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Using the small alignment index chaos indicator to characterize the vibrational
dynamics of a molecular system: LiNC-LiCN
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A study of the dynamical characteristics of the phase space corresponding to the vibrations of the LiNC-LiCN
molecule using an analysis based on the small alignment index (SALI) is presented. SALI is a good indicator of
chaos that can easily determine whether a given trajectory is regular or chaotic regardless of the dimensionality
of the system, and can also provide a wealth of dynamical information when conveniently implemented. In
two-dimensional (2D) systems SALI maps are computed as 2D phase space representations, where the SALI
asymptotic values are represented in color scale. We show here how these maps provide full information on
the dynamical phase space structure of the LiNC-LiCN system, even quantifying numerically the volume of the
different zones of chaos and regularity as a function of the molecule excitation energy.
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I. INTRODUCTION

The vibrational dynamical processes that take place in a
single isolated molecule, usually gas phase, are critical to
determine its reactivity. Identifying the vibrational modes that
are effectively coupled, typically by Fermi resonances [1] and
how energy flows among them [2,3], is a central point in
molecular dynamics [4].

For two-dimensional (2D) systems there are well estab-
lished mathematical tools to study this underlying dynam-
ics. Poincaré surfaces of section (PSOS) is probably the
most straightforward and informative one, although there
are other equally good possibilities, such as local Lyapunov
exponents [5], fast Lyapunov indicator and variants [6,7],
or the Kolmogorov-Sinai entropy [8,9], to obtain a picture
of the associated dynamics. Another possibility, based on
the idea of analyzing the separation of nearby orbits, is the
calculation of small alignment index (SALI) [10–28], which
relies on the behavior of the associated position vectors in
the phase space, which can be easily calculated from the
(usually numerical) integration of Hamilton equations. The
value of the SALI decreases exponentially to zero with
time when the trajectory is chaotic. The great advantage of
SALI is that the associated computational burden is largely
independent of the dimensionality of the system [29]. The
results obtained with these methods can be rationalized using
the celebrated theorems due to Kolmogorov, Arnold and
Moser (KAM) [30] and to Poincaré and Birkhoff (PB) [31],
describing respectively the tori destruction, and the fate of
resonant tori due to perturbations in Hamiltonian systems. In a
Hamiltonian system with N degrees of freedom, the motion is
integrable if there are N independent constants of the motion.
A transformation to action-angle variables clearly shows that in
this case trajectories lie on the surfaces of invariant tori in phase
space. These trajectories can be quasiperiodic if all frequencies
are incommensurate, quasiperiodic on reduced dimensionality
tori if some of them are in resonance, or one-dimensional
periodic orbits (PO) if the resonance condition involves all
frequencies. The KAM theorem establishes that, when such

an integrable system is perturbed, some tori are destroyed
but others persist (the so-called KAM tori). The fate of the
destroyed ones is especially interesting in the case of resonant
tori, since then an odd number of POs, half of them stable and
the other half unstable, survive (PB theorem) forming a chain
of islands structure surrounded by bands of stochasticity [32].
The nonresonant tori which are not “irrational enough” (in the
sense of the KAM theorem) are also destroyed, turn into fractal
objects called cantori [33,34].

The SALI indicator has been mainly used to distin-
guish between chaos and regular orbits in symplectic
maps [10,11,15,24], model Hamiltonians such as Hénon-
Heiles [10–12], celestial mechanics problems [20,21], non-
linear lattices [15,16], condensate Bose-Einstein vortices [27],
particle accelerators [13], galaxy models [19,22,23,25,26], and
confined microplasma [28]. However this indicator has not
yet been applied to the study of molecular vibrations. In this
paper we consider the system LiNC-LiCN that has been an
attractive subject for computational work, since it constitutes
an example of a simple isomerization reaction. It has been
extensively studied by our group [35–37], and considered
for reactivity control in the picosecond range [38,39] and
also in coherent chemistry with THz pulses [40]. From a
mechanical point of view, it can be seen as a vibrational
Hamiltonian system, consisting of a collection of highly
anharmonic, coupled oscillators with a highly nonlinear
behavior. Indeed, the intramolecular vibrational relaxation
leading and/or competing with reactivity renders a quite
rich dynamics. This is due to a number of reasons. The
potential interactions can be described quite realistically, and
contain a number of elements contributing to a complicated
dynamics.

LiNC-LiCN presents two stable isomers at the linear
configurations Li–N–C (the most stable one) and Li–C–N
(local minimum), which are separated by a relatively modest
energy barrier of only 3434.0 cm−1. To describe the vibrational
dynamics of the system we use in this paper a 2D model,
in which the C–N bond is hold frozen at its equilibrium
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distance of re = 2.186 a.u. This allows convenient monitoring
of its dynamics by PSOS. Moreover, this simplification is well
justified since the C–N bond frequency is very high, and then
the corresponding motion adiabatically separates from the rest
of the molecular vibrations in the molecule [41].

The motion in the bending angle is very floppy, and thus
the Li atom easily explores ample, yet anharmonic, regions
of the potential energy surface, even rotating around the
C–N fragment (isomerization reaction LiNC � LiCN). For
this reason, chaos sets in at low values of the excitation
energy.

The final goal of this manuscript is to establish a general
methodology to measure the fraction of chaos and the degree
of chaoticity in molecular systems with mixed phase space
structure as a function of the total energy of the system. To this
end, we construct different maps based on the SALI indicator
which are suitable for the study of dynamical Hamiltonian
systems of any dimensionality. We show that the methods
that are introduced have a superb performance, being not only
able to distinguish between regular and chaotic motions, but
giving also valuable information about the latter. For example,
in our case we show that there exist two types of chaos,
which originate from the different underlying structure of the
phase space. With this methodology we have also accurately
estimated the fraction of phase space filled by these two types
of chaos.

The organization of the paper is as follows. In Sec. II A, we
present the model used to describe the LiNC-LiCN molecule
vibrational dynamics, giving the corresponding Hamiltonian in
Jacobi or scattering coordinates, and the analytical expression
for the potential energy surface. In Sec. II B, we briefly discuss
the calculation of trajectories and Poincaré surfaces of sections
in the LiNC-LiCN molecular system. In Sec. II C, we present
the calculational procedure involved in the SALI analysis.
In Sec. II D, we introduce different SALI based maps and
a derived indicator that will be used in this work. The results
obtained in our study, consisting of some maps with support
based on phase space and colored with the corresponding
values of the SALI, are presented and discussed in Sec. III.
Finally, in Sec. IV we summarize the main conclusions derived
from this work.

II. SYSTEM AND CALCULATIONS

A. The LiNC-LiCN molecular system

Using scattering or Jacobi coordinates (R,θ ), where R is
the distance from the Li atom to the center of mass of the C–N
fragment, and θ is the angle between the C–N and R vectors,
the 2D reduced classical vibrational (rotationless) Hamiltonian
for the LiNC-LiCN molecule is given by

H = P 2
R

2μ1
+ 1

2

(
1

μ1R2
+ 1

μ2r2
e

)
P 2

θ + V (R,θ ), (1)

where μ1 = mLi(mC + mN)/(mLi + mC + mN) is the Li–CN
reduced mass, and μ2 = mCmN/(mC + mN) is the C–N re-
duced mass.

FIG. 1. Contours plot of the LiNC-LiCN potential energy surface,
V (R,θ ). The minimum energy path, Re(θ ), connecting the two stable
isomers, LiCN (θ = 0) and LiNC (θ = π rad), is shown as a dashed
line.

In our model, the atomic interactions are described by
means of a realistic potential energy surface, V (R,θ ), which
consists of an expansion in Legendre polynomials

V (R,θ ) =
9∑

λ=1

aλ(R)Pλ(θ ), (2)

where the coefficients, which have been fitted to ab initio
quantum mechanical calculations, have been taken from the
literature [42]. This function has two wells at the linear
configurations θ = 0 for the isomer Li–CN and θ = π for
Li–NC. It is presented in Fig. 1 in the form of a contour
plot, along with the minimum energy path (MEP), Re(θ ),
connecting the two wells.

B. Classical trajectories and Poincaré surfaces of sections

Classical trajectories for our system are calculated by
numerical integration of the Hamilton equations of motion
corresponding to Eq. (1). In this way we get a time se-
ries (θ,R,Pθ ,PR)t for each value of the initial conditions
(θ,R,Pθ ,PR)0 at a given vibrational energy, whose dynamics
can be studied. The vibrational dynamics associated with
the isomerization LiNC � LiCN process can be adequately
followed by monitoring the motion along the angular θ

coordinate [41]. For the sake of comparison in this work we
will use, in addition to the SALI indicator, the more established
procedure of PSOS specifically to select initial conditions in
the phase space [35–37].

For each trajectory a PSOS is computed by taking the
sectioning coordinate to lie along the minimum energy path
connecting the two isomers [36], which is given by the
analytical expression

Re(θ ) = 4.1159 + 0.25510 cos θ + 0.49830 cos 2θ

+ 0.053427 cos 3θ − 0.068124 cos 4θ

+ 0.020578 cos 5θ (3)
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in atomic units. In order to make this PSOS an area pre-
serving map, the following canonical transformation [36] is
performed:

ρ = R − Re(θ ), ψ = θ,
(4)

Pρ = PR, Pψ = Pθ +
(

dRe

dθ

)
θ=ψ

PR.

In this way the PSOS is defined as ρ = 0, Pρ being obtained
from the energy conservation condition given by Eq. (1) and
taking the branch of the negative discriminant in the resultant
quadratic equation.

This PSOS has the symmetry property

ψ → 2π − ψ, Pψ → −Pψ, (5)

so that only the interval 0 � ψ � π needs to be represented
in the corresponding plots.

C. SALI calculation

Given a reference trajectory, the SALI index considers the
behavior of the vectors associated with nearby trajectories,
that can indeed be easily calculated from the results obtained
from trajectory propagation. As indicated before, it can be
used in any system to ascertain the dynamical characteristics
of the trajectories, regardless of the involved number of
dimensions [10–12,14,18,29]. The procedure is as follows.
Let us consider �z(t) = (q1(t), . . . ,qN (t),p1(t), . . . ,pN (t)) to
be the reference trajectory in the phase space, and �z1(t),�z2(t)
two nearby trajectories (see Fig. 2). Then we define the
corresponding deviation vectors �vi as

�vi(t) = �z(t) − �zi(t), i = 1,2, (6)

with the associated unitary vectors

v̂i(t) = �vi(t)

| �vi(t)| , i = 1,2. (7)
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FIG. 2. (Color online) Graphical illustration of how the sum and
difference of two vectors near a reference trajectory are calculated.

Trajectories �z(t) and �zi(t), i = 1,2, derive from a hamiltonian
and then

d�z(t)

dt
= J �∇H (�z(t)), (8)

d�zi(t)

dt
= J �∇H (�zi(t)), i = 1,2, (9)

where the matrix J is given by

J =
[

0N IN

−IN 0N

]
. (10)

Combining Eq. (6) and Eq. (9), we have:

d(�z(t) − �vi(t))
dt

= J �∇H (�z(t) − �vi(t)), i = 1,2. (11)

Now taking Eq. (8) into account, we can derive [11]

d �vi(t)

dt
= J ∇2H (�z(t)) �vi(t). (12)

Then, by simultaneously solving Eqs. (8) and (12) for a given
set of initials conditions (z0,v

0
1,2), both the reference trajectory

and the associated values of the deviation vectors of the two
nearby orbits are obtained. As can be seen in Fig. 2, the form of
rhomboid formed by the two deviation unitary vectors changes
with time, in such a way that when there is an exponential
separation of the trajectories, i.e., chaos, the distance in one of
the axes quickly goes to zero. The SALI indicator [10] is then
defined as

SALI(z0,t) = min (|v̂1(t) + v̂2(t)|,|v̂1(t) − v̂2(t)|). (13)

It has been shown [10,11] that for a chaotic trajectory
SALI(z0,t) ∼ e−λt , λ > 0, λ = λ1 − λ2, where λ1,λ2 are the
two primers’ Lyapunov coefficients [11], while for a regular
trajectory the value of this indicator oscillate around a constant
value SALI(z0,t) ∼ O(1).

D. SALI maps

SALI(z0,t) is an indicator able to discern between a regular
and a chaotic trajectory by looking at its time evolution. In
order to get a global visualization of the trajectories of the
system we define a picture of the character map by assigning a
value of the SALI indicator to each trajectory. To this purpose
we choose the minimum value of SALI(z0,t) in a given interval
of time (mSALIT ). Then the map is defined by

mSALIT : � → S,

mSALIT (z0) = min{SALI(z0,t)}, t ∈ (0,T ], (14)

S = [0,
√

2],

where � is the set of trajectories, S is the closed interval [0,
√

2]
of valid values, and T is the time interval considered. In order
to be able to compare the results obtained from the SALI maps
with those coming from (the more standard) PSOS, we obtain
maps in which each point is colored by its mSALIT value in a
scale of colors.

We define then two kind of maps.
(1) First, the Poincare surface of section colored by SALI

(SALI-PSOS map) results from marking all points of the
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classical PSOS generated from a given trajectory with the
same color code corresponding to the mSALIT defined above.

(2) Second, the SALI map (SM) results from coloring a grid
of initial conditions (on the corresponding PSOS) according
to the mSALIT value for each trajectory defined by its initial
condition value z0.

Notice that these two possibilities are different, even if one
chooses z0 on the PSOS. Indeed, the first option contains more
information, and it should be more useful when comparing
with other chaos indicators, while the second one allows a
straightforward generalization to systems with more than 2D.

E. Numerical integration procedure

Equations (8) and (12) have been solved by numerical
integration. We have used a combination of a Runge-Kutta
fourth-order method [43] for the first sixteen integration steps
followed by a Gear method [44]. In the application presented in
Sec. III the results shown have a 10−13 accuracy in the energy
conservation. Some tests with another numerical integration
methods have been carried out, finding similar results [45].

III. RESULTS AND DISCUSSION

In Fig. 3 we show together the standard PSOS and the
SALI-PSOS maps for the 2D model of LiNC-LiCN described
in Sec. II A for three representative values of the vibrational
energy, namely E = 1510.5, 2549.2, and 3823.8 cm−1, for
comparison. In both cases, the trajectories are started on a fine
mesh of initial conditions on the PSOS and propagated for the
same amount of time (T = 2.5 × 105 a.u).

In the first case, corresponding to the relatively low value
of E = 1510.5 cm−1, we see in the PSOS that the dynamics
are regular, taking place around the well corresponding to the
most stable isomer, Li–NC. In the middle row, the results
for a much larger value of the energy, E = 2549.2 cm−1,
are shown. Here, motion in the less stable isomer, Li–CN,
is classically accessible, and there are large regions of the
phase space corresponding to the Li–NC well, in which the
dynamics are chaotic. Moreover, in the chaotic region one can
see a noticeable accumulation of points next to the regular
region in the Li–NC well, which are clearly separated from
the remaining, less populated, chaotic area. The separation
between these two parts of the chaotic sea is a cantorus,
whose origin and characteristics were thoroughly discussed
in Ref. [46]. Finally, in the bottom panel, a larger energy
of 3823.8 cm−1 is considered. Here, the dynamics become
even more chaotic and isomerizing orbits connecting the two
potential wells, in which the Li atom rotates around the C–N
fragment, do exist. The effect of the cantorus is still visible
and a small island of stability born in the border of the inner
region appears [46].

The corresponding results in the SALI-PSOS maps (right
column) provide essentially the same information. Indeed,
at the three energies considered, the lighter region (orange)
(mSALI = 100–10−4) in both wells is predominant, indicating
that the dynamics there are regular. (Areas in white indicate
that no trajectories have been chosen inside them, similarly
to what happens in the white regions in the PSOSs.) On the
other hand, as increasing values of the energy are considered,

FIG. 3. (Color online) Composite Poincaré surfaces of sections
(PSOSs) (left column) and the corresponding PSOSs colored by
SALI (SALI-PSOSs) (right column) at different values of the
vibrational energy: 1510.5−1 (top), 2549.2−1 (middle), and 3823.8
cm−1 (bottom). The logarithmic scale of colors, corresponding to the
mSALI values, is also shown in the bottom right corner of the figure.

more darker areas (in green and blue) are visible, due to the
fast decrease in the mSALI (∼10−6 and ∼10−18, respectively)
which is associated with chaotic motion. As can be seen,
these colors appear respectively in the same places of phase
space that KAM tori or dispersed points appear in the
corresponding PSOS. However, the SALI maps shows here
a richer spectrum of colors, that not only separates regular
from chaotic orbits [18] but also allows the distinction among
different degrees of chaoticity in the motion. Indeed, in the
regular regions tori or chains of islands with their regions of
stable and unstable motion appear in slightly different colors
(see for example the upper right panel in Fig. 3), and in the
chaotic areas the existence of cantori are easily spotted by an
abrupt change in color [from orange, in the well region, to
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FIG. 4. (Color online) Blow-up of the SALI-PSOS map in the
middle panel of Fig. 3. The initial positions (A–D) of the four orbits
discussed in the text (see also Table I) are shown.

green in the outer part of the middle right panel of Fig. 3, and
from green (light) to blue (dark) in the bottom right one]. A
more detailed picture of this effect is shown in Fig. 4.

A. Time evolution of SALI

1. Time evolution of SALI for trajectories with different
dynamical characteristics

To discuss in more detail the last point of the previous
subsection, we select in the SALI-PSOS corresponding to E =
2549.2 cm−1 four trajectories with very different dynamical
characteristics. They are marked in Fig. 4 with letters A–D,
and their initial conditions and characteristics are summarized
in Table I. The corresponding orbits in configuration space,
PSOSs, and time evolution of the SALI s are shown in the
three top rows of Fig. 5. Since this last magnitude is strongly
oscillating, we also present in the bottom row a time averaged
version (SALI) over a time window τ given by

SALI(z0,t) =
∫ τ/2

−τ/2
SALI(z0,t + η) dη, (15)

which shows more clearly the overall tendency. In our
calculations we use a window of width τ = 3.5 × 103 a.u.

TABLE I. Initial conditions and dynamical characteristics for the
four trajectories marked in Fig. 4 and shown Fig. 5.

Traj. z0 = (ψ0,P
0
ψ ) (rad, a.u.) Dynamical character

A (2.60, 0) Quasiperiodic
B (2.4232351,–1.6184869) Stable periodic
C (2.0, 0) Chaotic inside cantorus
D (1.80, 15.0) Chaotic

An examination of the results in Fig. 5 indicates that
trajectories A and B correspond to regular orbits. As can be
seen in the plots in the first two rows, the first one (A) is
quasiperiodic, leaving in the PSOS a closed curve resulting
from the intersection of the associated invariant torus with
ρ = 0. The second one (B) on the other hand is a periodic
orbit that leaves four fixed points [eight if we do not take into
account the symmetry in Eq. (5)] which are visited periodically
by the orbit.

The corresponding values of SALI and SALI (third and
fourth rows in the figures respectively) are high at all times
explored and approximately constant.

On the other hand C and D correspond to irregular
looking orbits, which both give rise to a cloud of points
in the PSOS filling the available chaotic phase space. The
corresponding values of SALI and SALI decrease quickly to
zero, in agreement with the chaotic character of the trajectories.
However, when closely examined one sees that these two
trajectories behave rather differently. While in case C the final
value of SALI is ∼10−4, in case D this value decreases to
∼10−10 in the same time.

More specifically, for trajectory C the value of SALI
initially does not change significantly during a certain interval
of time (of the order of O = 105 a.u.), giving rise to some sort
of plateau where its value remains approximately stationary.
This behavior is the equivalent to the accumulation of points
observed in the PSOS, and it is due to the fact that the
initial condition chosen in this case (see Table I) is very close
to the LiNC-LiCN regular region. This type of regions are
known [34] to be dynamically “sticky,” temporarily trapping
neighbor orbits. Moreover, this effect is reinforced in this case
by the bottleneck effect [33] induced by the presence of a
cantorus. During this period of time, the trajectory behaves
as if regular, and that is why its SALI practically does not
decrease. There are also other less prominent plateaus both in
the time evolution of the SALI for orbits C and D. They are
due to the periods of time in which the trajectories get close
to the almost regular structures near the cantorus, thus being
affected by its dynamical influence.

2. Local behavior of a global ergodic trajectory
influenced by a cantorus

Let us consider next in more detail the information provided
by SALI regarding trajectory C, which is chaotic, but starts
inside the cantorus and is close to the LiNC-LiCN regular
region. For this purpose we have propagated the orbit for
a much longer time, actually 1.3 × 106 a.u. The results are
shown in Fig. 6, where it can be seen that, after the initial
plateau shown in red, the SALI decreases very quickly, as
it should for a chaotic trajectory, until t ∼ 5 × 105 a.u. is
reached, where it stabilizes, nevertheless presenting some
obvious oscillations. To further investigate the reason for the
different behaviors in this curve we have selected different
portions in it, one at the very beginning where the SALI
increases and stabilizes, a second one in which it decreases
quickly, and a third one on the final stabilization plateau.
They have been marked by (a) red, (b) blue, and (c) green,
respectively. The corresponding portions of the whole orbit
in configuration space, in phase space PSOS, and the time
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FIG. 5. (Color online) Orbit in configuration space (top row), Poincaré surface of section (second row), and time evolution of the actual
SALI (third row) and its averaged version, SALI, for the four trajectories A–D marked in Fig. 4 (see also Table I and text for details).

FIG. 6. (Color online) Time evolution of SALI for the chaotic
trajectory C of Fig. 4 and described in Table I for T = 1.3 × 106 a.u.

evolution of SALI are shown in the different rows of Fig. 7.
As can be seen, in the (a) and (c) intervals where the trajectory
is close to the regular LiNC-LiCN region the value of SALI is
(approximately) stationary, while in the (b) one, corresponding
to the chaotic region, it decreases quickly. That is, the time
evolution of the SALI gives a clear indication of those periods
of time in which a (globally) ergodic trajectory is (locally)
influenced by the regular or almost regular structures that exists
in the mixed phase space of this molecular system [47,48].

3. SALI and the neighborhood of periodic orbits

To further investigate the performance of SALI to discern
among trajectories with different dynamical characteristics,
we consider next a pair of stable (S) and unstable (U ) periodic
orbits, linked in the sense that they originate, due to the fate
dictated by the PB theorem, from the same original resonant
torus and its neighborhood. Here, we will see that the SALI
can also be viewed more as an indicator of orbit stability than
as an indicator of chaos.

For this purpose we have chosen the orbits marked in
red (S and U ) in Fig. 8. This figure is a blow-up of the
composite PSOS for LiNC-LiCN at E = 2549.2 cm−1 in
Fig. 4 corresponding to the region near trajectory B. We have
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FIG. 7. (Color online) Orbit in configuration space (top), PSOS
(middle), and time evolution of SALIT (bottom) for the different
portions of trajectory C shown in Fig. 6.

also marked in green and blue, respectively, two trajectories,
U ′ the U ′′, close to the unstable orbit and two more trajectories,
S ′ and S ′′, marked in green and blue close to the stable orbit,
making a total of six orbits.

The results corresponding to the stable choice are shown in
Fig. 9, where we show together the time evolution of the SALI
and the configuration space representation of the three orbits.
Recall that these orbits are part of a chain of islands structure
derived from the PB theorem.

FIG. 8. (Color online) Blow-up of the composite Poincaré sur-
face of section for LiNC-LiCN at E = 2549.2 cm−1 presented in
Fig. 4 near trajectory B.

FIG. 9. (Color online) Time evolution of SALI (top left) for the
orbits: stable S (full red line) and its neighbors S ′ (dashed green line)
and S ′′ (dotted blue line) marked in Fig. 8. See text for details. Orbits
S, S ′, and S ′′ are plotted in configuration space.

Since all the orbits are in a regular region of phase space,
the value of SALI oscillates around a practically constant high
value (of the order of ∼10−0.25 = 0.56).

The case of the region around the unstable PO is in principle
a bit more complicated. The phase space immediate to the orbit
is chaotic, and then SALI is expected to decrease quickly. On
the other hand, chaos is here restricted to a narrow band of
stochasticity structured through the homoclinic oscillations of
the central orbit, outside of which the dynamics are regular.
The final outcome of these two competing effects cannot be
predicted a priori and the answer has to be obtained from
numerical calculations. Such results are shown in Fig. 10.
Notice that in this case the green dashed orbit U ′ is closer to
the PO, and then it follows more or less the separatrix in this
PB structure, while the blue dotted one U ′′ is further away,
and then closer to the regular region of KAM tori surrounding
this band of stochasticity. As a result, the behavior of SALI
is different for these orbits. While for the unstable PO the
behavior is a clear exponential decay, for the two neighboring
trajectories SALI shows a much smoother variation, presenting
small oscillations around the mean value, which is analogous
at those found for the quasiperiodic orbit A in Fig. 5.

B. Regularity and chaos as a function of the energy

Since we have analyzed in the previous section the perfor-
mance of SALI to discern among trajectories with different
dynamical characteristics, we will now use SALI to obtain a
good characterization of phase space. This investigation has
been carried out in two ways at a global level as a function of
the vibrational energy.
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FIG. 10. (Color online) Time evolution of SALI for the orbits:
unstable U (full red line) and their neighbors U ′ (dashed green line)
and U ′′ (dotted blue line) marked in Fig. 8. See text for details. Orbits
U , U ′, and U ′′ are plotted in configuration space.

1. Bifurcation diagram colored by SALI

First, we use the SALI maps defined in Sec. II D with the
selection of initial conditions in the well corresponding to the
most stable isomer LiNC, defined as

�1(R) =
⎧⎨
⎩

ψ = π,

PR = 0,

Pψ = f1(ψ,PR; E).
(16)

We plot the R coordinate vs energy, obtaining in this way a
diagram [49] of orbits colored by mSALIT .

We consider the range of initial conditions in Eq. (16)
plotting in each of these points the color corresponding to
the orbit (not necessarily periodic) propagated from that point
(BDS-SALI map).

The corresponding results for LiNC-LiCN are shown in
Fig. 11 superimposed to the usual bifurcation-continuation
diagram [50,51] presented in black dots. As can be seen,
the values of mSALIT are high (red-orange) in the regions
where the dynamics are regular (low values of energy and
extreme values of R). As the excitation energy increases
(2000–3200 cm−1) there appear regions with lower values of
mSALIT (green or light), which nevertheless have embedded
convoluted regions of regularity (red, mSALIT 	 1) as new
POs are born in bifurcations.

Moreover, for E � 3200 cm−1 a sudden transition to chaos
is observed, with a preponderance of darker regions (blue),
except at the highest and lowest values of R, where the motion
continues being essentially regular (even at very high values
of E). Notice that for these extreme values of R the other
coordinate ψ will be close to the equilibrium value around the
well (ψ ∼ π ) due to energy conservation.

FIG. 11. (Color online) Bifurcation-continuation diagram col-
ored by SALI for LiNC (BDS-SALI) as defined in Sec. III B 1. The
grid of initial conditions �1 given in Eq. (16) is 
R = 2.2 × 10−3

a.u. and 
E = 7.0 cm−1. The corresponding trajectories have been
propagated up to T = 2.5 × 105 a.u. to obtain the values of mSALIT
in the plot using the color scale which is included in the figure.
The usual bifurcation-continuation diagram of periodic orbits is also
shown superimposed in black.

2. SALI maps

Next we consider the SM defined in Sec. II D but this time
plotting the SALI values on a grid over the composite PSOS.

The corresponding choice of initial conditions is now

�2(ψ,Pψ ) =
{
ρ = 0,

Pρ = f2(ψ,ρ; E). (17)

The results for different values of the energy are shown
in the left column of Fig. 12. To make this figure more
quantitative, we have also plotted in the right column a
histogram with the distribution of the different values of
mSALIT (in logarithmic scale), or equivalently their colors.
As can be seen, for the lowest value of the energy considered,
E = 1000 cm−1, all the points are in the yellow and orange
range, with mSALIT > 10−6 and centered at 10−3 with more
than 50% of the trajectories located in the corresponding
bin. This is a clear indication that the dynamics are almost
exclusively regular in this case.

As energy increases to E = 2000 cm−1 (second row), the
available phase space grows and the new trajectories that
appear in this region present smaller values of mSALIT <

10−15, associated with colors in the green and blue range,
which correspond to chaotic trajectories. Actually, we see
the same distribution as before for mSALIT > 10−6 which
correspond to the regular region, while new trajectories appear
more or less evenly distributed in the rest of the values of
mSALIT .
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FIG. 12. (Color online) SALI Maps (left column) as defined in
Sec. III B 1 for LiNC-LiCN at E = 1000 cm−1, 2000 cm−1, 3000
cm−1, and 4000 cm−1 from A to D respectively. The grid of initial
conditions �2 in Eq. (17) is 
ψ0 = 1.570 × 10−2 rad and 
P 0

ψ =
0.4 a.u. The corresponding trajectories have been propagated up to
T = 2.5 × 105 a.u. to obtain the values of mSALIT in the plot using
the color scale which is included in the figure. The corresponding
histograms of mSALIT are plotted in the right column. Notice that
the last peak in panel D corresponds to SALI values lower than 10−19,
and not only to the interval (10−19–10−20) due to the accuracy limit
of the computation.

Furthermore, when the energy increases to E = 3000 cm−1

(third row) the previous irregular trajectories have a larger
phase space volume to roam, then become more chaotic. As a
result the green colors disappear from the histogram moving
towards the blue regions mSALIT < 10−16. Notice that the
distribution of orange colors (regular motion) remains largely
unchanged and still centered at mSALIT 	 10−3, which is
remarkable, especially if we take into account that a new region
of stability around the LiCN isomer well opens up at this
energy. This effect gets even more clear for the highest value
of the energy considered, E = 4000 cm−1 (bottom row in the
figure), where we see the increase of the blue peaks in the group
of the chaotic trajectories, at the same time that the amount

FIG. 13. (Color online) Fraction of the three different regions
of the LiNC-LiCN mixed phase space corresponding to (orange
triangles) regular motion (mSALIT > 10−5), (green squares) mild
chaos (10−6 > mSALIT > 10−16), and (blue circles) strong chaos
(mSALIT < 10−16). The (purple) vertical line at 2281 cm−1 indicates
the energy at which the region of the Li-CN isomer well begins
to be accessible and motion in it starts. The (green) vertical line
at 2754 cm−1 corresponds to the initial energy at which there is
a compensation between the destruction of regular tori and the
appearance of new regions of regularity. The (black) vertical line
at 3450 cm−1 corresponds to the energy barrier for the isomerization
reaction.

of regular trajectories have decreased (progressively from the
smallest energies) here to a mere 10%.

Summarizing, we conclude from our calculations that the
mixed phase space of LiNC-LiCN consists of three different
regions. One corresponds to the regular motions which are
organized in KAM tori around the two existing isomer wells. A
second one, of mild chaos, corresponds to irregular trajectories
which are, however, influenced by the border of the above
mentioned regular regions and other quasi-regular structures,
such as cantori. A third region has strong chaos in which the
trajectories move more freely, roaming in the ergodic part of
phase space. Moreover, the proportion of these three regions
changes with energy, going globally from more regular to more
chaotic, as this perturbational parameter increases.

The effect is clearly illustrated in Fig. 13, where the
percentage of these regions is represented as a function of
the excitation energy. These percentages have been obtained
by partitioning the trajectories in the SM histograms of Fig. 12
in the following three groups:

Regular motion: mSALIT > 10−6 (orange triangles)
Mild chaos: 10−6 > mSALIT > 10−16 (green squares)
Strong chaos: mSALIT < 10−16 (blue circles)
As can be seen, for very low energies all the motion is

regular and the fraction of regular dynamics (orange triangles)
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first remains almost constant up to E = 1550 cm−1, only
showing a very small decrease in favor of the region of mild
chaos. For E > 1550 cm−1 the fraction of regular dynamics
suddenly drops linearly, due to an important destruction of
tori (KAM theorem) giving rise to widespread chaos, until
E = 2281 cm−1 (marked with vertical purple line in the
figure) where the slope decreases due to the fact that at this
value of the energy the motion on the region of the second
isomer well, corresponding to regular motion, is classically
accessible. Afterwards, the fraction of regular dynamics get
constant at a value of 30% in the interval 2754–3450 cm−1

(between the green and black vertical lines), due to an apparent
compensation between the destruction of regular tori in the
LiNC and the appearance of regular motion in the LiCN.
Finally, the fraction of regular motion continues decreasing,
this time in an exponential fashion, getting to an asymptotic
value of 6%. Notice that this value is nonzero, meaning that
there is a resilient area of nondestructed regular motion even at
very high values of the energy. The behavior of the fraction of
strong chaos (blue circles) follows a similar pattern as before,
but obviously presenting opposite tendencies. That is, up to
E = 1550 cm−1 it is null, then it suddenly grows, in a linear
fashion, up to E = 2281 cm−1 value of the energy where the
slope decreases a bit, then the fraction of strong chaos becomes
constant in the interval E = 2450–3450 cm −1, and finally this
magnitude grows up to an asymptotic value of 93%.

On the other hand, the fraction of mild chaos (green
squares) behaves in a very different way to that of the region
of strong chaos, presenting rather interesting characteristics.
First, mild chaos only exists significantly in the interval E =
1600–2900 cm−1. Second, mild chaos starts to grow signifi-
cantly at the slightly lower value of energy as the strong chaos,
then reaches its maximum of 21.08% at E = 1850 cm−1,
going then rather quickly to zero after maintaining at a residual
value of ∼0.6% between E = 2900 and 9000 cm−1. This is
the region of influence of the cantorus discussed in Sec. III,
which temporarily traps trajectories inside it, which are then
kept close to the border of regularity around the LiNC isomer,
resulting in lower values of mSALIT , and then in mild chaos.
As energy increases, the cantorus is progressively destroyed,
making its role as a partial barrier for the flux of trajectories
across weaker. Accordingly, the effect discussed above gets
progressively less important, with the result that the fraction
of mild chaos tends to be negligible, until only strong chaos

is predominant in the ergodic region of phase space. This is
shown by the two large peaks at the right side of panel D in
Fig. 12.

One final comment is worth making here. Arriving at the
interesting conclusions about the LiNC-LiCN mixed phase
space structure discussed above has been possible due to the
fact that an indicator so informative as the SALI has been used
in our analysis.

IV. SUMMARY

Summarizing, in this work we have presented a study
on the application and performance of the small alignment
index (SALI) to characterize the dynamics of molecular
systems. This index is based on monitoring the separation
of nearby trajectories, something which is done in a very
efficient way, such that the computational burden involved
is largely independent of the system dimensionality. Using the
asymptotical numerical values of the SALI we have defined
different illustrative maps, which allows an efficient and deep
characterization of the dynamical characteristics of the system.

In particular, we have shown how SALI can not only
discern between regular and chaotic trajectories, but can also
provide extra information on the characteristics of the latter.
For example, SALI can easily find the different behavior of
trajectories in the vicinity of POs and cantori. This makes SALI
a powerful tool in nonlinear dynamics, that goes beyond other
more standard methods, such as PSOS, Lyapunov exponents,
etc. Moreover, we have also shown how the SALI numerical
values can be used in different diagram and maps, such as
bifurcation diagrams colored by SALI or PSOS-SALI maps
to get a global understanding of the phase space structure of a
dynamical system.

As an example, we have applied the method to a realistic
two-dimensional model for the vibrations of the LiNC-LiCN
isomerizing system, that has been extensively studied in the
past.
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