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Semianalytical approach to criteria for ignition of excitation waves
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We consider the problem of ignition of propagating waves in one-dimensional bistable or excitable systems by
an instantaneous spatially extended stimulus. Earlier we proposed a method [I. Idris and V. N. Biktashev, Phys.
Rev. Lett. 101, 244101 (2008)] for analytical description of the threshold conditions based on an approximation
of the (center-)stable manifold of a certain critical solution. Here we generalize this method to address a wider
class of excitable systems, such as multicomponent reaction-diffusion systems and systems with non-self-adjoint
linearized operators, including systems with moving critical fronts and pulses. We also explore an extension of
this method from a linear to a quadratic approximation of the (center-)stable manifold, resulting in some cases
in a significant increase in accuracy. The applicability of the approach is demonstrated on five test problems
ranging from archetypal examples such as the Zeldovich–Frank-Kamenetsky equation to near realistic examples
such as the Beeler-Reuter model of cardiac excitation. While the method is analytical in nature, it is recognized
that essential ingredients of the theory can be calculated explicitly only in exceptional cases, so we also describe
methods suitable for calculating these ingredients numerically.
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I. INTRODUCTION

A. Motivation

An excitable system is a nonlinear active system that has
a stable resting state, so that a weak, subthreshold stimulus
causes a straightforward return to the rest, but a stronger,
overthreshold stimulus can produce a significant, qualitatively
different response. When such a system is spatially distributed,
response to an overthreshold stimulus has the form of a
propagating excitation wave in a shape of a nondecaying pulse,
and one usually speaks about an excitable medium. A closely
related concept is a trigger wave in a bistable medium: This
takes place when the medium does not completely recover after
a pulse but switches into a different steady state; trigger waves
also often occur as idealizations of fronts or backs of excitation
pulses. Excitable and bistable systems are widespread in nature
and technology. Historically, the concept of excitability was
first introduced in biology for nerve cells and then applied to
their electronic analogs. Later it was extended also to many
other types of biological waves of signaling and in population
dynamics, as well as such diverse physical situations as
combustion and other chemical reaction waves, self-heating
in metals and superconductors, phase transitions, domain wall
movement in liquid crystals, nonlinear optics, surface boiling,
and laminar-turbulent transition in fluid flows, to name a few.
See, e.g., [1–10] for some literature on the topic.

It is often important not only to know that a particular
system can support a nondecaying propagating wave, but
also to know what initial conditions can lead to it. The
threshold character of the response of excitable and bistable
systems, which characterizes already their local dynamics,
gets much more complicated in the spatially extended context:
The outcome of the localized perturbation will depend on its
spatial and temporal characteristics, as well as on its magnitude
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and modality. The conditions for initiation of propagating
waves can be very important in practical applications. For
instance, in the heart, excitation waves trigger coordinated
contraction of the muscle and the failure of initiation can cause
or contribute to serious or fatal medical conditions, or render
inefficient the work of pacemakers or defibrillators [11]. In
combustion, understanding of initiation is of critical impor-
tance for safety during the storage and transport of combustible
materials [12]. In several key industrial processes, involving
heat-generating elements, an important safety concern is the
boiling crisis, or transition between a low-temperature and a
high-temperature regimes [13], which can proceed via trigger
fronts [14].

B. Problem formulation

We consider a formulation of the problems of initiation
of propagating waves in terms of one-dimensional reaction-
diffusion system,

∂u
∂t

= D
∂2u
∂x2

+ f(u), (1)

where u(x,t) : R × R → Rd is a d-component reagents field,
d � 1, defined for x ∈ R and t ∈ R+, vector function f :
Rd → Rd describes the reaction rates and D ∈ Rd×d is the
matrix of diffusivity. We assume that this system has an
asymptotically stable spatially uniform equilibrium, called
resting state,

u(x,t) = ur , f(ur ) = 0, (2)

and an orbitally stable family of propagating wave solutions
of the form

u(x,t) = uw(x − cwt − sw), uw(∞) = ur , uw(−∞) = u−,

(3)

where u− is also a stable spatially uniform equilibrium,
f(u−) = 0, which may or may not coincide with ur . When
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FIG. 1. (Color online) (a),(b) Response to a below- and above-threshold initial perturbation in ZFK equation, given by formulas (1), (4), (5),
(6), and (64). Parameter values: θ = 0.13, Is = 0, xs = 2.10 for both subthreshold us = 0.330 483 1 (a) and superthreshold us = 0.330 483 3
(b) cases, numerics using central difference centered in space with step �x = 0.15 and forward Euler in time with step �t = 0.01. Dash-dotted
black lines, initial conditions; bold solid black lines, the critical nuclei. (c) The corresponding critical strength-extent curve, separating ignition
initial conditions from decay initial conditions. (d) Sketch of a stable manifold of the critical solution for the ZFK equation. The critical nucleus
is represented by the empty circle; the critical trajectories, constituting the center-stable manifold, are shown in thin solid black lines. The
family of initial conditions is represented by the dash-dotted lines. The bold solid black line is the critical trajectory with initial condition in
that family. The subthreshold trajectories are represented by the thin blue lines, while the thin red lines represent superthreshold trajectories.
Note that the point where the initial condition intersects the center-stable manifold is shown as the solid circle.

u− = ur the propagating wave solution is known as a propa-
gating pulse. Otherwise, we call it a propagating front and refer
to u− as the postfront equilibrium; then ur may also be called
the prefront equilibrium. In (3), cw > 0 is a fixed constant, the
wave propagation speed, and sw is an arbitrary constant, the
parameter of the family. Roughly speaking, we assume that
(3) and (2) are the only attractors within the part of the phase
space of (1) that is of practical interest, and we seek to find the
boundary of the basins of attraction of uw.

In these terms, we seek to describe the localized (in space
and time) perturbations of the resting state ur , which can lead
to the propagating wave solutions uw. A localized perturbation
will, in fact, typically generate two waves propagating away
from the perturbed site in the opposite directions; this is
obvious for perturbations that are even functions of x. With
that in mind, we aim at classification of the solutions of the
system (1) set on x ∈ [0,∞), t ∈ [0,∞), supplied with the
initial and boundary conditions

u(x,0) = u0(x) = ur + us(x), x > 0,
(4)

Dux(0,t) = −Is(t), t > 0,

in terms of their behavior as t → ∞, whether it will approach
the propagating wave solution (“ignition”) or the resting state
(“failure”), as illustrated in Figs. 1(a) and 1(b) [15]. The
functions us(x) and Is(t) are assumed to have a finite support,
us(x) ≡ 0 for x > xs and Is(t) ≡ 0 for t > ts.

A typical formulation is when only one of us(·) and Is(·) is
nonzero. If the dependence is on just one parameter, then one
speaks about threshold value(s) of the parameter, separating
the two outcomes. When there are two parameters, one can
talk about a threshold curve, or a critical curve; see Fig. 1(c).
The simplest and standard formulations are as follows.

(i) “Stimulation by voltage”:

Is(t) = 0, us(x) = Us X(x). (5)

That is, the initial condition is the resting state ur , displaced by
the magnitude defined by the parameter Us, with a normalized

spatial profile defined by X(x). In all specific examples we use
simply a rectangular profile of a width xs,

X(x) = H(xs − x)e, (6)

where H(·) is the Heaviside step function and e ∈ Rd is a
constant vector defining the modality of the perturbation. Then
the critical curve can be considered in the plane (xs,Us).

(ii) “Stimulation by current”:

us(x) = 0, Is(t) = Is T(t). (7)

That is, the initial condition is the unperturbed resting state, but
there is a constant current injected through the left boundary
of the interval, where Is defines the strength of the current and
T(t) defines its normalized temporal profile. The most popular
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FIG. 2. (Color online) The sketch of a center-stable manifold of
a moving critical solution. The critical solution is represented by
the dashed bold black line; the critical trajectories, constituting the
center-stable manifold, are shown in thin solid black lines. The family
of initial conditions is represented by the dash-dotted lines. The bold
solid black line is the critical trajectory with initial condition in that
family. The subthreshold trajectories are represented by the thin blue
lines, while the thin red lines represent superthreshold trajectories.
Note that the point where the initial condition intersects the center-
stable manifold is shown as the solid circle.
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formulation is that of a rectangular profile of duration ts,

T(t) = H(ts − t)e, (8)

where the fixed vector e determines which reagent(s) are being
injected. The critical curve will then be in the plane (ts,Is).

Historically, the “stimulation by current” formulation has
been most popular with electrophysiologists and a standard
term for the critical curve (ts,Is) is the “strength-duration
curve.” We are not aware of any standard term for the critical
curve (xs,Us); by analogy with the other case, we call it the
“strength-extent curve.”

We find it convenient to formalize the initiation problem as
one posed on the whole real line x ∈ R,

∂u
∂t

= D
∂2u
∂x2

+ f(u) + h(x,t), (x,t) ∈ R × R+,

(9)
u(x,0) = ur + us(x), h(x,t) ≡ 0 for t > ts,

where the initial condition is an even continuation of the one
in (4),

us(−x) ≡ us(x) =
{

UsX(x), x � 0,

UsX(−x), x < 0,
(10)

and the boundary condition at x = 0 in (4) is formally
represented by the source term

h(x,t) = 2Is T(t) δ(x), (11)

where δ(·) is the Dirac δ function.

C. Aims

Mathematically, the problem of determining the conditions
of initiation of propagating waves in excitable or bistable
media is spatially distributed, nonstationary, and nonlinear
and has generally no helpful symmetries, so the accurate
treatment is feasible only numerically. However, the practical
value of these conditions is so high that analytical answers,
even if very approximate, are in high demand. Historically,
there have been numerous attempts to obtain such answers,
based on various phenomenological and heuristic approaches,
e.g., [16–20]. The motivation for our present approach may
be traced to the results by McKean and Moll [21] and Flores
[22], who established that the boundary in the space of initial
data of (1) between the basins of attraction of (2) and (3) is
a stable manifold of a certain “standing wave” solution, later
also known as the critical nucleus. The critical nucleus is a
solution of (1) which is a bounded, nonconstant function of x,
independent of t , and is unstable, with one positive eigenvalue.
The appearance of such a critical nucleus solution and its role is
illustrated in Fig. 1: If the initial data are very near the threshold
between ignition and decay, the critical nucleus appears as
a long transient before the outcome becomes apparent, and
this does not depend on the sort of initial data, as long as
they are near the threshold. This understanding has led to
attempts to describe the critical conditions using Galerkin
style approximations [23], with analytical answers obtainable
by subsequent linearization [24]. This idea of the stable
manifold of the critical solution has also been used to develop
sophisticated numerical schemes for describing the critical
conditions [25]. We have demonstrated that linearization of the

stable manifold without any Galerkin projection but directly
in the functional space produces surprisingly good results for
a simple bistable model [26].

In the present paper, we seek to further explore and extend
the method of [26]. We focus on the case of stimulation by
voltage and the strength-extent curve, leaving the stimulation
by current and the strength-duration curve to other publications
(note though that a simple case of the strength-duration
curve was considered in [26]). In the case of stimulation by
voltage, the mathematical problem is one about the basin of
attraction of a dynamic system in a functional space. We
investigate how the quality of approximation produced by
our method depends on the parameters that define various
test systems. Moreover, we investigate the feasibility of
improving the accuracy by using a quadratic rather than a linear
approximation of the critical manifold and address related
problems. Finally, we extend the method to the case where
there are no critical nucleus solutions. This is observed in
multicomponent reaction-diffusion systems, where it has been
previously demonstrated that, instead of a critical nucleus, one
has unstable propagating waves, such as critical pulses [27] or
critical fronts [28].

The structure of the paper is as follows. In Sec. II, we
describe the proposed analytical methods, including both the
linear and the quadratic approximations of the critical manifold
for the case of the critical nucleus and the linear approximation
for the case of moving critical solutions, as well as the (rather
standard) numerical methods used in the study. Subsequent
sections are dedicated to specific examples of application of the
described method. In Sec. III, we consider the one-component
reaction-diffusion equation with cubic nonlinearity, known
as the Zeldovich–Frank-Kamenetsky (ZFK) equation, or the
Nagumo equation, or the Schlögl model; this section recovers
relevant results from [26] and further investigates the para-
metric dependencies and the quadratic approximation for a
model of a propagating front. In Sec. IV, the same is done
to a piecewise linear analog of the ZFK equation, known
as the McKean equation. The piecewise linearity of this
equation means that some results can be obtained in closed
form, where it was not possible in the ZFK case. Another
special feature of this equation is that its right-hand side is
discontinuous, which presents certain technical challenges.
The subsequent three sections are dedicated to examples with
moving critical solutions. Section V presents results in a
two-component model where the critical solution is a moving
front. It is a caricature model of cardiac excitation propagating
fronts and shares with the McKean equation the advantage of
being piecewise-linear and of admitting analytical treatment,
and also the challenge of having discontinuous right-hand
sides. Sections VI and VII are dedicated to two models
where the critical solution is a pulse. Section VI is an
application to the FitzHugh-Nagumo (FHN) system, which
is a classical “conceptual” model of excitable media, while
Sec. VII considers a variant of the detailed Beeler-Reuter (BR)
ionic model of cardiac excitation, which, although not being
physiologically precise from a modern viewpoint, includes
many features of the up-to-date realistic cardiac excitation
models. Both FHN and BR models do not admit full analytical
treatment and we present the result of a hybrid approach,
where the ingredients of the linearized theory are obtained
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numerically. We conclude by discussing the results and future
directions in Sec. VIII.

II. METHODS

A. Linear approximation of the center-stable manifold:
Principal approach

We seek a classification of the outcomes in problem (9)
depending on the parameters of the initial conditions (10),
with h(x,t) ≡ 0.

The principal assumption of our approach is the existence of
a critical solution, which is defined as a self-similar solution,

u(x,t) = û(x − ct),

0 = D
d2û
dξ 2

+ c
dû
dξ

+ f(û), (12)

û(∞) = ur , û(−∞) = û−

(where û− may be different from u−, but in our examples
û− = ur when u− = ur ), which, unlike the propagating wave
uw defined by (3), is unstable with one unstable eigenvalue.
Naturally, the speed c of the critical solution is also entirely
different from the speed cw of the stable wave solution.

Similar to the stable wave solution, there is then a whole
one-parametric family of critical solutions,

û(x − ct − s), s ∈ R. (13)

Due to this translation invariance, this solution always has one
zero eigenvalue. Hence, its stable manifold has codimension
two, whereas its center-stable manifold has codimension one
and, as such, it can partition the phase space; i.e., it can
serve as a boundary between the basins of different attractors
(see Fig. 2). Our strategy is to approximate this center-stable
manifold. In the first instance, we consider the following linear
approximation.

Let us rewrite the reaction-diffusion system (RDS) (1) in
a frame of reference moving with a constant speed c, so that
u(x,t) = ũ(ξ,τ ), ξ = x − ct − s, τ = t ,

∂ũ
∂τ

= D
∂2ũ
∂ξ 2

+ c
∂ũ
∂ξ

+ f(ũ),

ũ(ξ,0) = ur + us(ξ + s).

We linearize this equation on the critical solution, which is
stationary in the moving frame,

ũ(ξ,τ ) = û(ξ ) + v(ξ,τ ). (14)

The linearization gives

∂v
∂τ

= D
∂2v
∂ξ 2

+ c
∂v
∂ξ

+ F(ξ )v,

(15)
v(ξ,0) = ur + us(ξ + s) − û(ξ ),

where

F(ξ ) = ∂f
∂u

∣∣∣∣
u=û(ξ )

(16)

is the Jacobian of the kinetic term, evaluated at the critical
solution.

Equation (15) is a linear nonhomogeneous equation, with a
time-independent linear operator,

∂τ v = Lv + h̃, L � D
∂2

∂ξ 2
+ c

∂

∂ξ
+ F(ξ ). (17)

For the sake of simplicity, let us assume that the eigenfunctions
of L,

LVj (ξ ) = λj Vj (ξ ), (18)

are simple and form a basis in an appropriate functional
space, and the same is true for the adjoint L+ [29]. Another
assumption, which simplifies formulas and is true for all
examples considered, is that all eigenvalues important for
the theory are real. We enumerate the eigenpairs in the
decreasing order of λj , so by assumption we always have
λ1 > λ2 = 0 > λ3 > . . . .

Then the general solution of problem (15) in that space can
be written as a generalized Fourier series,

v(ξ,τ ) =
∑

j

aj (τ )Vj (ξ ). (19)

The coefficients aj then satisfy decoupled ordinary differential
equations (ODEs),

daj

dτ
= λjaj , (20)

where

aj (0) = 〈Wj (ξ )|v(ξ,0)〉, (21)

the scalar product 〈· | ·〉 is defined as

〈a|b〉 =
∫ ∞

−∞
a�b dξ,

and Wj are eigenfunctions of the adjoint operator,

L+Wj = λj Wj , L+ = D� ∂2

∂ξ 2
− c

∂

∂ξ
+ F�(ξ ), (22)

which are normalized so that

〈Wj |Vk〉 = δj,k. (23)

The solution of (20) is

aj (τ ) = eλj τ aj (0).

By assumption, λ1 > 0, and due to the translational symmetry,
λ2 = 0, and the rest of the spectrum is assumed within the left
half plane. Hence, the condition of criticality is

a1(0) = 0.

Using the definition of a1(0), we have, in terms of the original
model,

〈W1(ξ ) | us(ξ + s)〉 = 〈W1(ξ ) | û(ξ ) − ur〉. (24)

This is an equation of the center-stable space, i.e., a tangent
space to the center-stable manifold of the critical solution.
Note that this tangent space is different for every choice of the
critical solution, as identified by the choice of s.
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B. Linear approximation of the strength-extent curve

1. General setting

Let us now consider the typical formulation, when the
spatial profile of the initial perturbation is fixed and only its
magnitude is varied,

us(x) = UsX(x). (25)

Then (24) gives

Us〈W1(ξ ) | X(ξ + s)〉 = 〈W1(ξ ) | û(ξ ) − ur〉
or

Us = N1

D1(s)
, (26)

where the numerator N1 is a constant, defined entirely by the
properties of the model,

N1 = 〈W1(ξ ) | û(ξ ) − ur〉, (27)

and the denominator D1 depends on the shift s,

D1(s) = 〈W1(ξ ) | X(ξ + s)〉. (28)

Hence, to get the ultimate answer, we need an extra condition
to fix the value of the shift s.

2. The case of critical nucleus

This is the case when c = 0; i.e., the critical solution is
stationary, and moreover it is even in x. Then there is a
natural choice of s = 0 prescribed by symmetry. It can also
be motivated directly by considering the problem for x ∈ R as
an even extension of the problem for x ∈ R+. In this case the
position of the critical nucleus is fixed, there is no translational
invariance, there is no associated zero eigenvalue, and we can
consider the stable space, tangent to the stable manifold, as
symbolized in Fig. 1(d), rather than the center-stable manifold.

That is, we have x = ξ , t = τ , u = ũ, and û(−ξ ) ≡ û(ξ ),
and (26) gives the explicit expression for the threshold,

Us =
∫∞

0 W1(ξ )�[û(ξ ) − ur ]dξ∫∞
0 W1(ξ )�X(ξ )dξ

. (29)

If, further, the stimulation is done by a rectangular perturbation
of the resting state,

X(ξ ) = H(xs − ξ )H(xs + ξ )e, (30)

then we have

Us =
∫∞

0 W1(ξ )�[û(ξ ) − ur ]dξ∫ xs

0 W1(ξ )�e dξ
. (31)

3. The case of moving critical solution

This is the case when c > 0, and then we call the critical
solution either a critical pulse (for u− = ur ) or a critical front
(u− 	= ur ) [28]. The problem now does not have the symmetry
ξ 
→ −ξ and the previous “intuitively obvious” choice of s is
not generally applicable. Recall that our approach is based on
linearization, whereas the original problem does not, in fact,
contain small parameters. In this formulation, the criticality
condition depends on an “arbitrary” parameter s. We select an
optimal value of the parameter, so as to minimize the error in

the prediction. This is done based on a heuristic, motivated by
the “skew-product” approach to the dynamics of systems with
continuous symmetries, such as in [30] for symmetry with
respect to shifts in R as in our present case, and also in [31,32]
for symmetry with respect to Euclidean motions in R2. This
approach considers solutions u(x,t) of (1) in the form

u(x,t) = ũ(ξ,τ ),

where ξ = x − s(t) and τ = t , so ũ(·,τ ) describes the evolu-
tion of the shape of the wave profile in a frame of reference
which moves according to the law defined by the shift s(t),
and the dynamics of the shift s(t) is determined from an extra
condition, such as

μ(u(s(t),t)) ≡ 0, (32)

for an appropriately selected function μ(·), which makes it
possible to choose a unique value of s for any given profile
u(·,t), from the class that is of interest to our study, at any given
time t , perhaps with some inequalities to distinguish the front
from the back. The specific examples of this extra condition,
considered in [30–32], included a condition on ũ(ξ,τ ) at a
selected point ξ . A more generic way discussed in [32] is to
use any functional μ(·) on ũ, which is not invariant with respect
to the group of translations of ξ , so that the functional could
take a certain value only at selected values of s, say typically
∂sμ(ũ(ξ + s,τ )) 	= 0 and certainly ∂sμ(û(ξ + s))|s=0 	= 0. A
popular and efficient choice of such functional can be made
when one considers perturbations of a relative equilibrium, as
done, e.g., in [33–35]. This choice is based on the following
observation, adapted to our case of a one-parametric symmetry
group. An infinitesimal increment of the shift s is equivalent,
in this situation, to a corresponding infinitesimal change of
coefficient aj in an expansion like (19). Let Vj (ξ ) = û′(ξ )
be the “translational” mode, corresponding to λj = 0. Then a
(locally) unique fixation of s can be achieved by requiring that
aj = 0. In our present situation, the index of the projector to
the shift mode is j = 2. The resulting extra requirement is to
be applied to the solution at all moments of time, including the
initial condition, for which it gives

〈W2(ξ ) | ur + us(ξ + s) − û(ξ )〉 = 0,

leading to

Us〈W2(ξ ) | X(ξ + s)〉 = 〈W2(ξ ) | û(ξ ) − ur〉. (33)

Another interpretation of the same requirement is that the
condition a2(0) = 0, in addition to the already imposed
condition of criticality a1(0) = 0, makes sure that at least two
first terms in the Fourier series (19) are zero, thus making
v(ξ,0) “smaller” in that sense.

The two conditions give a system of two similar equations,

UsD1(s) = N1,

UsD2(s) = N2,
(34)

where

N	 = 〈W	(ξ ) | û(ξ ) − ur〉, 	 = 1,2, (35)

and

D	(s) = 〈W	(ξ ) | X(ξ + s)〉, 	 = 1,2. (36)
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The definitions of N1, D1 here agree with the ones given
earlier in (27) and (28). We note that, if û− 	= ur , integrals
(35) converge if W	(ξ → −∞) → 0 sufficiently quickly.

System (34) is a nonlinear system of two equations for
two unknowns, s and Us. It is linear and overdetermined
with respect to Us. The compatibility condition for the two
equations for Us is N1D2(s) − N2D1(s) = 0, or

〈�(ξ ) | X(ξ + s)〉 = 0,

where

�(ξ ) = N1W2(ξ ) − N2W1(ξ ), (37)

presenting a nonlinear equation for s. For a rectangular
stimulus profile,

X(x) = H(x + xs) H(xs − x) e,

the compatibility condition becomes∫ −s+xs

−s−xs


(ξ ) dξ = 0,

where


(ξ ) = e��(ξ ). (38)

This equation for s can be transformed into a more convenient
form if we introduce the antiderivative of 
(ξ ),


(ξ ) = η′(ξ ).

Then

η(−s + xs) − η(−s − xs) = 0; (39)

that is, the two points ξ+ = −s + xs and ξ− = −s − xs are
points of equal value of function η(·). If this function happens
to be unimodal, then a unique solution of the compatibility
condition is guaranteed to exist, and if its monotonic pieces
η+(·) and η−(·) are effectively invertible with, say, dom (η+) >

dom (η−) pointwise, then (39) leads to a parametric equation
for the critical curve Us(xs). If we denote the value of function
η(·) in (39) by ζ and take it as the parameter, then we have

ξ±(ζ ) = (η±)−1(ζ ),

xs(ζ ) = 1
2 [ξ+(ζ ) − ξ−(ζ )],

(40)
s(ζ ) = − 1

2 [ξ+(ζ ) + ξ−(ζ )],

Us(ζ ) = N1/D1[s(ζ )].

For reference, we also summarize here the definitions of the
ingredients of (40) given earlier:

η(ξ ) = N1I2(ξ ) − N2I1(ξ ), (41)

I	(ξ ) =
∫ ξ

e�W	(ξ ′) dξ ′, 	 = 1,2, (42)

N	 =
∫ ∞

−∞
W�

	 (ξ )[û(ξ ) − ur ]dξ, 	 = 1,2, (43)

D1(s) = I1(ξ+) − I1(ξ−). (44)

We note that in the case of a critical nucleus, c = 0,
û is an even function, the operators L and L+ commute
with the operator of inversion ξ 
→ −ξ , the function W1 is

even, the function W2 is odd, N2 = 0, I2 is even, η is even,
ξ+ = −ξ−, s = 0, and (40) formally recovers the result (26)
obtained previously based on the choice s = 0 as “intuitive”
and “natural.”

C. Quadratic approximation of the stable manifold

The use of a linear approximation around the critical
solution for the situation when distance from it is not
guaranteed to be very small is, admittedly, the weakest point
of our approach. In this section, we consider the second-order
approximation in order to assess the limits of applicability
of the linear approximation and possibly to improve it. We
restrict the consideration to the case of critical nucleus. We
use the formulation on x ∈ (−∞,∞) and on the space of even
functions u(·,t).

Rather than using the matrix notation as in the linear ap-
proximation, we now proceed with an explicit notation for the
components of the RDSs. We use greek letters for superscripts
to enumerate them and adopt Einstein’s summation convention
for those indices. In this way we start from the generic RDS,

∂uα

∂t
= Dαβ ∂2uβ

∂x2
+ f α(uβ),

then consider the deviation vα of the solution uα from the
critical nucleus ûα ,

uα(x,t) = ûα(x) + vα(x,t),

the equation defining the critical nucleus,

Dαβ ∂2ûβ

∂x2
+ f α(û) = 0,

and the Taylor expansion of the equation for the deviation,

v̇α = Dαβvβ
xx + f α

,β (û)vβ + 1
2f α

,βγ (û)vβvγ + · · · ,

where overdots denote differentiation with respect to time,
subscripts (·)x denote differentiation with respect to space,
and greek subscripts after a comma designate a partial
differentiation by the corresponding reactive components. The
right and left eigenfunctions are defined, respectively, by

Dαβ∂xxV
β

j (x) + f α
,β(x)V β

j (x) = λjV
α
j (x)

and

Dβα∂xxW
β

j (x) + f β
,α(x)Wβ

j (x) = λjW
α
j (x),

where j ∈ {1,2,3, . . . }, and the biorthogonality condition is

〈Wj | Vk〉 �
∫ ∞

−∞
Wα

j (x) V α
k (x) dx = δj,k.

We consider only even solutions, so in subsequent sums only
those j that correspond to even eigenfunctions are assumed.
We seek solutions in the form of generalized Fourier series in
terms of the right eigenfunctions,

vα(x,t) =
∑

j

aj (t)V α
j (x),

where the Fourier coefficients are defined by

aj (t) = 〈Wj (x) | v(x,t)〉 �
∫ ∞

−∞
Wα

j (x) vα(x,t) dx.
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Time-differentiation of this gives

ȧj = λjaj +
∑
m,n

Qj
m,naman, (45)

where

Qj
m,n = Qj

n,m � 1

2

∫ ∞

−∞
Wα

j (x) f α
,βγ [û(x)]V β

m (x)V γ
n (x)dx.

(46)

We assume that eigenvalues are real and ordered from larger
to smaller, λ1 > 0, λ2 = 0 is, of course, the eigenvalue
corresponding to the translational symmetry and an odd
eigenfunction V2 = û′, and λj < 0 for all j � 3. Our task is
to determine the conditions on the initial values of the Fourier
coefficients

Aj � aj (0) =
∫ ∞

−∞
Wα

j (x)vα(x,0) dx

that would ensure that

a1(∞) = 0,

which means that the trajectory approaches the critical nucleus,
so the initial condition is precisely at the threshold.

Let us rewrite system (45) as an equivalent system of
integral equations,

aj (t) = eλj t

[
Aj +

∫ t

0
e−λj t

′ ∑
m,n

Qj
m,nam(t ′)an(t ′) dt ′

]
.

Successive approximations to the solution can be obtained by
direct iterations of this system,

a
(i+1)
j (t) = eλj t

[
Aj +

∫ t

0
e−λj t

′ ∑
m,n

Qj
m,na

(i)
m (t ′)a(i)

n (t ′) dt ′
]
.

(47)

Taking a
(0)
j = 0 for all j , we have

a
(1)
j = Aje

λj t .

With account of λ1 > 0, λj < 0, j � 3, and a
(1)
j (t) → 0, this

implies that

A1 = 0, Aj ∈ R, j � 3,

which is the answer we have from the linear approximation.
The next iteration produces

a
(2)
j (t) = eλj t

⎛
⎝Aj +

∑
m,n�3

Q
j
m,nAmAn

λj − λm − λn

⎞
⎠

−
∑

m,n�3

Q
j
m,nAmAn

λj − λm − λn

e(λm+λn)t .

Assuming that the sums converge, the last term always tends
to zero as t → ∞ because λn � λ3 < 0 for all n � 3, and the
first term tends to zero for all j � 3 for the same reason. So,
the condition a

(2)
1 (t) → 0 implies that the first term vanishes

for j = 1, that is,

A1 = −
∑

m,n�3

Q1
m,nAmAn

λ1 − λm − λn

, (48)

which is our second-order (quadratic) approximation for
the critical condition, as opposed to the first-order (linear)
approximation, which states simply that A1 = 0. We see that
the linear approximation will be more accurate when An, n � 3
are smaller, and that for given magnitudes of An, the linear
approximation will be better if λ1 − λm − λn, the smallest of
which is λ1 − 2λ3, is larger (remember that we exclude all
eigenpairs with odd eigenfunctions, including n = 2).

Further iterations of (47) lead to still higher-order approx-
imations of the stable manifold of the critical nucleus and
possibly further improvement of the critical condition. This,
however, is beyond the scope of this paper.

Substitution into (48) of the definition of Aj in terms of the
stimulation amplitude,

Aj =
∫ ∞

−∞
Wj (x)�[ur − û(x) + UsX(x)]dx,

leads to a quadratic equation for Us,

AU 2
s + BUs + C = 0, (49)

where

A =
∑

n,m�3

Rm,nDmDn,

B = D1 − 2
∑

n,m�3

Rm,nNmDn, (50)

C = −N1 +
∑

n,m�3

Rm,nNmNn,

and

Rm,n = Q1
m,n

λ1 − λm − λn

= Rn,m,

Nj =
∫ ∞

−∞
Wj (x)�(û − ur )dx, (51)

Dj =
∫ ∞

−∞
Wj (x)�X(x)dx.

Note that the definitions of Nj , Dj here are the same as in (35)
and (36), with account of s = 0.

An essential detail is the question of the properties of the
spectra of L and L+. In the above derivation we assumed that
these two spectra coincide and are discrete and all eigenvalues
are simple. In the specific cases we consider below, these
assumptions are tested numerically; in particular, we observe
that the spectra can, in fact, be continuous, so the formulas
should be generalized, to replace summation over eigenvalues
by integrals with respect to the spectral measure, and the
convergence issue becomes even more complicated.
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D. Hybrid approach: Numerical computation of functions
required by the analytical theory

1. Rationale

The key to our linear approximation is the knowledge of
û(x), W1(x), and, for the non-self-adjoint cases, also of W2(x).
For the quadratic approximation, ideally the whole spectrum
of λ	, W	, V	 is needed. With a few fortunate exceptions,
some of which are discussed below, one does not have these
analytically, so in practically interesting cases, one would need
to employ a hybrid approach, where these key ingredients are
determined numerically before the analytical expressions (31)
or (40) can be applied. The numerical problems can be posed
as rather standard boundary-value problems, respectively
nonlinear for c, û and linear for λ	, W	, V	. Here we describe
the methods we used in specific examples presented later.

In all cases, for direct numerical simulation of time-
dependent problems, we discretize the problems on a regular
space grid on a finite interval x ∈ [0,L] as an approximation
of x ∈ [0,∞), with fixed space step �x and a regular time
grid with time step �t . Except where stated otherwise, we
use second-order central difference approximations in space,
with Neumann boundary conditions at x = L and explicit
first-order forward Euler method in time.

2. The case of critical nucleus

a. Shooting. Finding û means solving a nonlinear
boundary-value problem. Most of the advanced methods
require a good initial guess for the solution. We find this initial
guess by a version of the shooting method. We solve a sequence
of the “stimulation by voltage” initial-value problem (5) and
(6), with fixed stimulation extent xs and varying amplitude
Us. The sequence is selected with the goal of approaching the
threshold value for Us, which we denote as U ∗

s . This is done
using the bisection method. Starting from an upper estimate
Us, known to be sufficient for ignition, and a lower estimate
Us, known to fail to ignite, we proceed with the following
algorithm.

repeat

U #
s := 1

2
(Us + Us) (the new trial value of Us is

the average of the current upper and lower estimates of the
threshold);

Solve the initial-value problem with Us = U #
s and

determine if ignition or failure;
if ignition then

Us := U #
s (the trial value of Us will become the new

upper estimate for the threshold);
else

Us := U #
s (the trial value of Us will become the new

lower estimate for the threshold);
end if

untill(|Us − Us| � tolerance).
In fact, to achieve the best result, we typically use zero

tolerance, i.e., repeat the bisection loop as long as U #
s remains

distinct from both Us and Us given the machine epsilon.
The final value of U #

s is the approximation of the critical
amplitude U ∗

s for the given xs, the best achievable one at
a given discretization. More precisely, we consider the last
values of Us and Us as equally likely approximations U #

s of

U ∗
s , as which of them happens to be equal to (Us + Us)/2 in

computer arithmetics is determined only by their position in
the grid of floating-point numbers in the given architecture,
rather than their relative merits as approximations.

The so found estimate of U ∗
s (xs) is used to determine an

estimate for û. The idea is based on the observation that for
Us very close to the exact threshold U ∗

s (xs), the trajectory
approaches the saddle point û(x) to within a small distance
and remains in its vicinity for a long time; see Fig. 1(d). So, to
find the best estimate for the threshold trajectory obtained for
Us = U #

s , we calculate

S(t) = ‖u̇‖2
L2 =

∫ L

0
‖ut‖2(x,t) dx (52)

along the trajectory, find t# = argmin[S(t)], and take û#(x) =
u(x,t#) as an estimate of the critical nucleus û(x). The result
can be immediately used for the next step or serve as an initial
guess for a more advanced boundary-value solver if a higher
accuracy is required.

Note that the key assumption of our theory is that the
threshold manifold is the center manifold of a unique critical
nucleus solution; hence, the above procedure should produce
(nearly) the same û(x) from any choice of xs. We used the
procedure for different values of xs, both to verify the validity
of this key assumption and to assess the accuracy of the found
critical nucleus.

b. Marching. The so found approximation of the critical
nucleus û#(x) is then used to calculate the principal eigenvalue
λ1 and the corresponding eigenfunction W1. Since λ1 is, by
definition, the eigenvalue with the largest real part, we should
expect that the solution of the differential equation

∂w
∂t

= L+w � D� ∂2w
∂x2

+ F�(x)w, (53)

for almost any initial conditions, should satisfy

w(x,t) = C eλ1t W1(x)[1 + o(1)], t → ∞, (54)

for some constant C. We therefore consider the graph of
ln |w(0,τ )|, determine the linear part in it, and fit that linear
part to a straight line by least squares; the slope provides
an estimate of λ1. We have also verified that the profile
w(x,t)/w(0,t) remains virtually unchanged during this linear
part and took the most recent profile as W1(x). Operationally,
this is practically equivalent to the (more usual) procedure
of estimating the eigenvalue λ1 for a time interval from t to
t + δt as δt−1 ln (〈w(x,t + δt) | w(x,t)〉/〈w(x,t) | w(x,t)〉) and
then ensuring that this estimate converges as t → ∞. Again,
thus obtained λ1 and W1(x) can be immediately used or serve
as an initial approximation for a more sophisticated eigenvalue
problem solver if a better accuracy is required.

This method is, of course, easily extended to calculate not
just the principal eigenpair, but a number of eigenpairs with
largest eigenvalues as long as they are real. If L = L+, then
one only needs to calculate (53) for a number of linearly
independent initial conditions and at each step, in addition
to normalization, also perform the Gram-Schmidt procedure.
As discussed above, normalization of the first of the linearly
independent solutions gives approximations of W1 and λ1.
The second linearly independent solution is used to obtain a
solution orthogonal to W1, which provides an approximation
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for W2, and its normalization provides an approximation for
λ2. Then the third linearly independent solution is used to
obtain a solution orthogonal to both W1 and W2, which gives
an approximation for W3, and the corresponding normalization
gives λ3, and so on. In the non-self-adjoint case, L 	= L+, the
orthogonalization will, of course, require this procedure to be
done both for L and L+ hand in hand, to calculate V2 as
orthogonal to W1 and W2 as orthogonal to V1, and so on.

3. The case of moving critical solution

a. Comoving frame of reference. We use the idea of
symmetry reduction employed in Sec. II B 3 for the theory now
for numerical simulations to reduce the problem of moving
critical solution to the case of a stationary critical solution,
even though with non-self-adjoint linearization. To this end,
we consider the equation

∂u
∂t

= D
∂2u
∂x2

+ f(u), (55)

where the position of the front, s, is defined implicitly by

μ(u(s,t)) = 0,

and perhaps some extra inequalities to distinguish the front
from the back. Then in the comoving frame of reference ξ =
x − s(t), τ = t , we have an unknown function of time and
space,

ũ(ξ,τ ) = u(x,t),

and an unknown function of time, s(t), the system of partial
differential equations (PDEs), and a finite constraint,

∂ũ
∂τ

= D
∂2ũ
∂ξ 2

+ ds

dτ

∂ũ
∂ξ

+ f(ũ),

μ(ũ(0,τ )) = 0. (56)

A relative equilibrium, including the moving critical solution,
in the system (55), corresponds to an equilibrium in (56), so it
is possible to apply the same techniques developed for the case
of a stationary critical solution to the comoving system (56).

b. Shooting. To find the critical solutions, we solve initial-
value problems for (56) and adjust the initial conditions so as
to get as close to the initiation threshold as possible given the
machine error. Solutions of (56) were found by semi-implicit
time stepping with the simplest (Lie) operator splitting, with
four substeps, namely,

(1) updating ũ by an explicit first-order (forward Euler)
scheme for the nonlinear kinetics term f(ũ);

(2) updating ũ by a semi-implicit (Crank-Nicholson)
scheme in time and central difference in space for the diffusion

term D
∂2ũ
∂ξ 2

;

(3) finding the convection speed
ds

dτ
based on a “virtual”

or “predictor” convection substep that would update ũ by an
explicit in time, two-point upwind scheme without smoothing;

(4) the actual updating of ũ by an implicit in time, three-
point upwind scheme with smoothing (Beam-Warming, [36])

for the convection term
ds

dτ

∂ũ
∂ξ

, using the value of
ds

dτ
found

in the previous substep.

As in the case of critical nucleus, the critical solution is
estimated as the slowest point of the trajectory, i.e., at the
moment τ = τ # = argmin ‖ũτ‖L2 . This includes both û#(ξ ) =
ũ(ξ,τ #) and c# = ds

dτ
(τ #).

c. Continuation. For the examples with nonstationary
critical solutions, the accuracy of the critical solution found
by shooting was often insufficient and we also found it
as a solution of a boundary-value problem (12), which, in
dynamical systems terms, is a problem of finding homoclinic
(if u− = ur ) or heteroclinic (if u− 	= ur ) trajectories in a
one-parametric family of autonomous systems for û(ξ ), with
parameter c. In the examples presented in this paper, we looked
for homoclinics and used a simple and popular continuation
method of finding such orbits, as large-period limits of periodic
trajectories of the same system, that is,

0 = D
d2uP

dξ 2
+ cP

duP

dξ
+ f(uP ),

(57)
uP (ξ + P ) ≡ uP (ξ ),

using the continuation software AUTO [37]. When the problem
is well posed, this defines a curve in the (P,cP ,uP (ξ )) space.
In our examples, the two ends of this curve extend to the
limit P → ∞, one of the ends defining the stable propagating
pulse solution, (cw,uw(ξ )), and the other defining the critical
pulse solution, (c,û(ξ )), which is of interest to us. An initial
guess for the continuation procedure could be obtained from
the shooting procedure described above, which would give the
initial guess at the unstable branch of the curve, or just by
direct numerical simulations of (1) with P -periodic boundary
conditions in x, which would give an initial guess at the stable
branch of the curve. However, we preferred to use an ad hoc
method, which is very popular for excitable systems, by finding
the periodic orbits via Hopf bifurcation in a one-parametric
extension of (57), with an extra parameter corresponding to
a “stimulation current,” that is, an additive constant in the
equation representing the dynamics of the activator, say the
transmembrane voltage.

AUTO uses collocation to discretize the solutions, and
subsequent steps in our approach, such as marching and
Arnoldi iterations, use û discretized on a regular grid. To
interpolate the solution obtained by AUTO to the regular grid,
we use piecewise Hermite interpolation [38].

d. Marching. Once the critical solution û#(ξ ) and its
speed c# have been found, determination of the right and
left eigenfunctions is done by calculating solutions of the
initial-value problems

∂v
∂τ

= Lv � D
∂2v
∂ξ 2

+ c# ∂v
∂ξ

+ F(ξ )v (58)

and

∂w
∂τ

= L+w � D� ∂2w
∂ξ 2

− c# ∂w
∂ξ

+ F�(ξ )w. (59)

The leading eigenvalue λ1 and the corresponding right eigen-
functions V1 and left eigenfunctions W1 are obtained in
the limit τ → ∞ for almost any initial conditions in (58)
and (59). The second eigenvalue λ2 and the corresponding
eigenfunctions V2 and W2 are obtained as linearly independent
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solutions of the same equations, satisfying the constraints

〈W2 | V1〉 = 〈W1 | V2〉 = 0, (60)

using a Gram-Schmidt orthogonalization process, adapted to
our non-self-adjoint situation.

e. Arnoldi iterations. When computing the required eigen-
values and eigenfunctions with the required accuracy took
too much time by the marching method discussed above,
we used the standard implicitly restarted Arnoldi iterations,
using the implementation described in [39]. This was applied
to the matrices representing the right-hand sides of the
discretized versions of Eqs. (59) and (58) to find left and right
eigenfunctions respectively. We requested finding eigenvalues
with biggest real parts and used the default values of the tuning
parameters.

E. A priori bound in the critical nucleus case

Finally, we comment on a simple a priori bound for the
critical curve, which follows from considerations different
from the analysis of the central-stable manifold of the critical
solution and therefore may provide useful extra information.
It applies for the case of d = 1, when the critical solution is
the critical nucleus defined by

∂u

∂t
= ∂2u

∂x2
+ f (u), (61)

with the assumptions that f (uj ) = 0, j = 1,2,3, u1 = ur <

u2 < u3, f (u) < 0 for u ∈ (u1,u2) and f (u) > 0 for u ∈
(u2,u3). In these terms, successful initiation means that at large
t solution u(x,t) is a trigger wave from u1 to u3, and the failure
of initiation means that u(x,t) → u1 as t → ∞ uniformly in x.

It follows from the results by Fife and McLeod [40] that any
initial conditions such that u(x,0) ∈ [u2,u3] for x ∈ (−∞,x1)
and u(x,0) ∈ [u1,u2] for x ∈ (x2,∞) guarantee ignition, and
for rectangular initial conditions (25) this means that, even for
the smallest excess of Us over u2 − u1, this initial condition
will produce ignition, provided that xs is large enough, so we
have

U ∗
s (xs) ↘ U ∗

s , xs → ∞, (62)

where

U ∗
s = u2 − u1. (63)

In the following sections we verify this general methodol-
ogy by applying it to five examples.

III. ZELDOVICH–FRANK-KAMENETSKY EQUATION

A. Model formulation

Our first example is the one-component reaction-diffusion
equation, first introduced by Zeldovich and Frank-Kamenetsky
(ZFK) [41] to describe propagation of flames; it is also known
as the “Nagumo equation” [42] and the “Schlögl model” [43],

d = 1, D = (1), u = (u),

f(u) = (f (u)), f (u) = u(u − θ )(1 − u), (64)

where we assume that θ ∈ (0,1/2).
The critical nucleus solution û = (û) for this equation can

be found analytically [22,26,44],

û(x) = 3θ
√

2

(1 + θ )
√

2 + cosh(x
√

θ)
√

2 − 5θ + 2θ2
. (65)

The other two components required for the definition of critical
curves in the linear approximation are λ1 and W1 = V1 =
(V1), which are solutions of

d2V1

dx2
+ [−3û2 + 2(θ + 1)û − θ ]V1 = λ1V1,

(66)
λ1 > 0, V1(±∞) = 0.

We have been unable to find a solution of this eigenvalue
problem analytically. We note, however, that û given by (65)
is unimodal; therefore, û′, which is the eigenfunction of L
corresponding to λ = 0, has one root. Hence, by Sturm’s
oscillation theorem, û′ = V2 and λ2 = 0, and there is, indeed,
exactly one simple eigenvalue λ1 > 0 and the corresponding
V1 solving (66) has no roots.

B. The small-threshold limit and the “fully analytical” result

In this section we extend the results of [26] in the parameter
space and correct some typos found in the latter paper. For
θ � 1, the critical nucleus (65) is O(θ ) uniformly in x and is
approximately

û(x) ≈ 3θ

1 + cosh(x
√

θ)
= 3

2
θ sech2(x

√
θ/2). (67)

In the same limit, the nonlinearity can be approximated by
f (u) ≈ u(u − θ ). With these approximations, problem (66)
has the solution

λ1 ≈ 5

4
θ, V1 ≈ sech3(x

√
θ/2), (68)

and (31) then gives an explicit expression for the strength-
extent curve in the form

U ∗
s ≈ 9πθ

8[4 arctan
(
ex̃s
)+ 2 tanh (x̃s)sech(x̃s) − π ]

, (69)

where x̃s = 1
2xs

√
θ . This approximation remains above the

a priori lower bound (63), U ∗
s = θ , for all xs.

Comparison of this approximation with the direct numerical
simulations is shown in Fig. 3(a). We see that whereas for
small θ the comparison is reasonable for a wide range of xs, it
quickly deteriorates at larger values of θ , which is, of course,
to be expected as the analytical expressions used are only valid
in the limit of small θ .

C. Hybrid approach

Figure 4 illustrates the processes of the numerical com-
putation of the critical nucleus (a) and the ignition mode (b)
in the ZFK model using the “shooting” algorithm described
in Sec. II D 2 for a selected value of the parameter θ . In
Fig. 4(a), the minimum of S(t) at about 10−5, achieved at about
t# ≈ 50, designates the maximal proximity of the solution
u(x,t#) of the nonlinear problem (1) to the critical nucleus
û(x), and so the former can be taken as an approximation of
the latter. In Fig. 4(b), the solution of the linear problem (53),
after an initial transient, mostly expiring before t = 10, grows
exponentially. The increment of this exponential growth gives
the ignition eigenvalue λ1, and the corresponding solution
profile, w(x,t)/w(0,t), which remains almost unchanged after
t = 10, gives the ignition mode V1(x) = W1(x).
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FIG. 3. (Color online) Strength-extent curves for the ZFK model for θ = 0.05, 0.15, 0.25, 0.35, 0.45 (bottom to top); comparison of
direct numerical simulations (symbols) with theoretical predictions (dashed lines): (a) for the exact analytical answers in the θ � 1 limit,
linear approximation; (b) for the hybrid method, using the numerically found ignition eigenpairs, linear approximation; (c) same, quadratic
approximation (70). Discretization parameters: �x = 0.03, �t = 4�2

x/9, L = 100.

The results of these numerical procedures are shown in
Fig. 5. We can see that the shooting procedure produces good
approximation of the critical nucleus, which for this case is
known exactly, for all θ . We also see that the accuracy of
the approximation obtained for θ � 1, unsurprisingly, is not
good for larger θ ; see Fig. 5(a). The solution of the adjoint
problem shown in Figs. 5(b) and 5(c) demonstrates a nontrivial
behavior qualitatively different from the θ � 1 analytical
formulas: The eigenvalue starts deviating noticeably from (68)
already for θ ≈ 0.1, and as θ continues to increase across
approximately 0.3, a qualitative change happens: The ignition
eigenvalue λ1(θ ) stops increasing and starts decreasing, and
the ignition mode V1 stops shrinking and starts expanding and
later even loses the unimodal shape and becomes bimodal,
note the θ = 0.45 curve in panel (b). The latter property
should, of course, be expected: In the θ ↗ 1/2 limit, the
critical nucleus takes the form of two opposite looking fronts
separated by the distance ∝ln(1/2 − θ ), and the ignition mode
is correspondingly a superposition of two submodes, each
corresponding to its corresponding front, with the ignition
eigenvalue λ ↘ 0.

One more observation can be made in Fig. 5(c) about the
behavior of λj , j > 1. We see that the main assumptions of the
theory are satisfied and all these eigenvalues are negative, and,

moreover, they become more negative for larger θ . Further, the
distance |λ3 − λ5| grows with θ , while a distance |λ5 − λ7|
remains approximately the same and relatively small. This
suggests that λ3 is a point of discrete spectrum, while λ5 and
λ7, in fact, represent already the continuous spectrum and
appear as discrete eigenvalues only due to the finite length L

of the computational interval. This observation is confirmed
by further study of these eigenvalues and the corresponding
eigenfunctions: At increasing values of L, the distance |λ5 −
λ7| decreases and V1 and V3 appear well localized towards
the left end of the interval x ∈ [0,L], whereas V5 and V7 are
manifestly nonlocalized, i.e., vary significantly throughout x ∈
[0,L] (not shown).

Comparison of the resulting hybrid numeric-asymptotic
prediction with the direct numerical simulations is shown in
Fig. 3(b). We see that for each value of θ , the reasonable
correspondence is observed in some range of xs. The large
deviations are observed whenever U ∗

s gets large, which is
expectable since the theory involves a linear approximation,
and for large U ∗

s all Aj are large. We also note that for U ∗
s � 1

the quality of the hybrid approximation is, in fact, better for
larger θ . This is also fully expectable based on the crudest
prediction of the quadratic theory: Indeed, one can see from
Fig. 5(c) that the spectral gap λ1 − 2λ3, which is related to the
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s
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FIG. 4. (Color online) Illustration of the numerical computation of the critical nucleus and ignition mode by “shooting” and “marching” in
ZFK. (a) Typical functions S(t) at near-threshold initial conditions in (1), (4), (5), (6), (64). Parameters: θ = 0.15, xs = 0.6, U ∗

s ≈ 1.1676 . . . ,
|U ∗

s − U ∗
s | < 10−5, L = 20, �x = 0.02, �t = 4�2

x/9. (b) Growth of the numerical solution of (53) in semilogarithmic coordinates and its
linear fit, defining the numerical value of λ1 ≈ 0.1425.
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FIG. 5. (Color online) Numerical computation of the components of the hybrid approach in ZFK. (a) Critical nucleus solutions for a θ

from 0.05 (bottom) to 0.45 (top) with step 0.1: numerical found by shooting, û#(x); exact analytical given by (65); approximate analytical
for θ � 1 given by (67). (b) The ignition mode, for a selection of values of θ , found by time marching based on numerical critical nucleus.
(c) First four eigenvalues, found by marching based on numerical nucleus as functions of θ .

accuracy of the linear approximation, grows with θ [recall the
discussion after Eq. (48)].

D. Quadratic theory

The quadratic theory result given by (49) involves double
infinite sums over the stable modes of the linearized problems,
so a practical application of this result in its fullness is
problematic. However, we note that, apart from the generalized
Fourier coefficients of the critical nucleus, stimulus profile,
and the nonlinearity, this expression also has denominators
increasing with the stable mode indices, so one may expect
that, depending on the properties of the spectrum, the terms
in the series may quickly decay and one can get a sufficiently
accurate result by retaining only a few principal terms. As
discussed in the previous subsection, for the ZFK equation,
the linearized problem has one discrete stable eigenvalue and
the rest of the stable spectrum is continuous. If we retain in (49)
only the leading term, corresponding to the discrete eigenvalue,
n = m = 3, we get a closed expression for the critical curve,

U ∗
s ≈

2R3,3N3D3 − D1+
√
D2

1+4R3,3D3(N1D3−D1N3)

2R3,3D2
3

,

(70)

or by expanding the square root,

U ∗
s ≈ N1

D1
− Q1

3,3(N1D3 − D1N3)2

D3
1(λ1 − 2λ3)

, (71)

the coefficients in which are defined by (46) and (51).
The resulting approximations of the critical curves are

shown in Fig. 3(c) [together with the a priori bound U ∗
s = θ

given by (63)]. Comparing those with panel (b), we observe
that whereas there is little difference for larger θ (the linear
approximation for those was already reasonably good), there
is noticeable improvement for θ = 0.05 and θ = 0.15, where
the quadratic correction term in (70) is more significant due to
the relatively small denominator (λ1 − 2λ3).

IV. MCKEAN EQUATION

A. Model formulation

Our second example is a piecewise linear version of the
ZFK equation, considered first by McKean in [42] and then
also in [45],

d = 1, D = (1), u = (u),
(72)

f(u) = (f (u)), f (u) = −u + H(u − a),

where we assume that a ∈ (0,1/2) and H(·) is the Heaviside
step function. This model is a variant of ZFK, but with a special
feature that makes it similar to the front model we consider
later: the discontinuity of the kinetic term. One of the practical
issues caused by this discontinuity is that direct numerical
simulations based on finite differences change qualitatively
the behavior of the system: The discretized critical nucleus
solution, defined as an even, spatially nontrivial, stationary
solution of the discretized equation, may not be unique and
becomes stable, whereas in the differential equation it is unique
and unstable. This phenomenon is akin to “propagation block”
observed in discretized equations of the ZFK and McKean type
and discussed, e.g., by Keener [46], with the exception is that
here we are dealing with even solutions and spatially localized
solutions (when extended to the whole line), as opposed to
the trigger front solutions which are traditionally the object
of interest in the context of propagation block. Keener’s
result is about a generic system with smooth right-hand
sides, and it predicts “frozen solutions” for sufficiently large
discretization steps. As we discuss in Appendix A, for the
McKean model with its discontinuous right-hand side, the
situation is different in that the frozen solutions, at least
formally, exist for all discretization steps, which motivates
the use of a finite-element approximation, both in the direct
numerical simulations for calculating the critical curve and in
the hybrid-method determination of the ignition mode. The
finite-element approach is discussed in Appendix C.

The critical nucleus solution in this equation is found
exactly in a closed form,

û(x) =
{

1 − (1 − a) cosh(x)
cosh(x∗) , x � x∗,

a exp(x∗ − x), x � x∗,
(73)
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FIG. 6. (Color online) (a) Critical nucleus solutions, (b) ignition modes, and (c) eigenvalues of the McKean model (72) for various values
of the parameter a.

where

x∗ = 1

2
ln

(
1

1 − 2a

)
. (74)

This solution is illustrated in Fig. 6(a).

B. Linear theory

Due to the discontinuity of the right-hand side, the lin-
earization operator becomes singular; i.e., it contains the Dirac
δ function (see Appendix B for a discussion):

L � ∂2

∂x2
− 1 + 1

a
δ(x − x∗). (75)

In the even-function extended problem, this is identical to
the classical problem of a double-well potential in quantum
mechanics. In the space of bounded functions, this operator has
one positive eigenvalue. This eigenvalue and the corresponding
eigenfunction can be written in the form

λ1 = −1 + κ2,
(76)

V1 =
{

cosh (κx)
cosh (κx∗) , x � x∗,

exp [κ(x∗ − x)], x � x∗,

where

κ = 1

2a
+ 1

2x∗
W0

(x∗
a

e−x∗/a
)
, (77)

and W0(·) is the principal branch of the Lambert W function as
defined, e.g., in [47]. The behavior of this eigenpair at different
values of a is illustrated in Figs. 6(b) and 6(c).

Substituting (73), (74), (76), and (77) into (26), we obtain
the analytical expression for the strength-extent curve,

U ∗
s (xs) =

{ N
sinh(κxs)

, xs < x∗,
N

sinh(κx∗)−cosh(κx∗)(eκ(x∗−xs)−1) , xs > x∗.
(78)

where

N = sinh(κx∗) + κa cosh(κx∗)

κ + 1

− 1

2
κe−x∗

(
sinh((κ − 1)x∗)

κ − 1
+ sinh((κ + 1)x∗)

κ + 1

)
.

This prediction is compared with the direct numerical
simulations in Figs. 7(a). In this case, the theoretical prediction
at larger xs falls below the a priori bound U ∗

s = a, so is “easily
improved” by applying this bound. This is also shown in the
figure.

In this model, since the exact analytical solution for the
critical nucleus and the ignition eigenpair is known for an
arbitrary a ∈ (0,1/2), the “hybrid approach” is not necessary.
For technical purposes we have tried it as well, and when used
with finite-element discretization it works satisfactorily, but
since it does not offer any extra insights, we do not present
those results here.

C. Quadratic theory

The stable spectrum of the linearized problem in this case
is entirely continuous, comprising all λ � −1 (see, e.g., [21]),
with the corresponding generalized eigenfunctions in the form

V (x; λ) = ρ cos (ρx) − cos (ρx∗) sin [ρ(x − x∗)]H(x − x∗),

where ρ = √−1 − λ.
Hence, the sums in m,n in (49) are to be interpreted

as integrals over λ ∈ (−∞, − 1]. The ensuing expressions
are rather complicated and whereas it is plausible that the
results can be expressed in a closed form, this goes well
beyond the scope of this paper and is left for another study.
For now, as a proof-of-principle study, we have obtained a
quadratic approximation of the critical curve, by restricting
the infinite interval x ∈ [0,∞) to a finite interval x ∈ [0,L],
with a homogeneous Dirichlet boundary condition at x = L,
thus making the spectrum discrete, and truncating the infinite
sums in (49) to a finite number of terms. A representative result
is shown in Fig. 7(b). This was obtained for L = 10 and 287
eigenvalues.

V. THE CARICATURE MODEL OF THE INa-DRIVEN
CARDIAC EXCITATION FRONT

A. Model formulation

Our next example is the caricature model of an INa-
driven cardiac excitation front suggested in [48]. It is a
two-component RDS (1) with u = (E, h)�, D = diag(1,0),
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FIG. 7. (Color online) Strength-extent curves in McKean model: direct numerical simulations (red crosses) vs (a) linear theory, for a = 0.05
at the bottom increased by 0.1 to a = 0.45 at the top, and (b) linear and quadratic theories, for a = 0.48. Blue long-dashed lines, analytical
dependencies given by (78); green short-dashed lines, the lower bound Us = a in (a) and the predictions given by quadratic theory in (b).
Discretization: �x = 0.01, �t = 4�2

x/9, L = 10.

and f = (fE, fh)�, where

fE(E,h) = H(E − 1)h,
(79)

fh(E,h) = 1

τ
[H(−E) − h],

and H(·) is the Heaviside step function. The component
E of the solution corresponds to the nondimensionalized
transmembrane voltage, and the component h describes the
inactivation gate of the fast sodium current, which is known in
electrophysiology as INa and which is mainly responsible for
the propagation of excitation in cardiac muscle in the norm.

A special feature of this model is that there is a continuum
of potential prefront states,

ur = lim
ξ→∞

û = (−α,1)�, α > 0,

and a continuum of potential postfront states,

u− = lim
ξ→−∞

û = (ω,0)�, ω > 1,

so any front solution connects a point from one continuum to
a point from the other continuum.

The critical solution û = (Ê,ĥ)
�

is described by

Ê(ξ ) =
⎧⎨
⎩ω − τ 2c2

1 + τc2
e ξ/(τc), ξ � −�,

−α + αe−cξ , ξ � −�,

(80)

ĥ(ξ ) =
{

e ξ/(τc), ξ � 0,

1, ξ � 0,

where the postfront voltage ω and the front thickness � are
given by

ω = 1 + τc2 (1 + α), � = 1

c
ln

(
1 + α

α

)
, (81)

and the front speed c is defined by an implicit equation,

τc2 ln

[
(1 + α)(1 + τc2)

τ

]
+ ln

(
α + 1

α

)
= 0, (82)

or, equivalently,

τ = g(β,σ ) � 1 + σ

1 − β
β−1/σ , (83)

where

σ = τc2, β = α/(α + 1). (84)

Solutions of the transcendental equation (83) are illustrated
in Fig. 8. As shown in [48], for every τ > τ∗ ≈ 7.674 there
is an interval of values of α, in which there are two solutions
for c. The larger c corresponds to the stable, taller propagating
front, and the smaller c corresponds to the unstable, lower
propagating front. Our previous numerical simulations [28]
indicated that the unstable front is the critical solution in
this system: This unstable front is observed as a long-time
transient for near-threshold initial conditions from different
one-parametric families (corresponding to stimuli of different
widths and varying magnitudes), which is a phenomenological
evidence that its center-stable manifold has codimension one.

We stress again that, in this caricature model, the prefront
voltage −α is a parameter of the solution, rather than of the
model, and for every τ large enough, can take any value from
an interval. In other words, each such resting state is not an

 1
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Set 1
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β

σ gβ = 0 gσ = 0

FIG. 8. (Color online) Solutions of (83) for τ = 7.7 and above
with step 0.1. The dot is the global minimum of g(β,σ ), the asterisks
show the selected sets of parameters in the front model.
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isolated equilibrium, but is a member of a continuous, one-
parametric family of equilibria [49].

The a priori bound (63) for the ignition threshold, discussed
in Sec. II E, is not applicable to the present two-component
model. However, it is easy to see that if the initial condition
E(x,0) < 1 for all x, then the equation for E reduces to
a diffusion equation, and ignition of a propagating wave is
therefore out of the question. Since the initial perturbation is
to be applied to the resting state Er = −α, we conclude that
here there is a lower bound for the ignition threshold

U ∗
s = 1 + α, (85)

which again can be used in conjunction with analytical
predictions obtained from other considerations.

B. Linearized problem and eigenfunctions

The linearized operator (17) requires the Jacobian F(ξ )
defined by (16). Formal differentiation of the Heaviside
functions in the kinetic terms using the chain rule (see
Appendix B) produces[

∂H(E − 1)

∂E

]
E=Ê

= ∂ H(−� − ξ )

∂ξ

/
∂Ê

∂ξ

= − 1

Ê′(−�)
δ(ξ + �),

[
∂H(−E)

∂E

]
E−Ê

= ∂ H(ξ )

∂ξ

/
∂Ê

∂ξ
= 1

Ê′(0)
δ(ξ );

then (79) gives for the Jacobian (16)

F(ξ ) =
⎛
⎝− 1

Ê′(−�)
δ(ξ + �) H(−� − ξ )

1
τ Ê′(0)

δ(ξ ) − 1

τ

⎞
⎠.

Hence, the linearized equations (15) for v = (E1,h1) are,
componentwise,

∂E1

∂τ
= ∂2E1

∂ξ 2
+ c

∂E1

∂ξ

− 1

Ê′(−�)
δ(ξ + �) ĥ E1 + H(−� − ξ ) h1,

∂h1

∂τ
= c

∂h1

∂ξ
+ 1

τ Ê′(0)
δ(ξ ) E1 − 1

τ
h1. (86)

The spatial operator in (86) is of the third order, so the linear
eigenvalue problem (18) can be cast into a third-order ODE
system for φ, χ , and ψ , where V = (φ,ψ)� and χ = dφ/dξ ,
which can be written in the matrix form as

d�

dξ
= A �, (87)

where � = (φ,χ,ψ)� and

A =

⎛
⎜⎜⎜⎝

0 1 0

λ + δ(ξ+�)
Ê′(−�)

−c −H(−ξ − �)

−δ(ξ )
τcÊ′(0)

0
1 + λτ

τc

⎞
⎟⎟⎟⎠. (88)

The regular part of matrix (88) is piecewise constant; hence,
the general solution to (87) can be written as

�(ξ ) =
3∑

m=1

im qi
m exp

(
μi

m ξ
)
, ξ ∈ Ii,

where symbol i takes one of three symbolic values, i =
a,b,c, designating intervals Ia = (∞,−�), Ib = (−�,0),
Ic = (0,∞); the vectors qa

m, qb
m, qc

m, m = 1,2,3 are the
eigenvectors of A in these intervals; μa

m, μb
m, μc

m, are the
corresponding eigenvalues; and am, bm, cm are coefficients of
the solution in the bases of those eigenvectors in each of the
intervals. We have, for λ � 0,

μi
1 = 1 + λτ

τc
= ν1(λ) > 0,

μi
2 = −c − √

c2 + 4λ

2
= −ν2(λ) < 0,

μi
3 = −c + √

c2 + 4λ

2
= ν3(λ) � 0,

for all three intervals i = a,b,c. For the sake of brevity, in the
rest of this section we keep the dependence of ν1,2,3 on λ in
mind, but omit in writing.

Boundary conditions �(±∞) = 0 [50] then require that
a2 = c1 = c3 = 0, and by finding eigenvectors of A in the
three intervals, we have

⎛
⎜⎝

φ

χ

ψ

⎞
⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1

⎛
⎝ 1

ν1

−q

⎞
⎠eν1ξ + a3

⎛
⎝ 1

ν3

0

⎞
⎠eν3ξ , ξ ∈ Ia,

b1

⎛
⎝0

0
1

⎞
⎠eν1ξ + b2

⎛
⎝ 1

−ν2

0

⎞
⎠e−ν2ξ + b3

⎛
⎝ 1

ν3

0

⎞
⎠eν3ξ ,

ξ ∈ Ib,

c2

⎛
⎝ 1

−ν2

0

⎞
⎠e−ν2ξ , ξ ∈ Ic,

(89)

where

q = ν1(ν1 + c) − λ =
(

1 + λτ

τc

)2

+ 1

τ
> 0. (90)

These solutions are to be matched at ξ = −� and ξ = 0, with
account of the singular terms in matrix (88). Using notation
[·] for a jump of a function at a point, the matching conditions
for (87) and (88) can be written as

[χ (−�)] = φ(−�)

Ê′(−�)
,

[ψ(0)] = − φ(0)

τ c Ê′(0)
,

and we have continuity in all other cases,

[φ(−�)] = [ψ(−�)] = [φ(0)] = [χ (0)] = 0.
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For the solution (89), this amounts to the following algebraic
system for the coefficients:

a1e
−ν1 � + a3e

−ν3 � − b2e
ν2 � − b3e

−ν3 � = 0,

a1 αcν1 e−ν1� + a3 αcν3 e−ν3� + b2 eν2�(αcν2 − e−ν�)

− b3 e−ν3�(αcν3 + e−ν�) = 0,

a1 q + b1 = 0, (91)

b2 + b3 − c2 = 0,

b2 ν2 − b3 ν3 − c2 ν2 = 0,

b1 ατc2 + c2 = 0,

where

ν = 1 + τc2

τc
> 0. (92)

The solvability condition for this system is given by
the roots of function fe(λ; . . . ) (proportional to the Evans
function) defined as

fe(λ; c,α,τ ) � αc(ν2 + ν3) eν� − 1

+ τc(ν1 − ν3)

(1 + λτ )2 + τc2
e(ν−ν1−ν2) � = 0, (93)

and the solution, up to normalization, is

a1 = 1,

a3 = ατc2qe(ν2+ν3)� − e(ν3−ν1)�,

b1 = −q,

b2 = ατc2q,

b3 = 0,

c2 = ατc2q.

(94)

The adjoint problem to (86) is

L+W = λW, (95)

where

L+ = D� d2

dξ 2
− c

d

dξ
+ F�(ξ ), W = (φ̃,ψ̃)

�
, (96)

and

F�(ξ ) =

⎛
⎜⎝

− 1
Ê′(−�)

δ(ξ + �) 1
τ Ê′(0)

δ(ξ )

H(−ξ − �) − 1

τ

⎞
⎟⎠. (97)

Proceeding as in the previous case, we have a third-order
system,

d�̃

dξ
= Ã �̃,

for �̃ = (φ̃,χ̃ ,ψ̃)
�

, χ̃ ≡ φ̃′, with the matrix

Ã =

⎛
⎜⎝

0 1 0

λ + δ(ξ+�)
Ê′(−�)

c
−δ(ξ )

τcÊ′(0)
1
c
H(−ξ − �) 0 − (1+λτ )

τc

⎞
⎟⎠, (98)

its piecewise solution

⎛
⎜⎝

φ̃(ξ )

χ̃(ξ )

ψ̃(ξ )

⎞
⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ã2

⎛
⎝ 1

ν2

p

⎞
⎠eν2ξ , ξ ∈ Ia,

b̃1

⎛
⎝0

0
1

⎞
⎠e−ν1ξ + b̃2

⎛
⎝ 1

ν2

0

⎞
⎠eν2ξ

+ b̃3

⎛
⎝ 1

−ν3

0

⎞
⎠e−ν3ξ , ξ ∈ Ib,

c̃1

⎛
⎝0

0
1

⎞
⎠e−ν1ξ + c̃3

⎛
⎝ 1

−ν3

0

⎞
⎠e−ν3ξ , ξ ∈ Ic,

(99)

where

p = 1

c (ν1 + ν2)
, (100)

the algebraic system for the coefficients stemming from the
matching conditions,

ã2 e−ν2� − b̃2 e−ν2� − b̃3 eν3� = 0,

ã2 α c ν2 e−ν2� − b̃2 e−ν2�(α c ν2 + e−ν�)

− b̃3 eν3�(−α c ν3 + e−ν�) = 0,

ã2 p e−ν2� − b̃1 eν1� = 0,

b̃2 + b̃3 − c̃3 = 0,

b̃2 α τ c ν2 − b̃3 α τ c ν3 + c̃1 + c̃3 α τ c ν3 = 0,

b̃1 − c̃1 = 0,

(101)

the solution of which, up to normalization, is

ã2 = ατc2 (ν1 + ν2)(ν2 + ν3) e(ν1+ν2) �,

b̃1 = α τ c (ν2 + ν3),

b̃2 = −1,

b̃3 = ατc2 (ν1 + ν2)(ν2 + ν3) e(ν1−ν3) � + e−(ν2+ν3) �,

c̃1 = α τ c (ν2 + ν3),

c̃3 = ατc2 (ν1 + ν2)(ν2 + ν3)e(ν1−ν3) � + e−(ν2+ν3) � − 1,

(102)
and its solvability condition is

f̃e = αc (ν2 + ν3) + e−(ν1+ν2)�

τc(ν1 + ν2)
− e−ν � = 0. (103)

The solvability condition (103) is equivalent to (93), the char-
acteristic equation of the linearized problem. Its dependence
on λ is implicit via ν1, ν2, ν3, p. The corresponding explicit
expression is a available but too lengthy and we do not present
it here. Alternatively, using substitutions (84) and

z =
√

1 + 4λ/c2, (104)
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FIG. 9. (Color online) Plots of the characteristic function (105)
for the four selected parameter sets.

the characteristic equation is explicitly rewritten in a more
compact form,

0 = ṽe(z) =
{

σ +
[

1 + σ (z2 − 1)

4

]2
}(

σz

1 + σ
− 1

)

+
[

1 + σ (z − 1)2

4

]
β(1+z)2/4−1. (105)

Figure 9 illustrates the behavior of the function ṽe(z)
defined (105) for selected values of parameters β and σ ,
indicated by asterisks in Figs. 8. The roots z > 1 of (105)
define the positive eigenvalues λ1, and, of course, in all cases
λ2 = 0, which corresponds to z = 1. Numerical values of
λ1 for the four selected sets of parameters are presented in
Table I.

Knowing λ	, 	 = 1,2, we obtain the adjoint eigenfunctions
W	(ξ ), 	 = 1,2, by formulas (99).

C. Strength-extent curve

Given the expressions for the adjoint eigenfunctions (99)
and (102) for our model, we are now in a position to calculate
the precompatibility function (41) required to obtain the
analytical description of the critical curve. For the compo-
nents of the left eigenfunctions, W	 = (φ̃	,ψ̃	)

�
, 	 = 1,2,

we have

φ̃	(ξ ) =

⎧⎪⎪⎨
⎪⎪⎩

ã	
2 eν	

2ξ , ξ ∈ Ia,

b̃	
2 eν	

2ξ + b̃	
3 e−ν	

3ξ , ξ ∈ Ib,

c̃	
3 e−ν	

3ξ , ξ ∈ Ic,

TABLE I. Selected sets of parameters and corresponding eigen-
values for the front model.

Set 1 Set 2 Set 3 Set 4

β 0.5 0.45 0.4 0.36

τ 8.2 8 7.8 7.7

σ 0.903 152 459 1.036 565 915 1.254 739 882 1.559 272 934

α 1 0.818 181 818 0.666 666 667 0.5625

c 0.331 874 289 0.359 959 358 0.401 078 655 0.450 003 309

λ1 0.039 902 55 0.035 413 196 0.024 380 836 0.006 905 681

ψ̃	(ξ ) =

⎧⎪⎪⎨
⎪⎪⎩

ã	
2 p	 eν	

2ξ , ξ ∈ Ia,

b̃	
1 e−ν	

1ξ , ξ ∈ Ib,

c̃	
1 e−ν	

1ξ , ξ ∈ Ic.

The resulting W	(ξ ), 	 = 1,2, for the selected values of
parameters are shown in Fig. 10, against the corresponding
critical nucleus solutions [51]. Then (35) gives

N	 = 〈W	(ξ ) | û(ξ ) − ur〉

=
∫ ∞

−∞
{φ̃	(ξ )[Ê(ξ ) − Er] + ψ̃	(ξ )[ĥ(ξ ) − hr]}dξ

= ã	
2

{
ω + α − p	

ν	
2

+c(1+α)[p	(1+τc2) − τ 2c2]

ν	
2τc + 1

}
e−ν	

2�

+ b̃	
2

α − (1 + α) e−ν	
2�

ν	
2 − c

− b̃	
3

α − (1 + α) eν	
3�

ν	
3 + c

+ b̃	
1 τc

1 − eν	
1� e−�/(τc)

1 − ν	
1τc

+ b̃	
1

1 − eν	
1�

ν	
1

+ c̃	
3

α

ν	
3 + c

,

for 	 = 1,2. Further, (26) gives

D(s) = 〈W1(ξ ) | us(ξ + s)〉 =
∫ xs−s

−xs−s

φ̃1(ξ ) dξ, (106)

and (42) gives

I	(ξ ) =
∫

e�W	(ξ ) dξ =
∫

φ̃	(ξ ) dξ

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ã	
2

ν	
2
eν	

2ξ , ξ ∈ Ia,

ã	
2 −b̃	

2

ν	
2

e−ν	
2� + b̃	

3

ν	
3

eν	
3� + b̃	

2

ν	
2

eν	
2ξ

− b̃	
3

ν	
3

e−ν	
3ξ , ξ ∈ Ib,

ã	
2 −b̃	

2

ν	
2

e−ν	
2� + b̃	

3

ν	
3

eν	
3� + b̃	

2

ν	
2

+ c̃	
3 − b̃	

3

ν	
3

− c̃	
3

ν	
3

e−ν	
3ξ , ξ ∈ Ic.

This general expression works for 	 = 1; however, for 	 = 2
it fails as λ = 0 and consequently ν2

3 = 0. The expression for
	 = 2 can be obtained as the λ → 0 limit of the above, or by
redoing the integration for this special case. Either way, we get

I2(ξ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ã2
2

ν2
2
eν2

2 ξ , ξ ∈ Ia,

ã2
2

ν2
2
e−ν2

2 � − b̃2
2

ν2
2

e−ν2
2 � + b̃2

2

ν2
2

eν2
2 ξ

+ b̃2
3 (� + ξ ), ξ ∈ Ib,

ã2
2

ν2
2
e−ν2

2 � − b̃2
2

ν2
2

e−ν2
2 � + b̃2

2

ν2
2

+ b̃2
3 � + c̃2

3 ξ, ξ ∈ Ic.
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û

E h

û
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FIG. 10. (Color online) Linearized theory ingredients for the four selected sets of parameters in the front model. Shown are components of
vector functions, indicated in the top right corner of each panel. The functions Wj are scaled so that the maximal value of the h component is
1. Correspondence of lines with components is according to the legends at the top.

Also, for λ = λ2 = 0, N2 simplifies to

N2 = 〈W2(ξ ) | û(ξ ) − ur〉

= ã2
2

2ατc2

c(1 + τc2)
+
(
ã2

2
α

c
+ b̃2

1 τc
)

×
[

1 − τ

(1 + α)(1 + τc2)

]

+ (
b̃2

2 α + b̃2
1

)
� + b̃2

3
1

c
+ c̃2

3
α

c
.

The critical curve is then described based on the function
η(ξ ), defined by (41),

η(ξ ) = N1I2(ξ ) − N2I1(ξ ),

using the implicit-function definition (40)–(44). Figure 11
shows the function η(ξ ) for the four selected parameter sets. It
is clearly unimodal in all four cases; however, the position of
the maximum varies a lot. We note that for set 1, the position
of the maximum is far ahead of the critical front, which has a
(rather unlikely) implication that this is where the main events,
deciding whether the front will be ignited, take place.
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FIG. 11. (Color online) Precompatibility functions η(ξ ) for the four selected sets of parameters in the front model. For visualization
purposes, we show the normalized function η(ξ ) = η(ξ )/η(0) (dashed lines, right ordinate axes). For positioning, we also show the profile of
the corresponding critical front (solid lines, left ordinate axes).
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FIG. 12. (Color online) Strength-extent curves in the caricature INa front model for the four selected parameter sets. Shown also is the
a priori lower bound for the ignition threshold given by Eq. (85).

As can be seen from the above, even though the function
η(ξ ) for this example is found explicitly, its form appears
too complicated to establish analytically whether it is always
unimodal, let alone to explicitly invert it. So we have done the
inversion numerically. A comparison of the resulting critical
curve against the direct numerical simulations is shown in
Fig. 12. We see that the accuracy of the theoretical predictions
varies considerably and for Set 4 is very close. We do not have
any conclusive explanation of the difference in the accuracy,
only note that better approximation is associated with a more
reasonable position of the extremum of the precompatibility
function η(ξ ) and smaller values of λ1.

VI. FITZHUGH-NAGUMO SYSTEM

A. Model formulation

The FHN system is a two-component RDS, which could
be considered as a ZFK equation extended by adding a
second, slow variable, describing inhibition of excitation.
It is probably the single historically most important model
describing excitable media. We consider it in the form

d = 2, D = diag(1,0), u = (u,v)�,

f(u) = (fu(u,v),fv(u,v))�,
(107)

fu(u,v) = u(u − β)(1 − u) − v,

fv(u,v) = γ (αu − v),

for fixed values of the slow dynamics parameters, γ = 0.01
and α = 0.37, and two values of the excitation threshold for
the fast dynamics, β = 0.05 and β = 0.13.

Unlike the ZFK equation, the critical solution in system
(107) is moving, as in the INa front model, but it is a
critical pulse rather than critical front. It is known (see, e.g.,
[27] and references therein) that in the limit γ ↘ 0, this
system has the critical pulse solution whose v component
is small and u component is close to the critical pulse of
the corresponding ZFK equation. However, this does not
provide good enough approximation for the linearized theory,
and we used only the hybrid approach. We have obtained
the critical pulse by numerical continuation of the periodic
pulse problem using AUTO, as discussed in Sec. II D 3; the
corresponding CV restitution curves are illustrated in Fig. 13.
For the critical pulses, we take the solutions at lower branches

at P > 7.5 × 103. The corresponding propagation speeds are
given in Table II.

B. Linear theory

Figure 14 and Table II illustrate other ingredients required
for the semianalytical prediction of the critical curves for the
two selected cases. These are found by the straightforward
marching method and then verified by Arnoldi iterations. We
use discretization �x = 0.03, �t = 4�2

x/9, ξ ∈ [−L,L], L =
100. As expected, |λ2| are small.

Figure 15 shows the results of the calculation according to
the formulas (40)–(44). The “precompatibility” function η(ξ )
defined by (41) in both cases is not unimodal [see Fig. 15(a)]
and, at least for β = 0.05, has two local maxima and one local
minimum; hence implementation of the algorithm (40)–(44)
is not straightforward and requires investigation of the local
extrema. We find that in both cases the adequate answer is
given by the local maximum nearest to ξ = 0, at the front
of the critical pulse. The corresponding theoretical critical
curves are shown in Fig. 15(b), in comparison with the curves
obtained by direct numerical simulation. We observe that the
theory works somewhat better for β = 0.05 than for β = 0.13,
although the eigenfunctions shown in Fig. 14 for the two cases
look rather similar. Again, the better accuracy of the linearized
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β = 0.13

c

P

FIG. 13. (Color online) CV restitution curves for the FHN model
for two selected values of the model parameter. Stable (upper) and
unstable (lower) branches are shown by different line types.
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TABLE II. Nonlinear and linear eigenvalues for the FHN system.

β c λ1 λ2

0.05 0.2561 0.172 04 ±1 × 10−5

0.13 0.2328 0.186 19 ±1 × 10−5

theory here is associated with smaller value of λ1, although the
relative difference between the two cases is small in itself.

VII. MODIFIED BEELER-REUTER MODEL
OF CARDIAC EXCITATION

A. Model formulation

Here we look at a variant of the classical BR model of
mammalian ventricular cardiac myocytes [52], modified to
describe phenomenologically the dynamics of neonatal rat
cells [53–56]:

d = 7, D = diag(1,0,0,0,0,0,0), (108)

u = (V,h,j,x1,d,f,Ca)�, (109)

 0
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u
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û

-0.1

 0

 0.1

 0.2 W1 W1

-0.1

 0

 0.1

 0.2

-40 -20  0  20  40

W2

-40 -20  0  20  40

W2

ξ

)b()a(

FIG. 14. (Color online) FHN theory ingredients for (a) β = 0.05
and (b) β = 0.13. Shown are components of scaled vector functions,
indicated in the top right corner of each panel, where û = Sû,
Wj = S−1Wj , and S = diag(1,10). The space coordinate is chosen
so that ξ = 0 at the maximum of û. Correspondence of lines with
components is according to the legends at the top.
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FIG. 15. (Color online) Results of linearized FHN theory for
(a),(c) β = 0.05 and (b),(d) β = 0.13. (a),(b) The precompatibility
function η(ξ ), used to compute the theoretical critical curve. The û(ξ )
component of the critical solution û is also shown for positioning
purposes. (c),(d) Comparison of the theoretical critical curves
obtained in the linear approximation and the critical curves obtained
by direct numerical simulations.

f(u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(IK1 + Ix1 + INa + Is)

αh(1 − h) − βhh

αj (1 − j ) − βjj

αx1(1 − x1) − βx1x1

αd (1 − d) − βdd

αf (1 − f ) − βf f

−10−7Is + 0.07(10−7 − Ca)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (110)

The detailed description of the components of f(u) is given
in Appendix D. Important here is only the dependence on the
“excitability” parameter α, which appears in the equations in
the following way:

IK1 = 0.35(0.3 − α) IK1 (V ).

In [56], special attention was given to α = 0.105 (“less
excitable,” with negative filament tension of the scroll waves)
and α = 0.115 (“more excitable,” with positive filament
tension of the scroll waves). These are also the two selected
cases for our study here.

As in the FHN system, we obtain the CV restitution curves
by continuation using AUTO and use a solution at its lower
branch as the critical pulse; see Fig. 16. The corresponding
propagation speeds are given in Table III.

B. Linear theory

Figure 17 and Table III illustrate other ingredients required
for the semianalytical prediction of the critical curves for the
two selected cases. As for the FHN system, these are found
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FIG. 16. (Color online) CV restitution curves for the BR model
for two selected values of the model parameter. Stable (upper) and
unstable (lower) branches are shown by different line types.

by the straightforward marching method and then verified by
Arnoldi iterations. We use discretization �x = 0.03, �t =
4�2

x/9, ξ ∈ [−L,L], L = 90. Again, we note that numerically
found values of |λ2| are small.

The precompatibility functions η(ξ ) [see Fig. 18(a)] are this
time nearly unimodal with a prominent maximum near the
front or the peak of the critical pulse. Again, despite apparent
similarity of the eigenfunctions in Figs. 17 between the two
cases, the shapes of the η(ξ ) graphs in Figs. 18(a) and 18(b)
are considerably different, and the resulting theoretical critical
curves, shown in Figs. 18(c) and 18(d) are much better for
α = 0.105 than for α = 0.115. This time, λ1 is nearly the
same in both cases.

VIII. DISCUSSION

In this paper, we have substantially extended the method
proposed in [26] for an analytical description of the threshold
curves that separate the basins of attraction of propagating
wave solutions and of decaying solutions of certain reaction-
diffusion models of spatially extended excitable media. The
method is extended in two ways. First, it is generalized to
address a wider class of excitable systems, such as

(i) multicomponent RDSs;
(ii) systems with non-self-adjoint linearized operators;
(iii) in particular, systems with moving critical solutions

(critical fronts and critical pulses).
Second, the method is extended from being a linear

approximation to being
(iv) a quadratic approximation of the stable manifold of the

critical nucleus solution, resulting in some cases in a significant
increase in accuracy.

The essential ingredients of the theory are the critical
solution itself, and the eigenfunctions of the corresponding

TABLE III. Nonlinear and linear eigenvalues for the modified BR
model.

α c λ1 λ2

1.05 0.042 32 0.015 78 ±2 × 10−8

1.15 0.044 97 0.015 15 ±1 × 10−8
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FIG. 17. (Color online) BR theory ingredients for (a) α = 0.105
and (b) α = 0.115. Shown are components of scaled vector functions,
indicated in the top right corner of each panel, where û = S û, Wj =
104 S−1Wj , and S = diag(10−2,1,1,1,1,1,105). The space coordinate
is chosen so that ξ = 0 at the maximum of V̂ . Correspondence of lines
with components is according to the legends at the top.

linearized operator. For the linear approximation in the critical
nucleus case, we need the leading left (adjoint) eigenfunction,
in the moving critical solution case, we need two leading
left eigenfunctions, and for the quadratic approximations we
need as many eigenvalues and left and right eigenfunctions
as possible to achieve better accuracy. Of course, closed
analytical formulas for these ingredients can only be obtained
in exceptional cases, and in a more typical situation a
“hybrid” approach is required, where these ingredients are
obtained numerically. Still, we believe that this approach offers
advantage over the determination of the excitation threshold
by direct numerical simulations, in terms of both insight and
computational cost.

It is still an open question why, in some cases, our
method works better than in others. A partial answer to that
question is offered by the quadratic approximation: The linear
approximation performs better when the corrections offered
by the quadratic approximation are small. This seems to work
for scalar equation with stationary critical solutions (critical
nucleus). However, in this paper we have not investigated
the quadratic approximation for the cases of moving critical
solutions, that is, critical fronts and critical pulses.

Here one has to bear in mind that the theory was presented
here under the assumption that the spectrum is real, whereas
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FIG. 18. (Color online) Results of BR theory for (a),(c) α =
0.105 and (b),(d) α = 0.115. (a),(b) The precompatibility function
η(ξ ), used to compute the theoretical critical curve (dashed lines,
right ordinate axes). The V̂ (ξ ) component of the critical solution û
is also shown for positionining purposes (solid lines, left ordinate
axes). (c),(d) Comparison of the theoretical critical curves obtained
in the linear approximation, and the critical curves obtained by direct
numerical simulations.

in the non-self-adjoint case it does not have to be. So this
question remains an interesting direction for future research.
Progress in that direction may help to understand when the
linear approximation works better in such cases.

Another direction for future research is the possible
extension of the theory to different initiation protocols, most
notably, to the case of strength-duration curves for stimulation
of an excitable cable by a stimulus localized in space and
extended in time. In [26] we showed that in the scalar case, the
linearized theory readily gives the classical Lapicque-Blair-
Hill exponential rheobase-chronaxie expression. It is known
that in realistic excitable systems, this formula does not always
work well, and it is likely that the more complicated expression
coming out of our theory based on moving critical solutions
would perform better.

An obvious extension of our approach that is required for
many applications is the extension to two and three spatial
dimensions.

It is also of interest to investigate whether the proposed
semianalytical approach to ignition of excitation waves can
be adapted to address the reverse problem of establishing
conditions for decay (block) of an already propagating ex-
citation wave. This question is of particular importance in
practical situations, for instance, for wildfire extinction, car-
diac defibrillation, and others. Some crude criteria for block of
excitation can be established from asymptotic considerations
of conditions when propagating wave solutions cease to exist,
e.g., [57]; however, extension of the approach presented in this
paper may offer more refined criteria. Propagating waves do
not have the shape of rectangular pulses, as typical stimuli do,
and decay from a general wave form must be considered in

greater detail. An extra feature in two and three dimensions is
the possibility of “wave breaks,” which is a situation distinct
from a complete decay and which is of particular relevance for
cardiac arrhythmias.

Finally, we note that the problem of initiation of waves is of
importance in all excitable systems, not just in cardiology. The
theory presented here is likely to face new challenges in new
applications. For instance, combustion waves sometimes can
propagate in oscillatory manner, i.e., as relative periodic orbits
[58], which makes it plausible that the critical solution there
also is a relative periodic orbit, and the transition to turbulence
in shear flows, although exhibiting features of excitability, is in
terms of models beyond reaction-diffusion even in the simplest
phenomenological description [10].
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APPENDIX A: ON “FROZEN NUCLEI” IN
THE MCKEAN EQUATION

Direct numerical simulations in this model are more diffi-
cult because in the standard finite-difference discretization,
the critical nucleus solution, defined as an even, spatially
nontrivial, stationary solution of the discretized equation,
may not be unique and is stable, whereas in the differential
equation it is unique and unstable. This phenomenon is akin
to “propagation block” or “propagation failure” observed
in discretized equation of the ZFK and McKean types and
discussed, e.g., in [46,59,60], with the exception that here
we are dealing with even solutions, which correspond to
spatially localized solutions when extended to the whole
line, as opposed to the trigger front solutions which are
traditionally the object of interest in the context of propagation
block. Keener’s [46] result is about a generic system with
smooth right-hand sides, and it predicts “frozen solutions”
for sufficiently large discretization steps. As we shall see,
for the McKean model with its discontinuous right-hand side,
the situation is different in that the frozen solutions, at least
formally, exist for all discretization steps.

For the McKean model, the “discrete critical nucleus”
solutions can be studied analytically. For the regular grid
discretization,

uj = u(xj ), xj = j�x, j ∈ Z, u−j ≡ uj ,

we have

duj

dt
= uj−1 − 2uj + uj+1

�2
x

− uj + H(uj − a).

We use notation A,B for the set of all integers j such that
j � A and j � B, that is, A,B � [A,B] ∩ Z. For the critical
nucleus solution, we expect that there exists an integer m

such that uj > a for j ∈ −m,m and uj < a otherwise. We
ignore the exceptional case when uj = a exactly for some j
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as it is not interesting in practice. Let uj = vj + H(uj − a).
Then, separately on each of the intervals j ∈ −∞, − m − 1,
j ∈ −m,m, and j ∈ m + 1,∞, we have

vj−1 − 2vj + vj+1 − �2
xvj = 0. (A1)

For vj ∝ σ j , this gives

σ 2 − (
2 + �2

x

)
σ + 1 = 0,

and so σ = μ or σ = 1/μ, where

μ � 1 + �2
x/2 + �x

√
1 + �2

x/4 > 1. (A2)

We note that Eq. (A1) applied for j ∈ −m,m, in fact,
involves vj for j ∈ −m − 1,m + 1, and the same equation
applied for j ∈ m + 1,∞ describes vj for j ∈ m,∞, so the
nonoverlapping subintervals of the equation create overlapping
subintervals in the piecewise described solutions.

Considering (A1) for j ∈ m + 1,∞ with account of the
boundary condition limj→∞ uj = 0, we have

uj = vj = Aμ−j , j ∈ m,∞,

for some constant A. Further, considering (A1) for |j | � m,
we get the even solution in the form

uj = 1 + vj = 1 + B(μj + μ−j ), j ∈ −m − 1,m + 1,

for some constant B. The matching condition to determine A

and B is that the two solutions should coincide at the overlap
points, j = m and j = m + 1. This gives

A = (μ2m+1 − 1)

μm(μ + 1)
, B = − 1

μm(μ + 1)
,

and the nontrivial time-independent solution uj (t) ≡ ûj in the
form

ûj =
⎧⎨
⎩

1 − μj +μ−j

μm(μ+1) , j ∈ 0,m + 1,

(μ2m+1−1)μ−j

μm(μ+1) , j ∈ m,∞.

(A3)

This result is valid under the assumption that

a ∈ (ûm+1,ûm) =
(

μm − μ−m−1

μm+1 + μm
,
μm+1 − μ−m

μm+1 + μm

)
= (am,am).

This gives a range of possible values of a for a given m. So,
at a fixed �x , the dependence of the solution on parameter a is
discontinuous (piecewise constant), and there is a possibility
that at some combinations of �x and a, there could be more
than one solution. Indeed, this possibility is realized if the
intervals (am,am) for consecutive values of m overlap, that is,

am+1 < am,

which is the case whenever

m > m1 � ln(μ2 + μ + 1)

2 ln μ
− 3

2
. (A4)

Considering that the discrete solution (A3) approximates the
exact critical nucleus solution (73), we have the corresponding
matching point coordinate

x∗ > x∗1 ≈ �xm1, (A5)
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a1(Δx)
a2(Δx)

FIG. 19. (Color online) Nonuniqueness of the discrete critical
nucleus solutions is observed for some a > a1(�x) and for all
a > a2(�x).

and then from (74)

a > a1 ≈ 1
2 (1 − e−2x∗1 ). (A6)

Equations (A2), (A4), (A5), and (A6) define a1 as a function
of �x , such that for a > a1(�x) there can be more than one
discrete solution corresponding to the same a. The graph of
this function is shown in Fig. 19. Similarly, by solving the
inequality

am+2 < am

we get the function a2(�x) such that for a > a2(�x) the
nonuniqueness of the discrete solutions is not only possible,
but is guaranteed (we omit the straightforward but bulky
derivation). The graph of this function is also shown in
Figs. 19.

However, the question of stability of the discrete critical
nucleus solution is more important, even if this solution is
unique. For uj (t) = ûj + vj (t), the linearized system is

dvj

dt
= vj−1 − 2vj + vj+1

�2
x

− vj , j ∈ Z, (A7)

“almost certainly,” again with the exception of the cases when
one of ûj = a exactly. The spectrum of the system (A7) in
	2(Z) is [−1 − 4/�2

x, − 1], with eigenpairs

Wj = exp(iκj ), λ = −1 − 2(1 − cos κ)/�2
x, κ ∈ R.

So the discretized critical nuclei are almost surely asymptot-
ically stable in the linear approximation (remember that we
did not analyze the exceptional cases when uj = a exactly at
some j ). As a result, in our simulations at initiation parameters
close to the threshold, we find distinct “frozen critical nucleus”
solutions, so that the critical curve between ignition and failure
becomes, in fact, a “critical band.” “Convergence” of the
discretized system to the continuous system, as far as the
initiation problem is concerned, is manifested by reduction
of the basin of attraction of the critical nucleus solutions with
decreasing discretization steps, as is also evident in Fig. 19.
This convergence is illustrated in Fig. 20.

APPENDIX B: ON LINEARIZATION OF DISCONTINUOUS
RIGHT-HAND SIDES

Rinzel and Keller [45] obtained operator (75) by formally
differentiating the nonlinearity of (72), apparently having in
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FIG. 20. (Color online) The region where “frozen nuclei” solu-
tions occur in direct numerical simulations of the McKean model (72)
for a = 0.45 and xs = 0.5 and with variation of the space step �x is
located between the two dotted red lines with annotated data points
and is shaded in gray. The thin solid blue lines are lines of linear
extrapolation, the intersection of which, indicated by the violet star
and annotated, is taken as the boundary between decay and ignition.
(b) Comparison between the “frozen” solution obtained by direct
numerical simulation at a = 0.45, xs = 0.5, Us = 2.13, �x = 0.01
and the known exact analytical expression for the critical nucleus (73)
at a = 0.45.

mind a calculation like

∂f (u)

∂u
= ∂f [u(x)]

∂x

/
∂u(x)

∂x

=
(

∂u(x)

∂x

)−1
∂

∂x
[−u + H(x∗ − x)]

= 1

u′(x)
[−u′(x) − δ(x∗ − x)]

= −1 − 1

u′(x∗)
δ(x − x∗).

This might look paradoxical, as the linearization procedure
in its traditional understanding is based on the assumption
of smallness of the increments, whereas discontinuity of the
reaction term means that in some circumstances increments of
those terms are not small when the increments of the arguments
vanish, which is an apparent contradiction. Nevertheless, this
procedure can be mathematically justified.

Consider, as a simple example, a scalar reaction-diffusion
equation for some field u(x,t), with a single discontinuity at
u = 0:

ut = f1(u) + [f2(u) − f1(u)]H(u) + Duxx. (B1)

Let us consider a one-parametric family of solutions, u =
U (x,t ; p), which is continuous and piecewise differentiable
in x, t , and p. We are seeking a differential equation for
v = ∂U/∂p, that is, the linearized equation, or equation in
variations. Since the function v is expected to be discontinuous,
its differential equation will contain singular terms; i.e.,
it should be understood in terms of generalized functions
(distributions).

Suppose that our solution is monotonically decreasing in x

in some region of the (x,t) plane containing the curve x = s(t)
at which U changes sign (the opposite case is considered in a
similar way). Then (B1) can be rewritten as

Ut = f1(U ) + [f2(U ) − f1(U )] H[s(t) − x] + DUxx,

U (s(t),t ; p) = 0.

By differentiating this with respect to p, we have

Utp = f ′
1(U )Up + [f ′

2(U ) − f ′
1(U )] H[s(t) − x]Up

+DUxxp + [f2(0) − f1(0)] δ[s(t) − x] sp,

Up(s(t),t ; p) + Ux(s(t),t ; p) sp = 0.

By excluding sp from this system and setting Up = v, we have

vt = f ′
1(U )v + [f ′

2(U ) − f ′
1(U )] H[s(t) − x]v

+Dvxx + f2(0) − f1(0)

Ux(s,t ; p)
δ[s(t) − x] v,

which is precisely the linearized equation which would be
obtained by formal differentiation of the right-hand side of
(B1) and subsequent replacement of δ(U ) by δ(s − x) using
the chain rule.

APPENDIX C: FINITE-ELEMENT DISCRETIZATION
FOR THE MCKEAN MODEL

For the McKean model, we needed to solve initial-value
problems both for the nonlinear equation,

∂u

∂t
= ∂2u

∂x2
− u + H(u − a),

and its linearization,

∂v

∂t
= ∂2v

∂x2
− v + δ(u − a)v.

These are equivalent (for u decreasing in x) to

∂u

∂t
= ∂2u

∂x2
− u + H(x∗ − x),

∂v

∂t
= ∂2v

∂x2
− v + 1

u′(x∗)
δ(x − x∗)v,

where x∗ = x∗(t) is defined by

u(x∗(t),t) = a.

Both cases required finite-element treatment, and we present
the details for both cases together, by writing both as

∂w

∂t
= ∂2w

∂x2
+ f (w,x),

where w = u, f = −u + H(u − a) = −u + H(x∗ − x)
in one case and w = v, f = −v + δ(u − a)v = −v +
[1/u′(x∗)]δ(x − x∗)v in the other case.

The finite-element method (see, e.g., [61]) is based on a
weak formulation of the problem, which requires that∫ L

0

(x)

{
∂w

∂t
− ∂2w

∂x2
− f (w,x)

}
dx = 0

for any “test function” 
(x). If the variety of the available
test functions is broad enough, then the weak formulation is
equivalent to the original equation. After integration by parts
and taking into account the Neumann boundary conditions for
w, the weak formulation can be formally rewritten as∫ L

0

{

(x)

[
∂w

∂t
− f (w,x)

]
+ ∂


∂x

∂w

∂x

}
dx = 0. (C1)
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The difference is, of course, that whereas the original formu-
lation requires that w is twice differentiable in x, the weak
formulation (C1) uses only first derivatives of w, and can be
applied as long as the test functions 
 are once differentiable.

The standard finite-element method is the Galerkin method
applied to (C1). It uses a set of linearly independent functions,

j (x), j = 0, . . . ,N , called the finite elements, as the test
functions and seeks the approximation of the solution in the
span of this same set:

w(x,t) ≈ w̌(x,t) =
N∑

j=0

w̌j (t)
j (x). (C2)

Substitution of (C2) into (C1) for 
 = 
i , i = 0, . . . ,N , leads
to the system of equations

N∑
j=0

Ai,j

dw̌j

dt
+

N∑
j=0

Bi,j w̌j = Ci(w̌j ), i = 0, . . . ,N,

or in the vector form, for w̌(t) = (w̌j ),

A
dw̌
dt

+ Bw̌ = C, (C3)

where the coefficients are given by

Ai,j =
∫ L

0

i(x)
j (x) dx, (C4a)

Bi,j =
∫ L

0

′

i(x)
′
j (x) dx, (C4b)

Ci(w̌j ) =
∫ L

0

i(x)f

⎡
⎣ N∑

j=0

w̌j
j (x),x

⎤
⎦dx. (C4c)

We use a simple and popular choice of the test functions,
the piecewise linear tent functions,


i(x) =

⎧⎪⎨
⎪⎩

(x − xi−1)/�x, x ∈ [xi−1,xi],

(xi+1 − x)/�x, x ∈ [xi,xi+1],

0, otherwise,

(C5)

for a regular grid of (xi),

xi = i�x, i = 0, . . . ,N, �x = L/N. (C6)

Obviously, in this case 
j (xi) = δi,j and therefore w̌(xi) = w̌i .
For these test functions, (C4) give the mass matrix A = (Ai,j )
as

A = �x

6

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 1 0 · · · 0

1 4 1
...

0
. . .

. . .
. . . 0

... 1 4 1
0 · · · 0 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (C7)

the stiffness matrix B = (Bi,j ) as

B = 1

�x

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0

−1 2 −1
...

0
. . .

. . .
. . . 0

... −1 2 −1
0 · · · 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (C8)

and the load vector C = (Ci) as

C(w̌) = −Aw̌ + F, (C9)

where F = (Fi) and differs for the nonlinear problem and for
the linearized problem.

For the nonlinear problem, w̌ = ǔ, we get F = F(1) + F(2),
where

F
(1)
i = 1

2�x

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�2
x, ǔi−1 > a, ǔi > a,

(x∗ − xi−1)2, ǔi−1 > a, ǔi < a,

�2
x − (x∗ − xi−1)2, ǔi−1 < a, ǔi > a,

0, otherwise,
(C10)

and

F
(2)
i = 1

2�x

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�2
x, ǔi+1 > a, ǔi > a,

(x∗ − xi+1)2, ǔi+1 > a, ǔi < a,

�2
x − (x∗ − xi+1)2, ǔi+1 < a, ǔi > a,

0, otherwise,
(C11)

for i = 1, . . . ,N − 1, and

F0 = 1

4�x

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2�2
x, ǔ0 > a, ǔ1 > a,

(x∗ − x−1)2

+ (x1 − x∗)2, ǔ0 < a, ǔ1 > a,

2�2
x − (x∗ − x−1)2

− (x1 − x∗)2, ǔ0 > a, ǔ1 < a,

0, otherwise,

(C12)

and

FN = 1

4�x

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2�2
x, ǔN−1 > a, ǔN > a,

(x∗ − xN+1)2

+ (xN−1 − x∗)2, ǔN−1 > a, ǔN < a,

2�2
x − (x∗ − xN+1)2

− (xN−1 − x∗)2, ǔN−1 < a, ǔN > a,

0, otherwise,
(C13)

for the boundary points. In these formulas, x∗ is the
point such that ǔ(x∗,t) = a by linear interpolation; i.e.,
for m such that (ǔm − a)(ǔm+1 − a) � 0, we have x∗ =
[(ǔm+1 − a)xm + (a − ǔm)xm+1]/(ǔm+1 − ǔm), and the defi-
nition (C6) is extended to i = −1 and i = N + 1.

042917-25



BEZEKCI, IDRIS, SIMITEV, AND BIKTASHEV PHYSICAL REVIEW E 92, 042917 (2015)

For the linear problem, w̌ = v̌, we get

Fm = 1

a�2
x

[(xm+1 − x∗)2v̌m

+ (xm+1 − x∗)(x∗ − xm)v̌m+1], (C14)

Fm+1 = 1

a�2
x

[(xm+1 − x∗)(x∗ − xm)v̌m

+ (x∗ = −xm)2v̌m+1], (C15)

Fj = 0, j 	= m,m + 1, (C16)

where m and x∗ are defined based on the nonlinear solution ǔ
based on the same rule as above.

APPENDIX D: THE MODIFIED BEELER-REUTER MODEL

The model was proposed in [52]. We use it
in the following formulation: f : (V,h,j,x1,d,f,Ca)� 
→
(fV ,fh,fj ,fx1 ,fd,ff ,fCa)�, where

fV = −IK1 (V ) − Ix1(V,x1)

−INa(V,h,j ) − Is(V,d,f,Ca),

fh = αh(V )(1 − h) − βh(V )h,

fj = αj (V )(1 − j ) − βj (V )j,

fx1 = αx1(V )(1 − x1) − βx1(V )x1,

fd = αd (V )(1 − d) − βd (V )d,

ff = αf (V )(1 − f ) − βf (V )f,

fCa = −10−7Is + 0.07(10−7 − Ca),

where the transmembrane currents are defined by

IK1 (V ) = 0.35(0.3 − α) IK1 (V ),

IK1 (V ) = 4(e0.04(V +85) − 1)

e0.08(V +53) + e0.04(V +53)

+ 0.2(V + 23)

1 − e−0.04(V +23)
,

Ix1(V,x1) = gix(V )x1,

gix(V ) = 0.8
e0.04(V +77) − 1

e0.04(V +35)
,

INa(V,h,j ) = {gNa[m(V )]3 h j + gNac
}(V − ENa),

Is(V,d,f,Ca) = gs d f [V − Es(Ca)],

the m gate is assumed in quasistationary state,

m(V ) = αm(V )/[αm(V ) + βm(V )],

the gate opening and closing rates are defined by

αx1(V ) = 0.0005 e0.083(V +50)

e0.057(V +50) + 1
,

βx1(V ) = 0.0013 e−0.06(V +20)

e−0.04(V +20) + 1
,

αm(V ) = V + 47

1 − e−0.1(V +47)
,

βm(V ) = 40 e−0.056(V +72),

αh(V ) = 0.126 e−0.25(V +77),

βh(V ) = 1.7

e−0.082(V +22.5) + 1
,

αj (V ) = 0.055 e−0.25(V +78)

e−0.2(V +78) + 1
,

βj (V ) = 0.3

e−0.1(V +32) + 1
,

αd (V ) = 0.095 e−0.01(V −5)

e−0.072(V −5) + 1
,

βd (V ) = 0.07 e−0.017(V +44)

e0.05(V +44) + 1
,

αf (V ) = 0.012 e−0.008(V +28)

e0.15(V +28) + 1
,

βf (V ) = 0.0065 e−0.02(V +30)

e−0.2(V +30) + 1
,

and the calcium reversal potential is defined by the Nernst law,

Es(Ca) = −82.3 − 13.0287 ln(Ca).

The parameters of the model are fixed at the values used in
[53–56]: gNa = 0.24, gNac

= 0.003, ENa = 50, gs = 0.045,
and for α we consider two values: α = 0.105 and α = 0.115.
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corresponding to ∂αû; however, this mode does not belong in L1

or L2 so in those spaces the zero is a simple eigenvalue. This
subtlety does not seem to affect the practical applicability of the
theory in this example, but we focus the reader’s attention where
care is required.

[50] Which are natural if we consider the linearized problem in L2

or L1.
[51] We note that while decrements ν1

3 are small for all the four
cases, so the adjoint eigenfunctions look hardly decaying in the
ξ → ∞ asymptotics, the decrements ν2

3 are precisely zero, so
W2 does not belong to the class L2. So in a rigorous treatment of
the problem, one would probably need to consider the linearized
problem in a suitable subspace of L1, so that the adjoint operator
would act in its dual, L∞, which is broad enough to contain such
nondecaying modes as W2.

[52] G. W. Beeler and H. Reuter, Reconstruction of the action
potential of ventricular myocardial fibres, J. Physiol. 268, 177
(1977).

042917-27

http://dx.doi.org/10.1016/j.nonrwa.2006.12.002
http://dx.doi.org/10.1016/j.nonrwa.2006.12.002
http://dx.doi.org/10.1016/j.nonrwa.2006.12.002
http://dx.doi.org/10.1016/j.nonrwa.2006.12.002
http://dx.doi.org/10.1146/annurev.fluid.30.1.365
http://dx.doi.org/10.1146/annurev.fluid.30.1.365
http://dx.doi.org/10.1146/annurev.fluid.30.1.365
http://dx.doi.org/10.1146/annurev.fluid.30.1.365
http://dx.doi.org/10.1140/epjb/e2007-00327-8
http://dx.doi.org/10.1140/epjb/e2007-00327-8
http://dx.doi.org/10.1140/epjb/e2007-00327-8
http://dx.doi.org/10.1140/epjb/e2007-00327-8
http://dx.doi.org/10.1085/jgp.15.6.709
http://dx.doi.org/10.1085/jgp.15.6.709
http://dx.doi.org/10.1085/jgp.15.6.709
http://dx.doi.org/10.1085/jgp.15.6.709
http://dx.doi.org/10.1085/jgp.15.6.731
http://dx.doi.org/10.1085/jgp.15.6.731
http://dx.doi.org/10.1085/jgp.15.6.731
http://dx.doi.org/10.1098/rspb.1936.0012
http://dx.doi.org/10.1098/rspb.1936.0012
http://dx.doi.org/10.1098/rspb.1936.0012
http://dx.doi.org/10.1098/rspb.1936.0012
http://dx.doi.org/10.1098/rspb.1937.0083
http://dx.doi.org/10.1098/rspb.1937.0083
http://dx.doi.org/10.1098/rspb.1937.0083
http://dx.doi.org/10.1098/rspb.1937.0083
http://dx.doi.org/10.1113/jphysiol.1972.sp009998
http://dx.doi.org/10.1113/jphysiol.1972.sp009998
http://dx.doi.org/10.1113/jphysiol.1972.sp009998
http://dx.doi.org/10.1113/jphysiol.1972.sp009998
http://dx.doi.org/10.1090/S0273-0979-1985-15367-4
http://dx.doi.org/10.1090/S0273-0979-1985-15367-4
http://dx.doi.org/10.1090/S0273-0979-1985-15367-4
http://dx.doi.org/10.1090/S0273-0979-1985-15367-4
http://dx.doi.org/10.1016/0022-0396(89)90086-7
http://dx.doi.org/10.1016/0022-0396(89)90086-7
http://dx.doi.org/10.1016/0022-0396(89)90086-7
http://dx.doi.org/10.1016/0022-0396(89)90086-7
http://dx.doi.org/10.1016/S0167-2789(96)00203-5
http://dx.doi.org/10.1016/S0167-2789(96)00203-5
http://dx.doi.org/10.1016/S0167-2789(96)00203-5
http://dx.doi.org/10.1016/S0167-2789(96)00203-5
http://dx.doi.org/10.3934/dcdss.2008.1.263
http://dx.doi.org/10.3934/dcdss.2008.1.263
http://dx.doi.org/10.3934/dcdss.2008.1.263
http://dx.doi.org/10.3934/dcdss.2008.1.263
http://dx.doi.org/10.1137/0150083
http://dx.doi.org/10.1137/0150083
http://dx.doi.org/10.1137/0150083
http://dx.doi.org/10.1137/0150083
http://dx.doi.org/10.1103/PhysRevLett.101.244101
http://dx.doi.org/10.1103/PhysRevLett.101.244101
http://dx.doi.org/10.1103/PhysRevLett.101.244101
http://dx.doi.org/10.1103/PhysRevLett.101.244101
http://dx.doi.org/10.1137/0522025
http://dx.doi.org/10.1137/0522025
http://dx.doi.org/10.1137/0522025
http://dx.doi.org/10.1137/0522025
http://dx.doi.org/10.1103/PhysRevE.76.021906
http://dx.doi.org/10.1103/PhysRevE.76.021906
http://dx.doi.org/10.1103/PhysRevE.76.021906
http://dx.doi.org/10.1103/PhysRevE.76.021906
http://dx.doi.org/10.1016/S0167-2789(97)00304-7
http://dx.doi.org/10.1016/S0167-2789(97)00304-7
http://dx.doi.org/10.1016/S0167-2789(97)00304-7
http://dx.doi.org/10.1016/S0167-2789(97)00304-7
http://dx.doi.org/10.1142/S0218127496001582
http://dx.doi.org/10.1142/S0218127496001582
http://dx.doi.org/10.1142/S0218127496001582
http://dx.doi.org/10.1142/S0218127496001582
http://dx.doi.org/10.1103/PhysRevE.81.046702
http://dx.doi.org/10.1103/PhysRevE.81.046702
http://dx.doi.org/10.1103/PhysRevE.81.046702
http://dx.doi.org/10.1103/PhysRevE.81.046702
http://dx.doi.org/10.1143/PTP.63.1885
http://dx.doi.org/10.1143/PTP.63.1885
http://dx.doi.org/10.1143/PTP.63.1885
http://dx.doi.org/10.1143/PTP.63.1885
http://dx.doi.org/10.1016/0167-2789(89)90028-6
http://dx.doi.org/10.1016/0167-2789(89)90028-6
http://dx.doi.org/10.1016/0167-2789(89)90028-6
http://dx.doi.org/10.1016/0167-2789(89)90028-6
http://dx.doi.org/10.1103/PhysRevLett.107.108101
http://dx.doi.org/10.1103/PhysRevLett.107.108101
http://dx.doi.org/10.1103/PhysRevLett.107.108101
http://dx.doi.org/10.1103/PhysRevLett.107.108101
http://dx.doi.org/10.1016/0021-9991(76)90110-8
http://dx.doi.org/10.1016/0021-9991(76)90110-8
http://dx.doi.org/10.1016/0021-9991(76)90110-8
http://dx.doi.org/10.1016/0021-9991(76)90110-8
http://dx.doi.org/10.1007/BF00250432
http://dx.doi.org/10.1007/BF00250432
http://dx.doi.org/10.1007/BF00250432
http://dx.doi.org/10.1007/BF00250432
http://dx.doi.org/10.1016/0001-8708(70)90023-X
http://dx.doi.org/10.1016/0001-8708(70)90023-X
http://dx.doi.org/10.1016/0001-8708(70)90023-X
http://dx.doi.org/10.1016/0001-8708(70)90023-X
http://dx.doi.org/10.1007/BF01379769
http://dx.doi.org/10.1007/BF01379769
http://dx.doi.org/10.1007/BF01379769
http://dx.doi.org/10.1007/BF01379769
http://dx.doi.org/10.1016/S0006-3495(73)86065-5
http://dx.doi.org/10.1016/S0006-3495(73)86065-5
http://dx.doi.org/10.1016/S0006-3495(73)86065-5
http://dx.doi.org/10.1016/S0006-3495(73)86065-5
http://dx.doi.org/10.1137/0147038
http://dx.doi.org/10.1137/0147038
http://dx.doi.org/10.1137/0147038
http://dx.doi.org/10.1137/0147038
http://dx.doi.org/10.1007/BF02124750
http://dx.doi.org/10.1007/BF02124750
http://dx.doi.org/10.1007/BF02124750
http://dx.doi.org/10.1007/BF02124750
http://dx.doi.org/10.1103/PhysRevLett.89.168102
http://dx.doi.org/10.1103/PhysRevLett.89.168102
http://dx.doi.org/10.1103/PhysRevLett.89.168102
http://dx.doi.org/10.1103/PhysRevLett.89.168102
http://dx.doi.org/10.1113/jphysiol.1977.sp011853
http://dx.doi.org/10.1113/jphysiol.1977.sp011853
http://dx.doi.org/10.1113/jphysiol.1977.sp011853
http://dx.doi.org/10.1113/jphysiol.1977.sp011853


BEZEKCI, IDRIS, SIMITEV, AND BIKTASHEV PHYSICAL REVIEW E 92, 042917 (2015)

[53] A. Arutunyan, A. Pumir, V. I. Krinsky, L. M. Swift, and
N. Sarvazyan, Behavior of ectopic surface: Effects of beta-
adrenergic stimulation and uncoupling, Am. J. Physiol. Heart
Circ. Physiol. 285, H2531 (2003).

[54] A. Pumir, A. Arutunyan, V. Krinsky, and N. Sar-
vazyan, Genesis of ectopic waves: Role of coupling,
automaticity, and heterogeneity, Biophys. J. 89, 2332
(2005).

[55] V. N. Biktashev, A. Arutunyan, and N. A. Sarvazyan, Generation
and escape of local waves from the boundary of uncoupled
cardiac tissue, Biophys. J. 94, 3726 (2008).

[56] V. N. Biktashev, I. V. Biktasheva, and N. A. Sarvazyan,
Evolution of spiral and scroll waves of excitation in a math-
ematical model of ischaemic border zone, PLoS One 6, e24388
(2011).

[57] R. D. Simitev and V. N. Biktashev, Conditions for propagation
and block of excitation in an asymptotic model of atrial tissue,
Biophys. J. 90, 2258 (2006).

[58] K. J. Hughes, J. Brindley, and A. C. McIntosh, Initiation and
propagation of combustion waves with competitive reactions and
water evaporation, Proc. R. Soc. London, Ser. A 469, 20130506
(2013).

[59] A. Hoffman and J. Mallet-Paret, Universality of crystallographic
pinning, J. Dyn. Differ. Equations 22, 79 (2010).

[60] H. J. Hupkes, D. Pelinovsky, and B. Sandstede, Propagation
failure in the discrete Nagumo equation, Proc. Am. Math. Soc.
139, 3537 (2011).

[61] J. N. Reddy, An Introduction to the Finite Element Method,
McGraw-Hill Series in Mechanical Engineering (McGraw-Hill,
New York, 2006).

042917-28

http://dx.doi.org/10.1152/ajpheart.00381.2003
http://dx.doi.org/10.1152/ajpheart.00381.2003
http://dx.doi.org/10.1152/ajpheart.00381.2003
http://dx.doi.org/10.1152/ajpheart.00381.2003
http://dx.doi.org/10.1529/biophysj.105.061820
http://dx.doi.org/10.1529/biophysj.105.061820
http://dx.doi.org/10.1529/biophysj.105.061820
http://dx.doi.org/10.1529/biophysj.105.061820
http://dx.doi.org/10.1529/biophysj.107.117630
http://dx.doi.org/10.1529/biophysj.107.117630
http://dx.doi.org/10.1529/biophysj.107.117630
http://dx.doi.org/10.1529/biophysj.107.117630
http://dx.doi.org/10.1371/journal.pone.0024388
http://dx.doi.org/10.1371/journal.pone.0024388
http://dx.doi.org/10.1371/journal.pone.0024388
http://dx.doi.org/10.1371/journal.pone.0024388
http://dx.doi.org/10.1529/biophysj.105.072637
http://dx.doi.org/10.1529/biophysj.105.072637
http://dx.doi.org/10.1529/biophysj.105.072637
http://dx.doi.org/10.1529/biophysj.105.072637
http://dx.doi.org/10.1098/rspa.2013.0506
http://dx.doi.org/10.1098/rspa.2013.0506
http://dx.doi.org/10.1098/rspa.2013.0506
http://dx.doi.org/10.1098/rspa.2013.0506
http://dx.doi.org/10.1007/s10884-010-9157-2
http://dx.doi.org/10.1007/s10884-010-9157-2
http://dx.doi.org/10.1007/s10884-010-9157-2
http://dx.doi.org/10.1007/s10884-010-9157-2
http://dx.doi.org/10.1090/S0002-9939-2011-10757-3
http://dx.doi.org/10.1090/S0002-9939-2011-10757-3
http://dx.doi.org/10.1090/S0002-9939-2011-10757-3
http://dx.doi.org/10.1090/S0002-9939-2011-10757-3



