICAL RESULTS

Unlike in the 1D case, the coupled NLS equations for the
2D spatial and 3D spatiotemporal binary vortex-soliton do
not have analytic solution, and we solve them numerically
by the split-step Crank-Nicolson method using both real- and
imaginary-z propagation in Cartesian coordinates using a r
step of 0.2 and a z step of 0.0025 [21].

We solve Eqs. (8) and (10) for the 2D spatial case and
Eqs. (5) and (9) for the 3D spatiotemporal case. In both cases
the charge in Eq. (9) is unity: C = 1. In the imaginary-z
propagation the initial vortex state was taken as �1(r) ∼
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[1 − exp{−α(x2 + y2)}] with power P1. The initial 2D spatial
soliton was taken as φ2(r) ∼ sech(xβ)sech(yβ) and the 3D
spatiotemporal soliton as φ2(r) ∼ sech(xβ)sech(yβ)sech(tγ )
with power P2, where α,β, and γ are parameters. For a quick
convergence these parameters should be chosen conveniently
so that these states are good approximations to the final
states. The change of power from one simulation to another
is obtained by varying the amplitude of the input beam as
the width of the same is held constant throughout the study.
The powers Pi are conserved quantities during numerical
simulation and have the same value for all z in 2D spatial
and 3D spatiotemporal cases. These initial states approximate
well the vortex core and the soliton.

First, we report results for a self-focusing nonlinearity in
the soliton for a 2D spatial vortex-soliton. The numerical
simulation for the 2D spatial vortex-soliton is performed in
the square limited by x = y ≡ ±L,L = √

250 with powers
P1 = 1000 and P2 = 2,4,5 for a self-focusing nonlinear-
ity in the soliton and with powers P1 = 1000 and P2 =
1,10,100 and with powers P1 = 100 and P2 = 10,100,1000
for a self-defocusing nonlinearity in the soliton, such that∫ L

−L
dx

∫ L

−L
dy|φi(x,y)|2 = Pi . The size of the vortex core

is much smaller than the extension of the beam in the x-y
plane. For the power of the vortex (in the first component)
P1 = 1000, the power density p1 ≡ P1/(2L)2 = 1. In the
imaginary-z routine the normalization of the functions φi are
reset to the predetermined powers Pi after every z iteration. For
real-z routine these normalizations are conserved after every
z iteration. The densities in this case, obtained by imaginary-z
propagation, have a circularly symmetric profile. Hence, we
present the result for density |φi(x,0)|2 only along the x axis
for soliton powers P2 = 2,4,5 in Fig. 1. For a small value
of self-attraction in the soliton, corresponding to a power of
P2 = 2, the soliton has a weak localization corresponding to a
small peak in density as can be seen in Fig. 1. For a larger power
P2 = 5, the soliton has a stronger localization corresponding
to a high peak in density as can be seen in Fig. 1. The soliton
collapses if the self-attraction in the soliton is further increased
to P2 = 6. The vortex profile remains practically unchanged in

FIG. 1. (Color online) Vortex (i = 1) and soliton (i = 2) densi-
ties |φi(x,0)|2 of the 2D spatial vortex-soliton with vortex power
density p1 = 1 and soliton power P2 = 2,4,5, from a solution of
Eqs. (8) and (10) for a self-focusing nonlinearity [+ sign before |φ2|2
in Eq. (8)] in the soliton.

FIG. 2. (Color online) Critical value of P2 for a stable 2D spatial
vortex-soliton of Fig. 1 with a self-focusing nonlinearity in the soliton
obtained from a solution of Eqs. (8) and (10) for different power
density p1 of the vortex.

this case for different powers P2 of the soliton. We also studied
the stability of the soliton for different values of power density
p1 and power P2 and illustrate the result in Fig. 2, where we
plot the critical power P2 for obtaining a stable soliton for
different p1. In the absence of the vortex (p1 = 0), in 2D,
the self-focusing system (component 2) can have an unstable
Townes soliton [22] of power P2 = 5.85 [11,23]. For powers
P2 > 5.85, the Townes soliton has an excess of attraction and
it collapses, whereas for powers P2 < 5.85, the attraction is
too weak to bind the soliton and it escapes to infinity. A vortex
with a small nonzero power density p1 → 0 has no effect on
the collapse of the Townes soliton for power P2 > 5.85, but
it arrests its uncontrolled expansion for power P2 < 5.85 and
forms a stable soliton; see Fig. 2. For larger power density p1

of the vortex, the binding force on the soliton increases and it
becomes more vulnerable to collapse, and hence the region of
collapse increases in the P2-p1 phase plot of Fig. 2.

In the self-defocusing case, the 2D soliton has a larger
spatial extension as can be seen from the density profiles
shown in Fig. 3(a) for P2 = 1,10, and 100. A large power P2

corresponds to a large force on the first component hosting the
vortex, which increases the size of the vortex core. The densi-
ties in this case are qualitatively very similar to the densities in a
BEC vortex-soliton in the self-defocusing case as shown in the
bottom row of Fig. 1 of Ref. [17]. In this case there is no critical
power P2 for forming a stable soliton as in Fig. 2. The vortex-
soliton is stable for all self-defocusing soliton powers P2 and
vortex power density p1. To demonstrate this numerically
we plot in 3(b) the density profiles for soliton powers P2 =
10, 100, and 1000 for a small vortex power density p1 = 0.1.
Even a weak vortex with a small power density can support
a soliton with a very large self-defocusing power. However,
the size of the vortex-soliton is much larger for a small vortex
power density [compare the length scales in Figs. 3(a) and
3(b)]. We have tested the stability of the these vortex-soliton
beams numerically under a small perturbation (not presented
here) in all cases in real-z propagation. Next we will study the
3D spatiotemporal case and will discuss in detail the question
of stability numerically under a small perturbation.

In the 3D spatiotemporal case the numerical simu-
lation is performed in the cubic box limited by x =
y = t = ±L,L = 50 with powers P1 = 106 and P2 = 10,5
for a self-focusing nonlinearity in the soliton, such that
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FIG. 3. (Color online) Vortex (i = 1) and soliton (i = 2) densi-
ties |φi(x,0)|2 of the 2D spatial vortex-soliton with (a) vortex power
density p1 = 1 and soliton power P2 = 1,10,100 and with (b) vortex
power density p1 = 0.1 and soliton power P2 = 10,100,1000, from
a solution of Eqs. (8) and (10) for a self-defocusing nonlinearity
[− sign before |φ2|2 in Eq. (8)] in the soliton.

∫ 50
−50 dx

∫ 50
−50 dy

∫ 50
−50 dt |φi(x,y,t)|2 = Pi . The vortex power

density in this case is p1 ≡ P1/(2L)3 = 1. A large power of
the vortex beam is necessary for an efficient localization of
the soliton by the repulsive centripetal force exerted by the
vortex on the soliton in the x-y plane. There is no such force
in the temporal direction. We will see that the self-focusing
nonlinearity of the soliton will be leading to a confinement of
the soliton in time. The size of the vortex core is much smaller
than the extension of the beam in the x-y plane.

To visualize the spatial localization of the 3D spatiotempo-
ral vortex-soliton in the x-y plane we calculated the integrated
2D density |φ2Di(x,y)|2 = ∫

dt |φi(r)|2 for the soliton and
vortex. In Figs. 4(a) and 4(b) we plot the integrated 2D densities
of the vortex-solitons for powers P2 = 10, and 5, respectively.
The qualitative features of localization in the x-y plane is very
similar to the localization of the spatial soliton in Fig. 1.

Next we consider the full 3D profile of the 3D spatiotem-
poral vortex-soliton for illustrating its temporal localization.
In Figs. 5(a) and 5(b) we show the isodensity contours
|φi(r)|2/Pi of the binary vortex-soliton for powers P2 = 10
and 5, respectively. The length of the soliton in the temporal
direction is larger in Fig. 5(b) compared to that in Fig. 5(a),
due to a reduced self-attraction in the soliton for P2 = 5

FIG. 4. (Color online) Integrated 2D densities |φ2Di(x,y)|2 =∫ 50
t=−50 dt |φi(r)|2 for the soliton (i = 2) and vortex (i = 1) of the 3D

spatiotemporal vortex-soliton with vortex power density p1 = 1 and
soliton powers (a) P2 = 10 and (b) P2 = 5 from a solution of Eqs. (5)
and (9) in a cubic box of size 1003. The nonlinearity in the soliton
is self-focusing corresponding to the + sign before |φ2|2 in Eq. (5).
For easy visualization the densities of the soliton are multiplied by
50 and 100 in (a) and (b).

compared to the soliton with power P2 = 10, as shown in
Fig. 5(a). The temporal length of the soliton tends to infinity
as the self-focusing power P2 of the soliton reduces to zero,
when the soliton cannot be localized in time. A self-focusing
nonlinearity in the soliton is necessary for its localization.

To demonstrate the stability of the spatiotemporal vortex-
soliton, we consider the one in Figs. 4(a) and 5(a) with
soliton power P2 = 10 and subject the corresponding sta-
tionary state(s) obtained by imaginary-z propagation to real-z
propagation introducing a small perturbation, e.g., jumping the
soliton power P2 from 10 to 10.2 at z = 0. Stable oscillation
of the resultant root-mean square (RMS) sizes 〈x〉 = 〈y〉 �= 〈t〉
of the soliton, illustrated in Fig. 6, guarantees the stability of
the binary vortex-soliton. The spatial and temporal sizes are
different because of different dynamics in space and time.

The collision between two integrable 1D solitons is truly
elastic [1,3], and such solitons pass through each other without
deformation. The collision between two 3D spatiotemporal
solitons can at best be quasielastic. To test the solitonic nature
of the present spatiotemporal solitons, we study the head-on
collision of two solitons moving along the vortex core of the
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FIG. 5. (Color online) 3D isodensity contours |φi(r)|2/Pi of the
binary vortex-soliton, showing the vortex core (gray, pink in color)
and the soliton (black, blue in color) profiles, corresponding to (a)
Fig. 4(a) and (b) Fig. 4(b). Density on the contour is 10−6. The
densities are divided by respective powers for the convenience of
plotting in the same scale.

present vortex-soliton. The imaginary-z profile of the binary
vortex-soliton of Fig. 4(b) is used as the initial function in
the real-z simulation of collision, with two identical solitons
placed at t = ±50 initially for z = 0. To set the solitons in
motion along the t axis in opposite directions the soliton wave
functions are multiplied by exp(±ivt),v = 20. To illustrate the
dynamics of a real-z simulation, we plot the time evolution of
1D density ρ1D(t,z) ≡ ∫

dx
∫

dy|φ(x,y,t,z)|2 in Fig. 7. The
dimensionless velocity of a soliton is ∼2.5, and the deviation
from elastic collision is found to be small. Considering the
three-dimensional nature of collision, the distortion in the
soliton profile is found to be negligible.

In three dimensions the vortex line of an isolated vortex
is often found to suffer from transverse instability leading to

FIG. 6. (Color online) RMS sizes 〈x〉,〈t〉 during breathing oscil-
lation of the vortex-soliton of Fig. 4(a) initiated by a sudden change
of soliton power from P2 = 10 to 10.2 at z = 0.

FIG. 7. (Color online) The contour plot of 1D density ρ1D(t,z)
during collision of two spatiotemporal solitons of Fig. 4(b) placed at
t = ±50 at z = 0. The solitons are set in motion with velocity ∼ 2.5
in opposite directions so as to collide at t = 0.

a bending of vortex line [16]. No such instability is found
in the present real-z simulation. In the 3D spatiotemporal
vortex-soliton the vortex beam applies a transverse centripetal
force on the soliton in the x-y plane thus stabilizing the soliton.
The soliton also exerts a transverse centrifugal force on the
vortex beam which prevents the vortex line from bending. The
question of stability is the most critical in the spatiotemporal
case as compared to the 2D spatial case. As the present
spatiotemporal vortex-solitons are found to be stable, the same
follows for the 2D spatial case, which could be easier to realize
experimentally.

IV. SUMMARY AND DISCUSSION

Summarizing, we demonstrated the creation of a stable
2D spatial and a 3D spatiotemporal optical vortex-soliton
in a binary system with the soliton moving in the core of
the vortex. The nonlinearity in the vortex and the interbeam
nonlinearity are taken as self-defocusing Kerr type, whereas
the nonlinearity in the soliton in the 2D spatial case can be
either self-focusing or self-defocusing Kerr type. However,
the nonlinearity in the soliton in the 3D spatiotemporal case
can only be weakly self-focusing. The soliton is localized by a
strong interbeam repulsion. This binary vortex-soliton is a sta-
ble stationary state. In the 3D spatiotemporal case, the optical
soliton can move with a constant velocity along the vortex core
in the temporal direction. At medium velocities, the collision
between the two spatiotemporal solitons moving along the
vortex core is quasielastic with no visible deformation of the
final solitons.

An excellent account of different ways of generating a
binary (or vector) soliton experimentally is given in chapter
9 of Ref. [1]. The experimental observation of a spatial
binary (vector) optical soliton was accomplished nearly two
decades ago [24] in an AlGaAs slab waveguide, where the
mutual trapping was achieved due to coupling between two
polarization components of the beam. The possibility of the
observation of a binary vortex-soliton is considered in great
detail in Ref. [18]. Their analysis is valid for both self-focusing
and -defocusing nonlinearity in the soliton. The techniques
of generating a 2D spatial optical vortex beam in a self-
defocusing medium are well known [14,15], hence a binary
optical vortex-soliton could be within the current experimental
possibilities. The binary NLS equations considered here also
describe a binary BEC mixture [17], where the interspecies
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and intraspecies interactions can be controlled independently
by manipulating the different scattering lengths using optical
[25] and magnetic [26] Feshbach resonances. In this fashion
one can easily have defocusing interspecies nonlinearity and
focusing nonlinearity in the soliton. This will also provide
a different testing ground for the analysis presented in this
paper.

ACKNOWLEDGMENTS

Interesting discussions with Boris A. Malomed and
F. K. Abdullaev are gratefully acknowledged. We thank the
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