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Nonlinear optical Galton board: Thermalization and continuous limit
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The nonlinear optical Galton board (NLOGB), a quantum walk like (but nonlinear) discrete time quantum
automaton, is shown to admit a complex evolution leading to long time thermalized states. The continuous limit
of the Galton board is derived and shown to be a nonlinear Dirac equation (NLDE). The (Galerkin-truncated)
NLDE evolution is shown to thermalize toward states qualitatively similar to those of the NLOGB. The NLDE
conserved quantities are derived and used to construct a stochastic differential equation converging to grand
canonical distributions that are shown to reproduce the (microcanonical) NLDE thermalized statistics. Both the
NLOGB and the Galerkin-truncated NLDE are thus demonstrated to exhibit spontaneous thermalization.
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I. INTRODUCTION

At the fundamental level, quantum theory is linear. Yet,
nonlinear models are often useful to take into account inter-
action in an effective manner. Two examples are the so-called
nonlinear optical Galton board (NLOGB) [1] and the nonlinear
wave equations describing the dynamics of Bose-Einstein
condensates (BEC). Though the NLOGB is discrete and
wave equations are by definition continuous, these models
have much in common. Indeed, the NLOGB is essentially
a nonlinear quantum walk (QW), and the formal continuous
limits of linear QWs are wave equations [2–6]. Typical such
wave equations are the Dirac or the Schrödinger equation
which nonlinear version, called the Gross-Pitaevskii equation
(GPE), is used to model BEC [7]. Also, QW descriptions of
BEC have been proposed in [8,9].

Finally, numerical solutions of continuous wave equations
are actually solutions of discrete systems approximating the
continuous equations.

The NLOGB can be seen as a discrete model of nonlinear
waves similar to those which propagate in BEC. One can
therefore expect the NLOGB to display properties similar
to those of the standard nonlinear model of BEC: the GPE.
One such property which has until now never been explored
on the NLOGB nor, more generally, in the context of
QWs and quantum automata, is the so-called spontaneous
thermalization.

In the context of (nonlinear) BEC, microcanonical equi-
librium states are well known to result from long-time
integration of the so-called truncated (or Galerkin-projected)
Gross-Pitaevskii equation (GPE) and involve a condensation
mechanism [7,10–12]. Furthermore, such thermalization is
also known to happen in discretized (rather than spectrally
truncated) GPE [13]. Classical Galerkin-truncated systems
have been studied since the early 1950s in fluid mechanics.
In this context, the (time reversible) Euler equation describing
spatially periodic classical ideal fluids is known to admit, when
spectrally truncated at wave number kmax, absolute equilibrium
solutions with Gaussian statistics and equipartition of kinetic

energy among all Fourier modes [14–17]. Furthermore, the
dynamics of convergence toward equilibrium involves a direct
energy cascade toward small scales [18,19].

The aim of the present work is to study thermalization
phenomena in a spatially periodic version of the NLOGB
and relate it to the thermalization of its (Galerkin-truncated)
continuous limit.

The paper is organized as follows. Section II is devoted to
the definition of the NLOGB model and its numerical solution.
The main result of this section is to display and characterize the
complex behavior of the log-time regime. Section III is devoted
to the behavior of the continuous limit (Sec. III A), its con-
served quantities (Sec. III B), and the long-time behavior and
thermalization of its Galerkin-truncated version (Sec. III C).
Finally, Sec. IV is our conclusion. Technical details are given
in the Appendixes.

II. NONLINEAR DISCRETE TIME QUANTUM WALK

A. Fundamentals

Consider a quantum particle endowed with an internal
degree of freedom and a lattice on which this particle can move
in discrete time. A discrete time quantum walk (DTQW) is an
automaton which conditions the motion of the particle on the
state of its internal degree of freedom [20]. Let us remark that
whilst a continuous-time version of QW (CTQW)—living in
continuous time and discrete space—has been introduced in
the literature [21], we will not deal with it in the present work.
In this article, we focus on a discrete time nonlinear quantum
walks (DTQW) defined on the discrete circle and on particles
described by a two components complex wave function. The
discrete time spatially periodic quantum walk is defined by the
following equations:

ψ−
j+1,m = 1√

2
[eig|ψ−

j,m+1|2ψ−
j,m+1 + eig|ψ+

j,m+1|2ψ+
j,m+1],

(1)
ψ+

j+1,m = 1√
2

[eig|ψ−
j,m−1|2ψ−

j,m−1 − eig|ψ+
j,m−1|2ψ+

j,m−1].
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FIG. 1. (Color online) Density plot of the time evolution of the
particle number density �j,m, as defined in Eq. (2), for (a) the
Hadamard DTQW (g = 0) and the NLOGB (g = 10π ), with a
symmetric initial condition �0,m = δ0,m√

2
(b− + ib+). Number of grid

points N = 512.

The index m = 0, . . . ,N − 1 labels points on the discrete
circle and the index j ∈ N labels instants. At each time j

and each point m, ψ±
j,m are the two components of the wave

function �j,m on a certain space- and time-independent spin
basis (b−,b+). The above finite difference equations were
derived in [1], albeit for QWs on the unrestricted line [22].
The parameter g fixes the strength of the nonlinearity. For
g = 0, Eqs. (1) coincide with the evolution equations of the
standard Hadamard walk. The particle number at time j

�j =
∑
m

(|ψ−
j,m|2 + |ψ+

j,m|2) =
∑
m

�j,m (2)

is independent of j , i.e., it is conserved by the walk and
normalized to 1. We will henceforth denote it by �.

B. Asymptotic behavior of the DTQWs

As displayed in Fig. 1(a), the family of DTQWs defined by
Eqs. (1) exhibits a very complex dynamics, much richer than

FIG. 2. (Color online) (a) Log-lin plot of the particle number
density �j,m [see Eq. (2)] at time j = 5 × 105 (yellow circles) for the
NLOGB with the same initial condition as Fig. 1 (black point) and for
g = 10π . Number of grid points N = 64. (b) Log-lin PDF H (p) (see
text, second paragraph in Sec. IIB) of �j,m at time j = 5 × 105 for
the NLOGB with the same initial condition as Fig. 1 and g = 10π .
Number of grid points N = 64.

the dynamics of the Hadamard walk shown for comparison in
Fig. 1(b).

Of particular interest is the j → ∞ asymptotic statistics
of the particle number spatial distribution �j,m = |ψ−

j,m|2 +
|ψ+

j,m|2. Let �p be a positive real number much lower than
unity and compute, at all times j , the proportion Hj (p)�p of
values of the position m for which �jm lies in (p,p + �p).
The quantity Hj (p) is a discrete equivalent of the probability
density function (PDF) of �jm at time j .

Direct numerical simulations (DNS) [see Fig. 1(a)] allow
one to directly estimate Hj (p). It is found that Hj (p) tends
towards a stationary distribution H ∗(p) which depends on the
initial condition. Figure 2(a) displays how the particle number
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FIG. 3. (Color online) (a) Density plot of the time evolution of the
particle number density �j,m [see Eq. (2)] with the same conditions
as Fig. 1(b), but in the short time regime. (b) Asymmetry measure
�j vs time, for different values of the number of grid points. �j =∑N/2−1

m=0 �j,m − ∑N−1
m=N/2 �j,m and same conditions as Fig. 1(b).

�j,m typically depends on m at fixed large values of j and
Fig. 2(b) displays H ∗(p), estimated by computing histograms
as explained above.

The existence of H ∗(p) is typical of nonlinear chaotic
systems. These systems also exhibit a great sensitivity towards
initial conditions, and this sensitivity is confirmed by DNS of
the NLOGB. Indeed, starting a DNS of the Hadamard walk
with a symmetric initial condition delivers a numerical solution
which is symmetrical at all times, whereas using the same
initial condition in a DNS of the NLOGB delivers a numerical
solution which is not symmetric [see Fig. 1(a)]. This symmetry
breaking becomes greater with the time j [see Fig. 3(b)] and
depends on the resolution of the DNS and the strength of

nonlinearities. In particular, Fig. 3(b) shows that the symmetry
breaking starts from the round-off noise [23] that is of order
10−15 in our simulations. We have checked (data not shown)
that adding to the initial condition a nonsymmetric noise larger
than the round-off noise produces the same growth rates for
the symmetry breaking, but starting at the higher level of the
added nonsymmetric noise. This confirms that the symmetry
breaking is due entirely to the round-off noise.

III. NONLINEAR DIRAC EQUATION

A. Nonlinear Dirac equation as continuous limit of the DTQWs

The asymptotic aspects of the NLOGB dynamics can be
understood by investigating the continuous limit of these
walks. The method employed is the same as in [3,24,25] and
detailed computations are given in Appendix A. The formal
continuous limit of the NLQWs read(

I∂T − σ3∂X − 3ig

4
M(�,�†)

)
� = 0, (3)

with

M(�,�†) = �†M�, (4)

M = I + σ2

3
, (5)

where I is the identity,

σ2 =
(

0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
(6)

are the second and third Pauli matrices. The continuous limit
of the NLOGB is thus described by a nonlinear Dirac equation
(NLDE). The nonlinearity is confined to the mass term, which
depends quadratically on the spinor �. Note that (spatially
two-dimensional) NLDE have also been used to describe
experimental BEC on a 2D hexagonal lattice [26–28].

The NLDE (3) is formally equivalent to Nambu–Jona-
Lasinio–like equations (NJLE) (Nambu and Jona-Lasinio
[29–33]) in 1+1 dimension, which describe a nonlinear
interaction between fermions with chiral symmetry. The
constant g corresponds to a nonlinear coupling constant and,
if g = 0, (3) degenerates into the Weyl equation.

As detailed in Appendix B, the validity of the continuous
limit is best confirmed by using Fourier pseudospectral
methods [34], which are precise and rather easy to implement.
In particular, Fig. 4 displays for different values of g the relative
difference between the solution of Eqs (1) and (3) as a function
of the ε parameter which controls the continuous limit.

Figure 5 shows the typical profile of the asymptotic �(T ,X)
and the stationary distribution H (p) of this density, as obtained
from a Galerkin-truncated simulation of the NLDE, dealiased
in a way that ensures conservation laws in the truncated
system; see Appendix B. Both plots are strikingly similar to the
corresponding plots presented in Figs. 2(a) and 2(b) obtained
by numerically integrating the NLOGB. In other words, the
NLOGB and the Galerkin-truncated NLDE seem to have very
similar asymptotic behavior. We will now analyze in detail the
asymptotic behavior of the Galerkin-truncated NLDE. We will
first identify the conserved currents for the NLDE (Sec. III B)
and then show that the asymptotic statistics Galerkin-truncated
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FIG. 4. (Color online) Log-log plot of the relative difference δj

at time j = 400, defined as

√∑N−1
m=0

(�QW −�D )2
j,m

(�D )2
j,m

, where �QW is the
particle number density �j,m obeying the NLOGB finite difference
equations and �D is the particle number density �(Tj ,Xm) obeying
the NLDE. The relative difference is shown for several values of
ε = 2π/N (from right to left), N = 26, 27, 28, 29. The initial condition
is a symmetric Gaussian distribution �(0,Xm) = f (Xm)√

2
(b− + ib+),

where the Gaussian shape f (Xm) = 1
2πσ

exp (−X2
m/

√
2σ 2) and σ =

10�x.

NLDE is identical to the so-called grand canonical statistics
(Sec. III C).

B. Lagrangian formulation and conserved quantities

The NLDE derives from the following Lagrangian density:

L(�,�†) = i

2
[�γ μ(∂μ�) − (∂μ�)γ μ�] − g

2

(
�N�

)2
,

(7)
with

N = γ0 + 1√
3
γ5, (8)

γ 0 = σ1 = (0 1
1 0), γ 1 = i σ2, γ 5 = i γ 0γ 1, � = �†γ 0, and

∂0 = ∂T , ∂1 = ∂X.
There are two conserved currents and these generate three

integrals of motion (conserved quantities). The first current
is simply the two-current Jμ = �γ μ� associated to the U (1)
invariance of the NLDE. The corresponding integral of motion
is the total particle number:

�[�,�†] =
∫

�(T ,X)dX, (9)

where �(T ,X) = �†(T ,X)�(T ,X), which is usually normal-
ized to 1.

The other current is associated to the space-time translation
invariance of the NLDE and is the stress-energy tensor

T μν(�,�†) = i

2
[�γ μ(∂ν�) − (∂ν�)γ μ�] − ημνL, (10)

where ημν = diag(1, − 1). The associated conserved quanti-
ties are the energy E and the momentum P , which are defined
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FIG. 5. (Color online) (a) Log-lin plot of �(T ,X) at time T =
5 × 105 (red square) obeying the NLDE with the same initial
condition of Fig. 4 (black point) for g = 10π . Number of grid points
N = 64. (b) PDF H (p) of �.

by

E[�,�†] =
∫

T 00
(
�(T ,X),�†(T ,X)

)
dX (11)

and

P [�,�†] =
∫

T 01
(
�(T ,X),�†(T ,X)

)
dX, (12)

with

T 00(�,�†) = − i

2
[�γ 1(∂X�) − (∂X�)γ 1�] − g

2

(
�N�

)2

(13)
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and

T 01(�,�†) = − i

2
[�γ 0(∂X�) − (∂X�)γ 0�]. (14)

C. Thermalization in the Galerkin-truncated NLDE

If one studies the NLDE on the circle, it is natural to
write at all times the spinor �(T ,X) as a spatial Fourier
series and to replace the NLDE by an evolution equation
obeyed by the time-dependent Fourier coefficients �̂(T ,k).
In performing a Galerkin truncation [35], one retains only
a finite number of these coefficients as dynamical variables,
say �̂(T ,k) with k = −N

2 , . . . ,N
2 − 1, and replaces the exact

NLDE dynamics by a new dynamics which, at small k,
approximates at least formally the original NLDE dynamics.
By Fourier transforming the �̂(T ,k), k = −N

2 , . . . ,N
2 − 1,

back to original physical space (i.e., the circle), one obtains
a set of N spinors �m(T ), m = 0, . . . ,N − 1, which are to
be interpreted as the values �(T ,Xm) taken by the spinor
field �(T ,X) at point Xm = 2πm

N
(see Appendix B). The

spinors �(T ,Xm) are on the same footing as the �̂(T ,k),
k = −N

2 , . . . ,N
2 − 1, and can be viewed as the dynamical

variables of the Galerkin-truncated NLDE. We now denote by
�̃(T ) the collection {�m(T ) = �(T ,Xm),m = 0, . . . ,N − 1}.

All integrals over space of quantities involving the Dirac
field can be replaced by Riemann sums. Thus the total particle
number, the energy, and the momentum can now be viewed
as functions of the collection (�̃(T ),�̃∗(T )). These functions
will still be denoted by �, P , and E and are conserved by the
Galerkin truncated dynamics; see Appendix B.

We now introduce two Lagrange multipliers μ and θ , define
Hθμ = E − θP − μ�, and consider the following stochastic
differential equations:

d�m

dT
= − ∂Hθμ

∂�∗
m

+ η ξm(T ),

(15)
d�∗

m

dT
= − ∂Hθμ

∂�m

+ η ξ ∗
m(T ),

where η is a real coefficient and the ξm(T )’s are complex
independent Gaussian white noises [36] with correlation
functions

〈ξm(T )ξ ∗
n (T ′)〉 = δmnδ(T − T ′). (16)

The density f of this stochastic process obeys the exact
Fokker-Planck equation [11,37,38]

∂tf =
∑
m

{
− ∂

∂�m

(
∂H

∂�∗
m

f

)

− ∂

∂�∗
m

(
∂H

∂�m

f

)
+ η2 ∂2f

∂�m�∗
m

}
. (17)

The stationary solution fηθμ of this equation is the Gibbs state

fηθμ = 1

Zηθμ

exp

(
− 2

η2
Hθμ

)
, (18)

which is the so-called grand canonical distribution with inverse
temperature 2/η2.

We have simulated the stochastic equations (15) to numer-
ically obtain fields with statistical distributions corresponding

FIG. 6. (Color online) PDF H (p) of the thermalized state density
�(X) for the NLDE and for the stochastic equations (15) (GE) for
g = 10π . The conserved quantities and the noise coefficient are (a)
E = −19.8, P = 0, � = 1, and η = 1 and (b) E = −17.12, P = 0,
� = 1, and η = 1.6, at time T = 312.

to the distribution fηθμ and compare it with the asymptotic
long-time distribution of the Galerkin-truncated NLDE.

The comparison between the thermalized fields corre-
sponding to the nonlinear Dirac equation and the Gibbs
states corresponding to Eq. (15) are displayed in Fig. 6 and
confirm that the Galerkin-truncated NLDE and the stochastic
equations (15) are described by very similar distributions
(see Appendix B).

Figure 6 has been generated in the following manner.
We have first used (15) with η = 1 and η = 1.6 to produce
two Gibbs states with particle number � fixed to unity and
vanishing momentum (see the end of Appendix B). The
energies of these two states are respectively E = −19.8 and
−17.12. We then have generated initial data for the nonlinear
Dirac equation (3) with the same particle number (equal to
unity) and energies. This has been done by multiplying the
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Gaussian initial field by a suitably chosen spatially dependent
phase.

IV. DISCUSSION

We have considered the NLOGB confined to the circle and
we have shown that the continuous limit of this NLOGB is a
NLDE identical to the NJLE model. Pseudospectral numerical
simulations reveal that the asymptotic behavior of the NLOGB
is similar to the asymptotic behavior of the Galerkin-truncated
NLDE and we have shown that the associated asymptotic
statistics is identical to the grand-canonical statistics. Thus
both the NLOGB and the Galerkin-truncated NLDE exhibit
spontaneous thermalization. Strictly speaking, the NLOGB on
an unrestricted line, as presented in [1], cannot be studied with
the same method. In fact, the comparison between the NLOGB
and the Galerkin-truncated NLDE is possible only when the
NLOGB admits a finite number of wave numbers.

Previous work on other nonlinear quantum walk [39] sug-
gests that this observed spontaneous asymptotic thermalization
is not a particular feature of the systems studied in this article,
but will also be encountered in other nonlinear quantum walks,
whatever the dimensions of the underlying physical space or
of the coin space may be. It is obvious that quantum walks
which thermalize will explore space in a very different manner
from walks which do not thermalize, and their importance for
quantum computing should certainly be explored in depth.
In a different direction, it would be interesting to exhibit
and analyze spontaneous thermalization in QWs couple to
synthetic gauge fields [3,25,40].

APPENDIX A: DERIVATION OF CONTINUOUS LIMIT

Consider for all (n,j ) ∈ N2, the collection Wn
j =

(�k,m)k=nj,m∈Z. This collection represents the state of the
NLOGB at “time” k = nj . For any given n, the collection Sn =
(Wn

j )j∈N thus represents the entire history of the NLOGB
observed through a stroboscope of “period” n. The evolution
equations for Sn are those linking Wn

j+1 to Wn
j for all j . The

method employed here to obtain the continuous limit of a
generic Sn was introduced in [3,25].

One first introduces a time scale τ , a length scale λ, an
infinitesimal ε, and interprets the space index m as referring to
position xm = mελ = m�x and the time index j as referring
to the instant tj = jετ = j�t . The formal continuous limit is
obtained expanding the equations defining Sn in Taylor series
around ε = 0 and by letting ε tend to zero. For the limit to exist,
all zeroth order terms of the Taylor expansion must identically
cancel each other and the differential equation describing the
limit is then obtained by equating to zero the nonidentically
vanishing, lowest order contribution.

The original NLOGB S1 does not admit a continuous
limit because the zeroth order terms do not cancel each other
identically. The equations defining S2 read

ψ−(tj + 2�t,xm)

= 1
2 [F[φ−(tj ,xm + �x)] + F[φ+(tj ,xm − �x)],

ψ+(tj + 2�t,xm)

= 1
2 [F[φ−(tj ,xm − �x)] − F[φ+(tj ,xm + �x)],

where

φ∓(tj ,xm) = eig|ψ−(tj ,xm+�x)|2ψ−(tj ,xm + �x)

± eig|ψ−(tj ,xm+�x)|2ψ+(tj ,xm + �x) (A1)

and

F[φ(tj ,xm)] = eig|φ(tj ,xm)|2φ(tj ,xm). (A2)

These equations admit a formal continuous limit, which reads(
I∂T − P∂X − 3ig

4
M̃(�,�†)

)
� = 0, (A3)

where

M̃(�,�†) = �†M̃�, (A4)

P = 1

2

(
1 1
1 −1

)
, M̃ = I − σ2

3
, (A5)

and T = t/τ and X = x/λ.
The operator P is self-adjoint and its eigenvalues are −1

and +1. Two eigenvectors associated to these eigenvalues are

B− =
(

cos
θ

8

)
b− +

(
sin

θ

8

)
b+ (A6)

and

B+ =
(

sin
θ

8

)
b− −

(
cos

θ

8

)
b+. (A7)

The family (B−,B+) forms an orthonormal basis of the two-
dimensional spin Hilbert space. In this new basis, Eq. (A3)
reads (

I∂T − σ3∂X − 3ig

4
M(�,�†)

)
� = 0, (A8)

where

M(�,�†) = �†M�, (A9)

M = I + σ2

3
. (A10)

APPENDIX B: NUMERICAL METHODS

We restrict ourselves to 2π -periodic boundary conditions.
A generic field �(X) is thus evaluated on the N collo-
cation points Xm = 2πm/N , with m = 0,N − 1 as �m =
�(Xm). The discrete Fourier transforms are standardly defined
as �(Xm) = ∑N/2−1

k=−N/2 exp (ikXm)ψ̂k and the inverse ψ̂k =
1
N

∑N−1
m=0 ψ(Xm) exp (−ikXm). These sums can be evaluated

in only N log(N ) operations by using fast Fourier transforms
(FFTs). Spatial derivatives of fields are evaluated in spectral
space by multiplying by ik and products are evaluated in
physical space. The original QW equations can also be simply
cast in this setting, as the translation operator �m → �m±1 is
represented in Fourier space by �̂k → �̂k exp (±ik2π/N ). In
this setting, the continuous limit is automatically taken when N

is increased. As we can observe in Fig. 4 the relative difference
scales as expected as ε for different values of ω.

However, the pseudospectral code solving the NLPDEs
generates a problem called aliasing [41], which means that
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FIG. 7. (Color online) Time evolution of momentum change
(top) |E(T ) − E(T = 0)|, energy change (center) |P (T ) − P (T =
0)|, and particle number change |�(T ) − �(T = 0)| simulated by a
dealiased pseudospectral code for the spatial part and a fourth-order
Runge Kutta for the time step. Number of grid points N = 128. The
blue solid lines represent the nondealiased code.

high k modes alias the amplitudes at lower k modes of the
field. In that case the DFT is aliased and in general the
fields needs to be dealiased by proper spectral truncation.
Here, we used the so-called 2/3-rule in all our numerical
schemes in the same way as done in Ref. [11]. Dealiasing
is fundamentally important to preserve the conservation of
the Galerkin truncated nonlinear dynamics as we can observe
in Fig. 7. Indeed, although it is straightforward to show that
Eq. (3) can be written

∂T �m = −i
∂E

∂�∗
m

, (B1)

∂T �∗
m = i

∂E

∂�m

(B2)

and thus formally conserves the energy, it can be shown that
exact conservation requires proper dealiasing (see Appendix
of Ref. [11]).

As displayed in Fig. 6, the statistical distributions generated
by the NLDE dynamics Eq. (3) and by the stochastic equations
(15) are really close and this can be justified on very general
grounds.

First, by construction, the stochastic equations (15) generate
the grand canonical distribution (18) that is controlled by the
inverse temperature 2/η2 and the Lagrange multipliers μ and
θ . On the other hand, as the spectrally- truncated dynamics
(3) conserves �, P , and E, its long time behavior should be
described by the so-called microcanonical distribution,

f ∼ δ(E − Ein)δ(� − �in)δ(P − Pin). (B3)

that is determined by the values (Ein, �in, Pin) of the conserved
quantities given by the initial condition �in. As is well known
[42], under very general circumstances both grand canonical
and microcanonical distribution yield similar statistical results
(provided that the 2/η2 and the Lagrange multipliers μ and
θ have values that correspond to Ein, �in, Pin). Note that the
effect of a fixed value of μ in Eq. (15) amounts, at each time
step, to an overall multiplication of the field by (1 + μdt).
Thus if we want the final result to have a fixed value of the
total particle number � this can be obtained setting μ to zero
and, instead, renormalizing the field to the desired value of
particle number at each time step. Figure 6 indicates that, in
this case (and zero values for P and θ ), both distributions yield
identical results for density fluctuations.
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