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Bifurcations in models of a society of reasonable contrarians and conformists
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We study models of a society composed of a mixture of conformist and reasonable contrarian agents that at
any instant hold one of two opinions. Conformists tend to agree with the average opinion of their neighbors and
reasonable contrarians tend to disagree, but revert to a conformist behavior in the presence of an overwhelming
majority, in line with psychological experiments. The model is studied in the mean-field approximation and on
small-world and scale-free networks. In the mean-field approximation, a large fraction of conformists triggers a
polarization of the opinions, a pitchfork bifurcation, while a majority of reasonable contrarians leads to coherent
oscillations, with an alternation of period-doubling and pitchfork bifurcations up to chaos. Similar scenarios are
obtained by changing the fraction of long-range rewiring and the parameter of scale-free networks related to the

average connectivity.
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I. INTRODUCTION

The study of social dynamics and opinion formation in
a society is an interesting topic in statistical physics [1-3].
We study a society whose agents have one of two opinions
that change synchronously in time. Opinion formation models
where agents have a continuous opinion have also been studied
extensively [1,4-6]. It is common to classify the attitude
of people (agents) as either conformist or contrarian (also
known as nonconformist). A conformist tends to agree with
his neighbors and a contrarian to disagree. Clearly, this is a
crude approximation of society, but the one we follow below.

Models where agents can express one of two opinions are in
many cases extensions of the Ising model where the collective
opinion is the equivalent of magnetization. The site variable
represents an agent’s opinion and the coupling of a conformist
agent with neighbors is ferromagnetic and that of a contrarian
agent is antiferromagnetic [1,7]. The simple ferromagnetic
Ising model represents a uniform society of conformists with
local interactions. Many aspects of this model may be varied:
the interaction network, which in societies is quite different
from a regular lattice; the uniformity of the society; and the
response to the others’ influence.

Contrarians were introduced in a different sociophysical
model by Galam [8,9]. In this case they had the effect
of destroying consensus in a society mainly formed by
conformists. When the fraction of contrarians becomes opinion
dependent, chaotic dynamics is present [10]. The presence
of contrarian agents in a society has been studied in models
related to the voter model [11-15].

One of most intriguing effects is the hipster’s, in which a
society of contrarians tends to behave in a uniform way due
to a sort of synchronization effect [16]. Clearly, conformist

*franco.bagnoli @unifi.it
rrs@ier.unam.mx

1539-3755/2015/92(4)/042913(8)

042913-1

PACS number(s): 05.45.Ac, 05.50.+q, 64.60.aq, 64.60.Ht

hipsters always change their behavior when they realize
they are still in the mainstream. This effect is due to a
sort of synchronization among people and we show that,
paradoxically, this synchronization can be promoted by a
fraction of conformists.

Individuals that are under strong social pressure tend to
agree with the great majority even when they are certain that the
majority’s opinion is wrong, as shown by Asch [17]. An agent
can be either a conformist who agrees with one’s neighbors or
a contrarian who disagrees: a linear interaction. Under strong
social pressure a contrarian may agree with a large majority:
a nonlinear interaction. Following an overwhelming majority
is an ecological strategy since it is probable that this coherent
behavior is due to some unknown piece of information and
in any case the competitive loss is minimal since it equally
affects the other agents.

In a previous work [7] we referred to this nonlinear
contrarian attitude as areasonable contrarian. There we studied
the collective behavior of a uniform society of reasonable
contrarian agents. The rationale was that in some cases, in
particular in the presence of frustrated situations such as in
minority games [18], it is inconvenient to always follow the
majority since in this case one is always on the losing side of
the market. This is one of the main reasons for the emergence
of a contrarian attitude. On the other hand, if all or almost all
agents in a market make the same decision, it is often wise to
follow such a trend. We call such a situation the social norm.
A society fully composed of reasonable contrarians exhibits
interesting behaviors when changing the topology of the
connections. On a one-dimensional regular lattice, there is no
long-range order, the evolution is disordered, and the average
opinion is always halfway between the extreme values 0 and 1.
However, adding long-range connections or rewiring existing
ones, we observe the Watts-Strogatz small-world effect, with
a transition towards a mean-field behavior. However, since in
this case the mean-field equation is, for a suitable choice of
parameters, chaotic, we observe the emergence of coherent
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oscillations, with a bifurcation cascade eventually leading to
a chaoticlike behavior of the average opinion. The small-
world transition is essentially a synchronization effect. Similar
effects with a bifurcation diagram resembling that of the
logistic map have been observed in a different model of adapt
if novel and drop if ubiquitous behavior, upon changing the
connectivity [19,20].

Since a homogeneous society of unreasonable contrarians
is not so reasonable, we study here the collective behavior
of a society composed of a mixture of conformists and
contrarians. To keep things simple, reasonable contrarian and
conformist agents have the same behavior in the presence of
an overwhelming majority of their neighbors. Conformists
become less conformist in the presence of a large majority.
We can call them slightly unreasonable. The presence of
reasonable contrarians and slightly unreasonable contrarians
avoids absorbing states, which are rather unusual in real
societies.

In the presence of a strong fraction of conformists, we have
the classical ferromagnetic Ising scenario, with the appearance
of a stationary average opinion different from one-half. As this
fraction becomes smaller, this polarized opinion vanishes, as
expected. What is unexpected is the appearance of another
bifurcation, with oscillations and the transition to chaos or
disorder as the fraction of conformists becomes smaller.

The outline of the present paper is as follows. In Sec. Il we
present the model in detail. Its mean-field approximation is
discussed in Sec. III. Then the model is studied on small-world
networks in Sec. IV and on scale-free networks in Sec. V. A
summary is given in Sec. VI.

II. MODEL

Our model society is formed by N agents with a fraction
& of conformists and a fraction 1 — £ of contrarians. Agent
i,i=0,...,N —1, holds an opinion s(i,¢) € {0,1} at time
t. The opinions of all agents change synchronously in time.
Agent i gathers the average opinion of neighbors and changes
one’s opinion, tending to agree with neighbors if one is a
conformist or to disagree if one is a contrarian.

The neighborhoods of all agents are defined by the
adjacency matrix A with components a;; € {0,1} in a way
such that a;; = 1 if agent j belongs to i’s neighborhood and
a;j = 0 if one does not. The connectivity k; of agent i given

by neighborhood
k,‘ = Zaij (1)
J

is the number of agents in i’s neighborhood and the average
opinion 4; of i’s neighbors is

1 .
hi= Za,-,,-s(n. )
J
The average opinion ¢ of the society is
1
c=~ Z 5;. (3)

Given the average opinion / of the neighbors of agent i at
time ¢, s(i,t + 1) = 1 according to the transition probability
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FIG. 1. (Color online) Transition probabilities T given by Eq. (4).
Forq < h <1 — g, tisanincreasing function of & (red dashed curve)
for conformists, with J = 3, and a decreasing one (black solid curve)
for reasonable contrarians, with J = —3. In this and the following
figures ¢ = 0.1 and ¢ = 0.2 unless stated otherwise.

t(h; J) defined by [7]

e forh <gq
1
1)) =\ Teprarai-m rg<h<l—-q &
1—¢ forh > 1—gq.

In this expression J represents the agent’s conviction: Con-
formists have J > 0 and reasonable contrarians J < 0. The
graphs of T are shown in Fig. 1. When the average opinion % is
smaller than g or larger than 1 — g a reasonable contrarian
agent will likely agree with neighbors and the likeliness
depends on the factor ¢. Since ¢ is small an agent will probably
agree with the majority when 0 <g <hor 1l —g <h <1
whether the agent is a contrarian or a conformist. This is a
way of implementing the effect of social norms. The fact that
& > 0 also avoids the presence of absorbing states but causes
the slightly unreasonable behavior of conformists.

In the intermediate case ¢ <h <1 —g¢g, a conformist
(J > 0) will probably agree with neighbors and a reasonable
contrarian (J < 0) will probably disagree. Both conformists
and contrarians share the same values of |J|, ¢, and e.
Unless stated otherwise, we always use the values ¢ = 0.1 and
& = 0.2, as in Ref. [7]. A discussion about alternative choices
of the transition function is delayed after the introduction of
the mean-field approximation in the following section.

In the mean-field approximation ¢ changes deterministi-
cally and the Lyapunov exponent A is a good indicator of
the stability of any orbit [21]. Boltzmann’s entropy 1 of the
probability distribution of ¢ is another indicator of stability
and can be computed both for deterministic and stochastic
(extended) systems [7,22]. To compute n, we partition the
unit interval in L disjoint equal-sized subintervals I;, i =
0,...,L —1, and find ¢; as the fraction of visits of a long
time orbit of 7' time steps to /;. Then

L
1
= log g;. 5
n logLi;q ogq )

In numerical simulations 7 > L. A fixed point of the
trajectory corresponds to n = 0 and when the orbit visits every
subinterval I; with the same frequency n = 1. If L = 2° and
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the orbit is periodic with period 2%, n = a/b. In the limit
L — 00, n — 0 for periodic orbits.

For deterministic maps we can compare the behavior of the
Lyapunov exponent A and that of Boltzmann’s entropy n [see
Fig. 4(b)]. Values of A > 0 are equivalent to n > 1/2 when
L is sufficiently large. In other words, deterministic chaos
corresponds to n > 1/2 and order to n < 1/2. By extending
this correspondence to the probabilistic network dynamics, we
define disorder whenever n = 1/2 and order when n < 1/2.

III. MEAN-FIELD APPROXIMATION

We start with a model of a society where the neighborhood
of each agent i, either conformist or contrarian, is formed by
k random neighbors, i.e., the mean-field approximation for a
fixed connectivity k. With a fraction £ of conformists and a
fraction 1 — & of reasonable contrarians, the time evolution of
the average opinion c is

’ . k k—
= (1 =)™
w=0 w

x [Er(w/k; J)+ A =&)r(w/k; =T)], (6)

with ¢ and ¢’ the average opinions at times ¢ and ¢ + 1,
respectively. In the right-hand side term, the term in large
parentheses is the w combinations from a set of k elements.

In Fig. 2 we show return maps of Eq. (6) for different
values of £. For small £ [Fig. 2(a)] the map is chaotic and
for larger values of £ we find periodic orbits or fixed points
[Figs. 2(b)-2(d)].

In Fig. 3 we show the mean-field bifurcation diagrams of ¢
given by Eq. (6) as a function of the fraction of conformists &
for ¢ = 0.2 and ¢ = 0. In the second case, there are absorbing
states for large &, but for smaller values the diagram hardly

(a) (b)

c c
oL 0
0 ) 1
c c
(c) (d)
1 1
c =] c
|
0 0 1
0 10 1
c c

FIG. 2. (Color online) Return maps of the mean-field approxima-
tion (6) (red dashed curve) and 40 iterates of the map starting from a
random initial ¢ (black solid lines) for (a) £ = 0.06, (b) £ = 0.2, (c)
& =0.4, and (d) £ = 0.9. In this and the following figures |J| =5
and k = 20.
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FIG. 3. (Color online) Mean-field average opinion ¢ as a function
of the fraction of conformists & for &, = 0.3245, &, = 0.6755, and
(a) e = 0.2 and &, = 0.0665 and (b) ¢ = 0.0 and &. = 0.0795. For &
slightly larger than &, the first and third branches starting from the
bottom correspond to ¢y = 0.9 [light gray (green)] and the other two to
co = 0.1 (black). For §, < & < 1 the upper branch [light gray (green)]
corresponds to ¢y = 0.9 and the lower one (black) to ¢y = 0.1. For
all values of & two consecutive iterations are plotted after a transient
of 1000 time steps for both values of c¢g.

depends on the value of ¢. The leftmost vertical line at &, marks
the threshold at which the chaotic region ends.

We are now ready to illustrate the rationale of our choice of
the transition probability T and of the parameters g and ¢. The
fundamental motivation of our investigation is the exploration
of the consequences of social norms, which represent a typical
human behavior but are rarely investigated in the literature.
There are many papers that examine the consequences of the
ferromagnetic (conformism) or antiferromagnetic (contrarian)
Fermi function t(H; J) = 1/{1 + exp[—2J(2h — 1)]}. In or-
der to model the reasonable contrarian effect, in Ref. [7] we
chose to modify this function only at the extremes, inserting
a threshold ¢ for the transition from conformist to contrarian
behavior. We then inserted the parameter ¢ in order to avoid
the presence of absorbing states. The exact values of the
parameters ¢ and ¢ are not crucial, nor is the fact that 7 is

(b)

0
0.15

FIG. 4. (Color online) (a) Bifurcation diagram of the mean-field
average opinion ¢ as a function of the fraction of conformists & near
&.. For & slightly smaller and also larger than &, the first and third
branches, starting from the bottom, correspond to ¢y = 0.9 [light
gray (green)] and the second and fourth to ¢y = 0.1 (black). After a
transient of 1000 time steps, 32 consecutive iterations are plotted for
each value of £ starting with ¢y = 0.9 and 0.1. (b) Lyapunov exponent
A (bottom black dashed curve for small £) and the entropy 7 [top gray
(red) solid curve for small £] of the mean-field average opinion ¢
[Eq. (6)] as functions of &. For each value of &, X is evaluated over
1000 time steps and for 5 the unit interval is divided in 2'° = 1024
equal-size subintervals and the probabilities ¢; [Eq. (5)] are found
over 100 x 2' = 102400 time steps after a transient of 300 time
steps.
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FIG. 5. (Color online) Mean-field critical values &, as functions
of k for |J| = 5 [gray (red) circles] and | J| = 10 (black squares). The
solid curves are the graphs of Eq. (7): The bottom gray (red) solid
curve is for |J| = 5 and the top black dashed curve corresponds to
|J| = 10. The horizontal lines show the asymptotic values (derived
in the Appendix) &,(5,00) = 0.4 [bottom gray (red) solid line]
and £,(10,00) = 0.45 (top black dashed line). Numerical data were
obtained after a transient of 1000 time steps starting with ¢y = 0.9.

not continuous. We refer to the mean-field approximation
to illustrate these points. The mean-field effect (6) is that
of acting like a Gaussian smoothing convolution (see the
Appendix), so the actual profile of the mean-field return map
(Fig. 2) is smooth and rather insensitive to the details of the
transition probability t. Since the width of the Gaussian-like
mean-field smoothing depends on the quantity c¢(1 — c)/k,
these considerations hold for nonextreme values of the average
opinion ¢ and not extremely large sizes of the neighborhood.
Indeed, one can see from Fig. 2 and the following phase
diagrams that we are always interested in intermediate values
of c. The only exception is Fig. 3, in which we report the
influence of a change in the value of the parameter ¢.

Actually, the role of the parameters g and € can be played by
a nonlinear term in the Fermi function, making t continuous.
We anticipate that investigation of such a model will show
that the modifications to the diagrams presented here are
not essential for choices of the parameter W that make the
mean-field curve similar to that obtained with the present
values of g and ¢. Since the goal of the present paper is to
study the influence of a mixture of conformists and reasonable
contrarians, we keep here the same form of t as in Ref. [7].

In Fig. 4(a) we show an enlargement of the bifurcation
diagram for small £ and in Fig. 4(b) the corresponding
Lyapunov exponent A and Boltzmann’s entropy 5. For & > &,
A < 0andn < 1/2.In Figs. 3(a) and 3(b) [&.,&,) corresponds
to an inverse period-doubling bifurcation route from chaos to
the fixed point ¢ = 1/2. The rather large fraction of contrarians
causes symmetric oscillations of c¢. The rightmost vertical line
at &, corresponds to a pitchfork bifurcation from ¢ = 1/2 to
¢ > 1/2 when ¢y > 1/2 and to ¢ < 1/2 when ¢y < 1/2 with
co the average opinion at ¢+ = O (see also Fig. 2).

We prove in the Appendix that§, = 1 — &, and find that the
approximate behavior of &, as a function of J and k is given

by
(Jk)—ll L 22 (7
LBy =\ 1= Fy 1+ ==

PHYSICAL REVIEW E 92, 042913 (2015)

(b)
\
3 6
/]
(©) (d)
1 1
n n r
0 0
0 3 6 0 3 6
7] /]

FIG. 6. (Color online) Mean-field bifurcation diagrams of the
average opinion ¢ and the corresponding entropies n as functions
of |J| for (a) £ =0.04 and (b) £ = 0.07. Starting from small |J|
there is a first bifurcation to a period-2 orbit, followed by a pitchfork
bifurcation to four branches that correspond to period-2 orbits that
depend on the initial value of ¢, ¢y. Starting from the bottom, the first
and third branches correspond to ¢y = 0.9 [light gray (green)] and
the second and fourth to ¢y = 0.1 (black). For larger values of |J]|
there are two period-doubling bifurcations cascading towards chaos.
The vertical lines mark the transition to chaos obtained from the data
shown in (¢) |J| = 3.425 and (d) |J| = 5.555 as the smallest value
of |J| for which n = 1/2. For each value of |J|, after a transient
of 1000 time steps, the next 32 iterations are plotted for two initial
average opinions ¢y. (c) and (d) For the entropies, the unit interval is
partitioned in L = 2% = 256 subintervals. For each value of | /|, after
a transient of 1000 time steps, the next 25 600 iterates are used to find
the probabilities ¢; and from them n [Eq. (4)].

In Fig. 5 we show that Eq. (7) agrees with the numerical results
for large connectivities k.

In Fig. 6 we show the bifurcation diagrams of the average
opinion ¢ as |J| changes, for small values of &, and the
corresponding entropies. For small |J| [Figs. 6(a) and 6(b)],
¢ = 1/2 and as this parameter grows, there is a first bifurcation
to a period-2 orbit followed by two period-2 pitchfork
bifurcations that depend on the initial opinion cy. For still
larger values of |J| there are two period-2-doubling cascades
towards chaos. The transition to chaos is shown by the vertical
lines found as the smallest values of J for which n = 1/2
[Figs. 6(c) and 6(d)].

IV. SMALL-WORLD NETWORKS

Real societies are neither random nor regular. It is interest-
ing to study what happens when the topology changes due,
for instance, to advances in the transportation system or to
politics favoring mixing, etc. We studied the effect of rewiring
a fraction p of links in a regular one-dimensional society with
connectivity k. This leads to the small-world networks first
discussed by Watts and Strogatz [23]. As p, the long-range
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FIG. 7. (Color online) Small-world network bifurcation dia-
grams of the average opinion ¢ and the corresponding entropies 7 as a
function of the long-range connection probability p with N = 50 000,
|J]| =35, k=20, and (a) £ = 0.02 and (b) £ = 0.05. For p close to
zero ¢ oscillates around ¢ = 0.5 and as p grows there is a noisy
period-2 bifurcation followed by two period-2 pitchfork bifurcations.
Staring from the bottom, the first and third branches correspond to
co = 0.9 [light gray (green)] and the second and fourth to ¢y = 0.2
(black). The corresponding entropies are shown, where the value
of p for which n = 0.5 is shown as a vertical line (c) p = 0.415
for £ =0.02 and (d) p = 0.475 for £ = 0.05. For the bifurcation
diagrams and for every value of p, the initial opinion of each agent is
chosen at random between 0 and 1 with ¢; = 0.1 [light gray (green)
points] and ¢y = 0.9 (black points). After a transient of 500 time
steps, the next 64 values of ¢ are plotted. For the the entropies and
for each value of p the unit interval is partitioned in L = 28 = 256
subintervals. After a transient of 1000 time steps, the next 25 600
iterates are used to find the probabilities ¢; and from them 7 [Eq. (5)].

connection probability, grows, small-world networks approach
a mean-field behavior. As we show in Fig. 7, the bifurcation
diagrams of ¢ as functions of p are similar to those obtained
by varying J in the mean-field approximation.

In Figs. 7(a) and 7(b) we show the bifurcation diagrams
of ¢ as functions of p for two small values of & and in
Figs. 7(c) and 7(d) the corresponding entropies. For small
p, ¢ fluctuates around ¢ = 0.5 and for slightly larger values,
there are noisy oscillations around two symmetric values, in
a way reminiscent of the period-doubling bifurcations of the
mean-field approximation. For even larger values p =~ 0.4,
we observe the appearance of two different noisy period-2
oscillations that depend on the initial average opinion cy. This
roughly corresponds to what is shown in Fig. 6(a), although in
that case the diagram is drawn as a function of |J| and here as
a function of p.

For ¢ = 0.2 [Fig. 7(e)], c fluctuates around ¢ = 0.5 for small
values of p and around two values for larger p that agree with
the period-2 orbit of the mean-field approximation (6). For
& = 0.8 [Fig. 7(f)] and p = 0.2, ¢ fluctuates around one of
two values, depending on ¢y, the average opinion at t = 0.
These values also agree with the mean-field approximation.
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FIG. 8. (Color online) Small-world network bifurcation dia-
grams of the average opinion ¢ and the corresponding entropies 7
as functions of the fraction of conformists & for different values of
p: (@) p=0.02. (b) p =0.05, (c) p =0.20, and (d) p = 0.80. For
each value of &, at + = 0, the opinion of each agent is chosen at
random in such a way that the average opinion is ¢y = 0.1 or 0.9.
After a transient of 50000 time steps, 64 points are plotted. For &
near 1, the orbits that started with ¢y = 0.9 have ¢ > 1/2 [light gray
(green) points] and those that started with ¢y = 0.1 have ¢ < 1/2
(black points). For smaller values of &, the points that correspond to
cop = 0.1 (black) almost mask those with Cy = 0.9. In (d) there is a
chaotic phase for small £.

It is possible to roughly understand these results assuming
that the main contributions to the mean-field character of the
collective behavior come from the fraction of links that are
rewired (long-range connections) that depend on p. The actual
value of the field 2k — 1 in Eq. (4) is multiplied by a factor p,
so changing p is roughly equivalent to changing J.

In Fig. 8 we show bifurcation diagrams of ¢ on small-
world networks as a function of the fraction of conformists &
for several values of the long-range connection probability p.
This sequence of plots illustrates an unexpected behavior. For
p = 0[Fig. 8(a)] there is a pitchfork bifurcation at & ~ 0.9. For
larger values of p the pitchfork bifurcation occurs at smaller
values of £ and an oscillating bubble is formed [Fig. 8(b)] for
0.12 < & < 0.22. This oscillating region grows with ¢ and for
p = 0.8 [Fig. 8(d)] the bifurcation diagram is similar to the
mean-field one [Fig. 3(a)].

We can explain this behavior by assuming that the con-
formist behavior promotes synchronization, as does p. So
the system progressively synchronizes starting from high
values of &, but this synchronization is not visible if the
dynamics leads to fixed points. When the synchronization
reaches the oscillating phases, it becomes manifest by means
of the coherent oscillation of the population. So this coherent
dynamical behavior appears to start first in the vicinity of the
bifurcation for £ ~ 0.2 and then, by increasing p, it propagates
to lower values of &.
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V. SCALE-FREE NETWORKS

In this section we present results of the model on uncorre-
lated scale-free networks [24]. Starting from a fully connected
group of m agents, other N — m agents join sequentially, each
one choosing m neighbors among those already in the group.
The following choice is preferred: The probability that a new
member chooses agent i is proportional to its connectivity k;,
the number of neighboring agents that agent i already has.
Another way of building the network is choosing a random
edge of a random node and connecting to the other end of the
edge, since such an edge arrives at a vertex with probability
proportional to kp(k) with p(k) the probability that a randomly
selected node has connectivity k [25].

In Ref. [7] we showed that the dynamics of a model of a
society whose agents are all reasonable contrarians on a scale-
free network with m initially connected agents is comparable
to the mean-field approximation of Sec. III with connectivity
k provided that

k=am )

with o ~ 1.7 for scale-free networks with p(k) o k3. In
Fig. 9 we show that this result also holds for the model of
societies studied here. We compare the bifurcation diagrams
(for & changing) of the dynamics on a scale-free network

FIG. 9. (Color online) (a) and (b) Bifurcation diagrams of the
average opinion ¢ on a scale-free network (black large points) and
the mean-field approximation (6) [light gray (green) smaller points]
as functions of the fraction of conformists & for (a) m = 20 and k =
1.7 x 20 =34 and (b) m = 30 and k = 1.7 x 30 = 51. (c) and (d)
Boltzmann entropies 1 on a scale-free network (top red solid curve)
and the mean-field approximation (6) (bottom black dashed curve)
for (c)m = 20and k = 34 and (d)m = 30and k = 51. (a) and (b) For
the scale-free network and for each value of £, the average opinion at
t = 0is ¢y = 0.9 and for the mean-field bifurcation diagram ¢y = 0.9
and 0.1. After a transient of 300 time steps, the next 32 values of ¢
are plotted. For the entropies and each value of &, the unit interval is
divided in 2% = 256 equal-size subintervals. After a transient of 300
time steps, the next 100 x 28 = 25600 iterates are used to find the
probabilities ¢; and from them 7, [Eq. (4)].
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with the corresponding mean-field one [Figs. 9(a) and 9(b)]
and the scale-free entropies with those of the mean-field map
[Figs. 9(c) and 9(d)]. There is reasonable agreement in both
bifurcation diagrams. Both entropies show good agreement
where there is disorder, thatis, n > 1/2, butnotwhenn < 1/2.
This can be understood from the bifurcation diagrams. While
the scale-free network dynamics is stochastic and therefore
the orbit visits many subintervals, the mean-field one visits
a smaller number. For example, for & = 0.2, the mean-field
dynamics has period 2, so n = 2/8 in both Figs. 9(c) and 9(d).

VI. CONCLUSION

The dynamics of the mean-field approximation of the
average opinion c [Eq. (6)] as a function of & is chaotic with
periodic windows when 0 < & < &, and oscillates periodically
between two symmetric values when &, < & < &,. For &, <
& <&,c=1/2,andfor&, < &,c > 1/2(c < 1/2)ifcy = 0.9
(co =0.1). Also &, ~ 1 — &, and &, approaches a limit value
as k grows. Equation (6) depends on the connectivity k£ and
on the transition probability t, which in turn depends on k,
|J], €, and g. As far as we have explored the parameter space,
the above description is generic, with the exception that for
large values of k the chaotic phase is bounded below by &,. For
0 < & < &, there are two period-2 orbits that depend on ¢y and
for £; < & < &. the orbits are chaotic with periodic windows.

The dynamics on small-world networks approaches that
of the mean-field approximation as the long-range connection
probability p grows. The dynamics of ¢ on scale-free networks
is similar to that of the mean-field approximation provided
k = am witha ~ 1.7.

In small-world networks for small values of p [Fig.
8(b)], the coherent oscillations appear first for a population
with a small fraction of conformists rather than for a pure
contrarian one. This is probably due to the fact that coherent
oscillations are a signal of synchronization and the presence of
conformists increases the synchronization. On the other hand,
if the synchronized dynamics leads to a stable fixed point,
the degree of synchronization is not manifest. As a result, the
first synchronized zone is near the bifurcation point & >~ 0.

In social terms, the paradoxical effect is that a society of
hipsters can exhibit coherent oscillations if all participants
change their mind after realizing they are in the mainstream,
despite their attitude [16]. This is a sort of synchronization
effect and is clearly promoted by long-range interactions, like
those mediated by the Internet. For purely local interactions,
the uniform hipster effect is not visible at a global level since
the groups are not synchronized. However, a small fraction
of conformists can greatly enhance this synchronization, thus
promoting the sudden change of trends seen in the alternative
fashion world.
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APPENDIX

The bifurcation points &, and &, can be found from the
mean-field evolution (6) since at both values the absolute value
of the derivative of this expression must be 1. For large k
the mean-field approximation for the average opinion can be
approximated by [7]

, / k ( k(x — c)z)
¢ = dx exp | —
\/ 27e(l — ) 2¢(1=0¢)

x [Erlx: )+ A = Hr(x; =]

Expanding the right-hand-side term of this expression around
¢ = 1/2 up to first order

= \/iz/ dx exp[—2k(x — ¢)*]

X[t )+ A =EHrx; =J)]

= \/iz / dy exp(=2ky?)
xEty+eaH+A=8)t(y+c; =]
We denote Eq. (A2) by g(&; J).

(AL)

(A2)
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To proceed we need the derivative of 7 given by Eq. (4)
near ¢ = 1/2 and small y. From Eq. (4)

_ 4J exp(—4Jy)
x=1/24y [ +exp(—4J )P
We note that f(y; —J) = —f(y; J). Then

g _31’

2k
1) = [ dy | exp-2ka28 = DF 03,
It is now straightforward to check that

gl —&0)=g;—-J)=—g&; J).

If g(&,; J) = —1 then g(§&,) = 1 with &, = 1 — &, and the two
bifurcation points are symmetric with respect to & = 1/2.
By approximating

Fid) = J(1 —4J%y%) >~ J exp(—4J%y?),

k
(Zéa—l)J‘/m=—1,
(Jk—ll 1/1 2_J2>

The limit of this last expression when &k — oo is §,(J,00) =
1
(I —=1/0).

we get for &,

i.e.,
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