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Ray-wave correspondence in chaotic dielectric billiards
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Based on the reformulation of the boundary integral equations recently derived by Creagh, Hamdin, and Tanner
[J. Phys. A: Math. Theor. 46, 435203 (2013)] together with semiclassical (short wavelength) approximation, we
theoretically show that low-loss resonances of a fully chaotic dielectric billiard can be related with ray dynamical
orbits whose intensities are weighted by the Fresnel reflection and transmission coefficients. In addition, it is
revealed that intensity localization spots observed in the phase-space representation of an individual resonance
wave function are ray-dynamically correlated.
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Ray and wave dynamics in microcavities are analogous to
the classical and quantum descriptions of particle dynamics in
billiards, which have extensively been studied as typical mod-
els for ergodic and quantum-chaos theories in mathematics and
physics [1–11]. Microcavity lasers whose billiard dynamics is
chaotic (chaotic billiard lasers, in short [12]) have attracted
much attention not only because they are interesting from a
fundamental-physics viewpoint but also because they enable
novel applications that cannot be implemented by conventional
lasers [12–24].

Chaotic billiard lasers are able to emit lights in all two-
dimensional directions. One of their important characteris-
tics is a far-field pattern of the light intensity, which has
been experimentally measured for various microcavity shapes
[14,17,20–22,25–28]. The far-field pattern can be numerically
calculated by the wave and ray models. The wave model is
based on resonance wave functions that are the solutions of
the Helmholtz equation under relevant boundary conditions
[20–22,29,30]. On the other hand, the ray model is constructed
in a somewhat ad hoc manner, by describing the dielectric
boundary by the Fresnel coefficients. Although the ray model
has not been fully validated, it has been frequently employed
and shown to be capable of very well reproducing exper-
imentally measured far-field patterns as well as numerical
results calculated by the wave model [13,14,17–22,27,31–38].
Also, the importance of the ray dynamics weighted by the
Fresnel coefficients has been demonstrated in the application
of the fractal Weyl law to the resonances of dielectric billiards
[39]. However, less theoretical studies have been performed to
explain the remarkable ray-wave correspondences in chaotic
dielectric billiards.

The purpose of this paper is to provide a theoretical
explanation on the reason why the ray model can reproduce
the results of the wave model so well. By semiclassical
(short wavelength) theory based on the recently established
formulation of the boundary integral equation by Creagh,
Hamdin, and Tanner [40], we show that low-loss resonances
correspond to the steady intensity distribution of the ray
model. The key idea here is the iterative application of the
transfer operator derived by Creagh, Hamdin, and Tanner to a
wave function. It is assumed in this paper that the dielectric
billiard has a convex shape and its ray dynamics is fully
chaotic.

First, we briefly review the wave model [20–22,29,30]. The
light fields are considered as the classical electromagnetic
fields, and the resonant modes of a dielectric billiard are
obtained as the eigenstates of the Helmholtz equation derived
from the Maxwell equations,

(∇2 + n2k2)ψ = 0, (1)

where k is a wave number and n is a refractive index which
changes sharply at the billiard edge. Equation (1) describes the
light confinement by the dielectric billiard, where the refractive
index inside the billiard nin is higher than that outside the
billiard nout. Equation (1) is solved with the outgoing radiation
condition at infinity. Since this condition imposes a constant
emission without a gain, the resulting eigenstates are decaying.
The decaying eigenstates are called resonances. A resonance
is characterized by a complex wave number, whose real part
represents the frequency, while the imaginary part the decay
rate.

Next, we explain the ray model [13,16,31,34–38]. For a
dielectric billiard, some portion of the intensity escapes from
the billiard, whenever a ray orbit hits the boundary, obeying
the Fresnel reflection and transmission coefficients R and T ,
where T = 1 − R. R can be expressed as a function of
incident and transmission angles ϕ and ϕt subject to Snell’s
law nin sin ϕ = nout sin ϕt . For example, for TM polarization,
we have R = [sin(ϕ − ϕt )/ sin(ϕ + ϕt )]2. When a ray orbit
is totally internally reflected (i.e., | sin ϕ| > nout/nin), we have
R = 1 (i.e., T = 0) [41]. In the ray model, it is supposed that a
reflected ray, which had the intensity ε before the reflection has
the intensityRε, while the transmitted ray has the intensityT ε.
Tracing ray dynamics for an ensemble of rays and collecting
transmitted intensities as a function of the polar angle ϕ, one
obtains a far-field emission pattern for the ray model.

Recently, Creagh, Hamdin, and Tanner succeeded in refor-
mulating the boundary integral equations. This reformulation
brings a clearer viewpoint in understanding wave phenomena
in a region surrounded by boundaries [40]. Here we briefly
review this new formalism as we apply it to bridge the gap
between the ray and wave models for fully chaotic dielectric
billiards.

Equation (1) combined with the outgoing radiation condi-
tion can be rewritten by the conventional boundary integral
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equation as

ψ = Ĝ0μ − Ĝ1ψ, (2)

where μ is a normal derivative of the wave function,

μ(s) ≡ ∂ψ(s)

∂νs

, (3)

and the Green operators Ĝ0 and Ĝ1 are defined as

Ĝ0(s)μ(s) ≡ lim
r→s

∮
∂B

ds ′G0(r,s ′; nk)μ(s ′), (4)

and

Ĝ1ψ(s) ≡ lim
r→s

∮
∂B

ds ′ ∂G0(r,s ′; nk)

∂νs ′
ψ(s ′). (5)

In the above, ψ(s) denotes the solution of Eq. (1) restricted on
the billiard boundary where s denotes an arc-length coordinate,
and the free Green function is defined by

(∇2 + n2k2)G0(r,r ′; nk) = −δ(r − r ′). (6)

Creagh, Hamdin, and Tanner [40] decomposed the Green
operators into a singular and a regular part as Ĝ0 = Ĝ0

sing +
Ĝ0

reg
and Ĝ1 = Ĝ1

sing + Ĝ1
reg

, and rewrote Eq. (2) using an
outgoing wave ψ+(s) from the billiard boundary and ψ−(s) an
incoming wave, where ψ+ = Ĝ0

sing
μ − Ĝ1

sing
ψ and ψ− =

Ĝ0
reg

μ − Ĝ1
reg

ψ , and the resonance wave function ψ of the
solution for the Helmholtz Eq. (1) is given by ψ(s) = ψ+(s) +
ψ−(s). Then ψ+(s) satisfies the following equation expressed
as the transfer operator form,

ψ+ = T̂ ψ+, (7)

where T̂ ≡ r̂ Ŝ and ψ−(s) = Ŝψ+(s), and r̂ corresponds to the
reflection while Ŝ the propagation.

The resonances can be obtained as the complex wave
numbers satisfying the secular equation,

det[Î − T̂ (k)] = 0. (8)

This type of equation can be derived for the Dirichlet or
Neumann boundary conditions without the reformulation of
the conventional boundary integral Eq. (2). However, for
dielectric billiards, the boundary integral equations include
both wave functions and their normal derivatives, and the
secular equation like Eq. (8) had not been derived, although the
semiclassical transfer operator method has been proposed [42].
This newly derived reformulation of the boundary integral
equation plays an essential role in understanding how the ray
model arises from the wave description.

Creagh, Hamdin, and Tanner [40] obtained the follow-
ing short wavelength approximations. The ray-dynamical
limit r(s,s ′) of r̂ is the Fresnel reflection coefficients;
tan[ϕ(s,s ′) − ϕt (s,s ′)]/ tan[ϕ(s,s ′) + ϕt (s,s ′)] for TE modes
and − sin[ϕ(s,s ′) − ϕt (s,s ′)]/ sin[ϕ(s,s ′) + ϕt (s,s ′)] for TM
modes, where ϕ(s,s ′) denotes the angle between the vector
[r(s ′) − r(s)] and the outer normal vector n(s ′) at the point s ′,
and ϕt (s,s ′) denotes the transmission angle depending on the
refractive indices as well as the incident angle.

The semiclassical limit of the kernel of Ŝ is given by

S(s,s ′) �
√

nk

2πi

1

cos ϕ(s,s ′)
∂2L

∂s∂s ′ cos ϕ(s ′,s)einkL, (9)

where L = L(s,s ′) denotes the distance between the points s

and s ′, i.e., L(s,s ′) ≡ |r(s) − r(s ′)|. These semiclassical ap-
proximations provide a connection between wave phenomena
and ray orbits. For example, the straightforward semiclassical
limit of the left-hand side of Eq. (8) yields the Gutzwiller-Voros
ζ function [42–45] for dielectric billiards. The resulting
formula includes the refractive indices in the weights of the
conventional periodic orbit contributions [46,47].

In the field of optics, an iterative method developed by Fox
and Li has been widely used for calculating resonant modes
for optical cavities [48–51]. The Fox-Li method is based on
the same boundary integral equation as Eq. (2), but is very
different from a straightforward method such as the boundary
element method [30]. It is usually applied to conventional
one-dimensional cavities consisting of two perfect end mirrors.
The method computes beam propagation from one end mirror
to the other, and the round-trip calculations are repeated with an
initial light-field distribution. Although reflection losses at the
end mirrors are not considered, the light intensities are always
decreasing under iterative beam propagation, where the losses
are caused by the leakage through long nonreflecting side-wall
mirrors. As the result of the iterative beam propagation, the
light-field distribution finally converges to that of a resonant
mode.

The Fox-Li method cannot be directly applied to two-
dimensional dielectric billiards, because their boundaries
cannot be simply divided into perfect mirrors and leaky mirrors
as in the conventional one-dimensional cavities. However,
the transfer operator of Creagh, Hamdin, and Tanner [40]
allows us to formulate a leaky wave propagation similar to the
Fox-Li method even for two-dimensional dielectric billiards.
To illustrate this idea, we consider the following mapping of
the wave function by the transfer operator with a real wave
number in the semiclassical limit,

ψ+,1(s) =
∮

∂B

ds ′r(s,s ′)S(s,s ′)ψ+,0(s ′), (10)

where the initial outgoing wave function ψ+,0 on the billiard
boundary is propagated, reflected, and transmitted to construct
the outgoing wave function ψ+,1. Because transmission occurs
at the billiard boundary and the kernel is calculated with a
real wave number, the intensity of ψ+,1 is smaller than that
of ψ+,0. Thus, when the outgoing wave function is mapped
iteratively m times by the transfer operator and m is large
enough, the wave function ψ+,m converges to the most slowly
decaying eigenmode φ+(s) contained in ψ+,0(s), where φ+(s)
is characterized by the decay rate γ L̄ with L̄ being the average
of the increase of the length of ray orbits at one mapping
on the billiard boundary, i.e., ψ+,m(s) � e−γ L̄mφ+(s) when
m � 1. Depending on the choice of the initial wave function
ψ+,0, the most slowly decaying eigenmode φ+ can change.
This situation corresponds to the existence of infinitely many
invariant measures in open systems.
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The iterative mapping is written explicitly as follows,

ψ+,m(s) =
∮

∂B

· · ·
∮

∂B

ds0 · · · dsm−1r(s,sm−1)S(s,sm−1) · · · r(s1,s0)S(s1,s0)ψ+,0(s0) =
∮

∂B

· · ·
∮

∂B

ds0 · · · dsm−1

(
nk

2πi

)m/2

×
⎡
⎣m−1∏

j=0

cos ϕ(sj+1,sj )

cos ϕ(sj ,sj+1)

∂2L

∂sj∂sj+1

⎤
⎦

1/2⎡
⎣m−1∏

j=0

r(sj ,sj+1)

⎤
⎦ exp {inkL(s,sm−1, . . . ,s0)}ψ+,0(s0), (11)

where sm ≡ s and the sum of L(sj ,sj+1) defines the total length L(s,sm−1, . . . ,s0) ≡ ∑m−1
i=0 L(sj ,sj+1). We apply the stationary

phase approximation to the multiple integrals except for the integral concerning s0, and obtain

ψ+,m(s) �
∮

∂B

ds0

∑
r.o.

s0 → s

√
nk

2πi√
cos ϕ(s∗

m−1,s)

⎛
⎝m−1∏

j=0

r(s∗
j ,s

∗
j+1)

⎞
⎠

∣∣∣∣∣∣
⎛
⎝m−1∏

j=0

Mj+1←j

⎞
⎠

12

∣∣∣∣∣∣
−1/2

× exp

{
inkL(s,s∗

m−1, . . . ,s
∗
1 ,s0) − σ

2
πi

}√
cos ϕ(s∗

1 ,s0)ψ+,0(s0). (12)

Here the summation should be taken over all of the ray orbits subject to the law of reflection, which start from s0 and reach s in
m − 1 reflections at the points s∗

1 , . . . ,s∗
m−1, and σ is the number of focal points of the ray orbit. Mj+1←j represents the matrix

linearized in the vicinity of the ray orbit in the Birkhoff coordinates, i.e.,(
δsj+1

δ(sin ϕj+1)

)
= Mj+1←j

(
δsj

δ(sin ϕj )

)
, (13)

and it is calculated by the geometrical information of the ray orbit as

Mj+1←j = −
(

1 0

0 cos ϕj+1

)( 1
cos ϕj+1

0
K(sj+1)
cos ϕj+1

1

)(
1 L(sj ,sj+1)

0 1

)(
cos ϕj 0

K(sj ) 1

)(
1 0

0 1
cos ϕj

)
, (14)

where ϕj ≡ ϕ(sj+1,sj ), and K(sj ) is the curvature of the billiard boundary measured by the outer normal at the point sj .

The ray orbits connecting the points s0 and s proliferate
exponentially with the exponent of topological entropy when
m is large enough. On the other hand, the denominator of
the ray orbit contribution in the ray orbit sum expressed by
the product of the linearized matrices increases exponentially
with the exponent of a half of the Lyapunov exponent. Thus,
the situation looks similar to that of the periodic orbit sum
of the Gutzwiller formula [44]. However, the product of the
Fresnel coefficients of the ray orbit contribution decreases
exponentially, so that the number of dominantly contributing
ray orbits inside the billiard decreases exponentially with the
exponent similar to the escape rate. Accordingly, as far as
the difference of the refractive indices inside and outside the
billiard is small, the ray orbit sum can be expected to be
absolutely convergent. Otherwise, it might be conditionally
convergent at best.

Equation (12) connects the ray model with the wave
function. Before discussing the implications of Eq. (12), let
us review the steady distribution of the ray model. In the
course of ray dynamical time evolution, the intensities of ray
orbits decrease due to the transmission described by Fresnel’s
law. For example, a ray orbit of the bouncing-ball mode type
loses its intensity very rapidly, while a ray orbit confined
by total internal reflection never decays. For a fully chaotic
billiard, because any ray orbit (except for those with zero
measure) will violate the critical angle condition at some
points, the intensities of almost all orbits are decreasing. It
has been numerically shown that the total intensity of a ray

ensemble initially distributed uniformly over the phase space
is exponentially decaying asymptotically [21,34]. Factoring
out this exponential decay, one can obtain a steady intensity
distribution in the phase space. In Fig. 1(b), we show the
steady intensity distribution obtained by the ray model for
Bunimovich’s stadium dielectric billiard [defined in Fig. 1(a)]
with nin = 3.3 and nout = 1 (for a numerical procedure to
generate this distribution, see Ref. [34]), where the darker
the color, the stronger the intensity. Here, the phase space is
spanned by the Birkhoff coordinates (s, sin ϕ), where s and ϕ

are the arc-length along the billiard boundary and the incident
angle, as defined in Fig. 1(a). The structure of the steady
phase-space intensity distribution is closely related with that
of the unstable manifolds from the unstable periodic points
located close to the critical angle for total internal reflection
(i.e., sin ϕ = ±nin/nout) [38]. We note that the white (i.e.,
very leaky) regions around (s, sin ϕ) = (0.25, 0) and (s, sin ϕ)
= (0.75, 0) correspond to the phase-space areas around the
bouncing-ball orbits (i.e., normal-incidence orbits bouncing
between the two linear segments of the stadium billiard).

Equation (12) can be viewed as the wave-model counterpart
of the intensity mapping of the ray model. Because of the
multiplicative effect of the Fresnel reflection coefficient in
Eq. (12) similar to that of the ray model, we can suppose that
the most slowly decaying mode of Eq. (12) (in the sense of
a Fox-Li type iteration) would have a phase-space intensity
distribution whose support is contained in the support of the
steady phase-space intensity distribution of the ray model. On
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FIG. 1. (Color) (a) Geometry of the stadium billiard and the
definition of the variables s and ϕ for the Birkhoff coordinates
(s, sin ϕ). (b) Phase-space intensity distribution obtained by the
ray mode for the stadium dielectric billiard with refractive index
nin = 3.3 (refractive index outside the billiard is nout = 1). (c) Husimi
distribution of the wave function for a low-loss mode with the
wave number k = 99.98 − i 0.0058. The wave function is calculated
by numerically solving Eq. (1) for the stadium dielectric billiard
imposing the boundary condition for TM polarization. (d) The
average of the Husimi distributions for 28 low-loss modes in the
wave number region Re k ∈ [99.95, 100.05] and Im k > −0.0088.
In (b)–(d), the darker the color, the stronger the intensity, and the
horizontal axis s is normalized by the total boundary length.

the other hand, a fast-decaying mode would have a phase-space
intensity distribution whose support does not overlap so much
with that of the steady phase-space intensity distribution of the
ray model. Here we only focus our attention on the intensity of
the wave function, but a detailed analysis of phase information
in Eq. (12) might be useful for studying the effects such as
Goos-Hänchen shift as has been done for a circular dielectric
billiard in Ref. [40].

Mathematically, there is a gap between the resonances of
the stationary problem of Eq. (1) and the decaying modes of
the iterative formalism applied to Eq. (1). However, physically
it seems natural to relate low-loss modes of the former to
slowly decaying modes of the latter. Assuming this relation,
we examine if the ray-wave correspondence discussed above
based on Eq. (12) can be applied to the interpretation of
the wave functions of low-loss resonances. For this purpose,
we employ here the Husimi phase-space distribution of a
wave function corresponding to an incoming ray to the
billiard boundary [52]. In Figs. 1(c) and 1(d), we respectively
show the Husimi distribution for a single low-loss resonance
for the stadium dielectric billiard with the wave number
k = 99.98 − i 0.0058 and the distribution obtained by av-
eraging the Husimi distributions for 28 low-loss modes
detected in the wave number region Re k ∈ [99.95, 100.05]

and Im k > −0.0088. The resonances and wave functions are
numerically calculated by the boundary element method [30],
imposing the boundary condition for TM polarization and the
outgoing radiation condition at the infinity. The comparison
between Figs. 1(b) and 1(c) reveals that high-intensity phase-
space spots for the Husimi distribution are supported on
the ray-dynamical steady phase-space intensity distribution,
which coincides with the prediction of Eq. (12) that a
low-loss mode has an intensity distribution whose support
is contained in that of the ray-dynamical steady intensity
distribution.

Moreover, comparing Figs. 1(b) and 1(d), we can find that
the average of Husimi distributions for many low-loss modes
closely reproduces the ray-dynamical intensity distribution.
This finding suggests that taking a uniform phase-space distri-
bution as the initial condition for the ray model is physically
meaningful in the sense that it generates a ray-dynamical
distribution corresponding to low-loss resonances. We note
that such a collective correspondence explains the reason
why the ray model reproduces experimental data better for
multimode lasing than for a single-mode lasing [36,37,53,54].

FIG. 2. (Color) Husimi distribution for a low-loss mode with the
wave number k = 99.98 − i 0.0058 [same as Fig. 1(c)], superposed
with information on how a circular area labeled by xj (j = 0, . . . ,5)
containing a high-intensity spot is mapped to another (elongated) area
labeled by yj (j = 0, . . . ,5) under the ray dynamics.
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We also note that the ray-wave correspondence shown here
looks similar to classical-quantum correspondence observed
in open quantized chaotic maps [55–59].

In addition, even for a single-wave function, Eq. (12) sug-
gests the existence of a correlation between the wave function
values at two different boundary points, ϕ+,j (s ′) and ϕ+,j (s),
through ray orbits connecting s ′ and s. In general, there are
multiple ray orbits reaching the point s ′ with different incident
angles and momenta. These different momentum contributions
can be resolved by the phase-space representation of the wave
function. In order to check if we can observe a ray-dynamical
correlation for the boundary values of a single resonance wave
function, we numerically investigated how the area corre-
sponding to a high-intensity spot of the Husimi distribution
is mapped by the ray dynamics. In Figs. 2(a)–2(f), the Husimi
distribution of the wave function for the low-loss mode with
the wave number k = 99.98 − i0.0058 is superposed with
the information on how a circular area located around a
high-intensity spot of the Husimi distribution is mapped by
the ray dynamics. The circular areas are denoted by black
circles and labeled by xj (j = 0, . . . ,5), while the mapped
(elongated) areas are labeled by yj (j = 0, . . . ,5). In Fig. 2,
we can see that the mapped area yj (j = 0, . . . ,4) significantly

overlaps with the other high-intensity spot(s) of the Husimi
distribution, although for y5, the mapped area is so elongated
that the overlap with a high-intensity spot is subtle. We show
here the ray-dynamical correlation only for a specific low-loss
mode, but we confirmed that this property can be generally
observed for the resonances of the stadium dielectric billiard.
We expect that the semiclassical formulation of the Husimi
distribution would enable more detailed understanding on
the observed ray-dynamical correlation. We note that similar
ray-dynamical correlations in the phase-space representation
of an eigenfunction have been observed for a closed quantized
chaotic map [60].

In summary, for fully chaotic dielectric billiards with
convex shape, we obtained the semiclassical approximation
for the iteration of the transfer operator recently derived
by Creagh, Hamdin, and Tanner [40], which connects the
intensity distributions of the ray and wave models. Through
this semiclassical approximation, we presented a theoretical
explanation on the correspondence between the phase-space
pattern of a low-loss resonance wave function and the steady
phase-space distribution of the ray model.

The authors thank Prof. Jan Wiersig for useful discussions.
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