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Data-driven prediction and prevention of extreme events in a spatially extended excitable system
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Extreme events occur in many spatially extended dynamical systems, often devastatingly affecting human
life, which makes their reliable prediction and efficient prevention highly desirable. We study the prediction and
prevention of extreme events in a spatially extended system, a system of coupled FitzHugh-Nagumo units, in
which extreme events occur in a spatially and temporally irregular way. Mimicking typical constraints faced in
field studies, we assume not to know the governing equations of motion and to be able to observe only a subset
of all phase-space variables for a limited period of time. Based on reconstructing the local dynamics from data
and despite being challenged by the rareness of events, we are able to predict extreme events remarkably well.
With small, rare, and spatiotemporally localized perturbations which are guided by our predictions, we are able
to completely suppress extreme events in this system.
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I. INTRODUCTION

The dynamics of very different systems can exhibit rare,
recurrent, and strong deviations from regular behavior. Since
such extreme events can often severely impact human life, they
are intensively studied [1–4] in physics and mathematics as
well as in diverse scientific disciplines such as atmospheric sci-
ences (e.g., hurricanes, floods, droughts) [5,6], oceanography
(rogue ocean waves [7]), geophysics (earthquakes, volcanic
eruptions), economics (stock market crashes [8]), engineer-
ing (outages in infrastructure [9]), biology (harmful algal
blooms [10]), and medical science (epidemics, heart attacks,
epileptic seizures [11]). Many of these extreme events occur
in spatially extended systems in which they start localized and
later propagate. A successful and reliable forecast of individual
extreme events is highly desirable since it could not only
provide a warning time during which precautions could be
taken but may also, depending on the system dynamics, allow
for appropriate countermeasures.

In field studies, we typically cannot record the temporal
evolution of all degrees of freedom of such systems, we
typically do not know the exact equations of motion, and
our periods of measurement are finite during which extreme
events, which are intrinsically rare [12], are to be observed.
This poses a challenge for any prediction attempt. Thus,
research has often focused on statistical aspects (supported
by extreme value theory [13]) to determine the relative
frequency of extreme events, on modeling studies, which can
provide a better understanding of the underlying mechanisms
leading to extreme events and their predictability, as well as
on model-assisted prediction, in which model assumptions
and data assimilation techniques deal with our incomplete
knowledge about the system dynamics.

In deterministic systems, the prediction of extreme events
can profit from the fact that the current state of the system
uniquely determines its future state and is limited in chaotic
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systems (among other factors [14]) by the sensitive dependence
on initial conditions (the butterfly effect). In field studies,
nonlinear time-series-analysis techniques [15,16] allow one,
under quite general assumptions, to construct an embedding
space out of empirical data that is topologically equivalent to
the often unknown state space of the system. The prediction
of extreme events can then be based on the identification
of similar states (analogues) in the observed past of the
dynamics. Approaches based on a reconstructed space have
been successfully pursued for low-dimensional systems (e.g.,
to detect early warning signs of runaway initiations in chemical
reactors [17]) and usually exploit one time series of a single
observable only. However, in spatially extended systems, the
prediction of extreme events based on such a scheme is a
nontrivial challenge, particularly if extreme events emerge in
different locations or if the system is heterogeneous.

In this paper, we address this problem by adapting the
concept of local embedding spaces [18] in order to locally
predict extreme events that occur spontaneously and in a
temporally and spatially irregular way. Mimicking the situation
in field studies, we assume that only some but not all degrees
of freedom of the system have been observed, that our period
of measurement is finite, and that the equations of motion are
unknown (except for the coupling topology). Based on our
predictions, we prevent extreme events via rare, small, and
spatiotemporally localized interventions. We demonstrate our
approach in a case study by predicting and preventing extreme
events that occur in an excitable, spatially extended, reaction-
diffusion-type dynamics. Examples of real-world phenomena
which may be in this class include epileptic seizures [11],
harmful algal blooms [10,19], and cardiac arrhythmia [20].

We show how local embedding spaces can be defined and
iterative predictions can be made (Sec. III) for exemplary
time series generated by a model (Sec. II). We observe this
method to predict not only the occurrence but also the spatial
propagation and termination of extreme events (i.e., their full
life cycle) remarkably well (Sec. IV), which we statistically
evaluate (Sec. V) and exploit to efficiently prevent extreme
events via minimal interventions (Sec. VI). Finally, we discuss
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findings and potential ways to further improve prediction
performance (Sec. VII).

II. A SPATIALLY EXTENDED SYSTEM WITH
EXTREME EVENTS

We consider a spatially extended system whose dynamics
shows extreme events, i.e., rare and recurrent events that
deviate from the usual dynamics. From this system, time series
are obtained which are used in the subsequent sections in order
to demonstrate our time-series-based approach towards the
prediction of extreme events. Our system is inspired by models
investigated in recent studies of networks of coupled FitzHugh-
Nagumo units [21,22]. The FitzHugh-Nagumo unit, also
known as Bonhoeffer–van der Pol oscillator [23–26], has two
degrees of freedom (a voltage-like variable x and a recovery
variable y), can show a variety of dynamics depending on
parameter values [27], and can display a characteristic pulse
of activity in response to an external stimulus—the hallmark
of excitability [28].

We consider a network of N diffusively coupled FitzHugh-
Nagumo units in which the dynamics of the ith unit is given
by

ẋi = xi(a − xi)(xi − 1) − yi + k

N∑
j=1

Aij (xj − xi),

(1)
ẏi = bixi − cyi,

where A denotes the adjacency matrix of a network, k =
0.0128 is the coupling strength, a = −0.03, c = 0.02, and
bi are internal parameters, and i ∈ {1, . . . ,N}. Parame-
ter heterogeneity is introduced by choosing bi = 0.006 +
0.002[(i − 1) mod 5]. Since the dynamics of every unit of our
network has two degrees of freedom, the system’s phase space
has D = 2N dimensions.

The adjacency matrix A defines a chainlike topology in
which units are coupled to five neighbors to their left and five
neighbors to their right if these neighbors are present, i.e.,

Aij = Aji =
{

1 for 0 < |i − j | � 5,

0 otherwise. (2)

This introduces structural heterogeneities because units at the
border have a different coupling neighborhood than units in
the middle of the chainlike topology. In the following, we arbi-
trarily chose N = 100, but because of the chainlike topology
defined by the adjacency matrix, we expect equivalent results
for other choices of N . We convinced ourselves that this is
indeed the case for N = 150.

Initial conditions were chosen randomly, and we did not
observe an influence of the choice of initial conditions (near
the attractor) on our observations. The equations of motion
were integrated using the Runge-Kutta-Fehlberg method with
a step size adapted such that the estimated relative error
did not exceed 10−5 (implemented by the software package
CONEDY [29]). Time series were sampled with a rate of 1. To
ensure that transients died out, data for the first 105 time units
was discarded.

For the subsequent steps of analysis, we assume that we only
observed the temporal evolution of the voltage-like variables
xi , i ∈ {1, . . . ,N}, of the system, thereby mimicking typical
field studies in which not all degrees of freedom can usually
be observed. Furthermore, to ease notation, we write xt

i to
refer to the value of xi at a particular time t . In Fig. 1,
we show exemplary temporal evolutions of the variables xi

[color coded, cf. Fig. 1(b)] for all units as well as their
mean value x̄ [Fig. 1(a)]. Most of the time, low-amplitude
oscillations [Fig. 1(d)] with an average period of 68 time
units can be observed. But now and then, seemingly out of
a sudden, an excitation arises and travels through the network
topology. Excitations can start at different units [for example,

5000 10000 15000
−0.1

0.1

0.0

0.2

0.3

t

t

i

5000 10000 15000

20

40

60

80

100

(b)

(a)

t

i

400 500 600 700

20

40

60

80

100

(c)

t

i

8000 8100 8200 8300

20

40

60

80

100

(d)

t

i

17300 17400 17500

20

40

60

80

100

(e)

x̄

xi

−0.2

0.2
0.4
0.6
0.8

0.0

FIG. 1. (Color online) (b) Exemplary evolution of the dynamical variables xi (color coded) for all 100 units as well as (a) the evolution of
the corresponding average value x(t) = N−1

∑N

i=1 xi(t). Panels (c), (d), and (e) show enlarged segments of panel (b).
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FIG. 2. Histogram of interevent intervals tIEI obtained for a
realization of the system as defined in Sec. II (observation time of
the data: 108 time units). The rate of extreme events was estimated
from the data as r = 1.54 × 10−4 (extreme events were required to
be separated by at least 150 time units to qualify as separate events).
The dashed line represents a multiple of exp (−rtIEI).

see Figs. 1(c) and 1(e)] and thus events can take on different
shapes. The estimated distribution of interevent intervals (cf.
Fig. 2) resembles an exponential distribution (similar to the
systems investigated in Ref. [21]), which would be expected
for a Poissonian process, i.e., independently occurring events.
Since such events represent large deviations from the average
dynamical behavior of the system and since they occur rarely
but recurrently, we refer to them as extreme events in the
following.

III. CONSTRUCTION OF LOCAL EMBEDDING SPACES

The term embedding space goes back to the seminal
work of F. Takens [30] and has become the key element
of nonlinear time-series-analysis methods [16]: Consider a
dynamical system in continuous time governed by an ordinary
differential equation (ODE) with a D-dimensional phase space
and a trajectory g(t) of its dynamics, emerging from an initial
condition g(0). Because of the existence and uniqueness of the
solution of the ODE, there exist unique mappings g(t) �→ g(t ′)
for arbitrary t ′ > t which can be used in order to predict future
values: Knowing a state in the past at time t directly determines
the future at t ′ > t .

However, in empirical studies, we are usually unable
to observe the trajectory in continuous time in its full
D-dimensional phase space. Instead, at discrete and equidis-
tant times t ∈ {1, . . . ,T }, some physical observable ut =
h(g(t)) is recorded, where the observation function h(g) is a
scalar field on the phase space. Given this reduced information,
there is usually no unique map which maps the last observation
uT onto the future value uT +1.

As first pointed out by Packard and coworkers [31], the
information missing in the current observation uT about the
state vector g(T ) of the dynamical system can be recovered by
taking past observations into account. Indeed, Takens’s delay-
embedding theorem [30,32] states that vectors composed of
successive observations, uT = (uT ,uT −1, . . . ,uT −m+1) con-
tain all information about the unknown state vector g(T ) if the

embedding dimension m is larger than 2Df , where Df � D

is the fractal dimension of the invariant set on which the
dynamics lives. Hence, there exists a unique map uT �→ uT +1

which needs to be identified from recorded data by prediction
methods using sufficiently many learning pairs (ut,ut+1). All
known methods implicitly or explicitly rely on the Lorenz
method of analogues [33] in meteorology: If a system’s state
vector comes close to a point in phase space where it had been
before, then its near future will be similar to the trajectory
emerging from this formerly visited point. This is a simple
consequence of the smoothness of the right-hand side of the
ODE. Thus, a simple scheme to predict uT +1 given uT is to
identify the nearest neighbor u∗

t of uT in embedding space and
to set uT +1 = u∗

t+1.
Past attempts of such a prediction program usually aimed

at predicting low-dimensional dynamics and relied on recon-
structing an embedding space based on a time series of one
observable only. However, as more data of spatially extended
systems (e.g., gathered from distributed sensors) of large
system size becomes available, the question arises of how
measurements of observables from different spatial locations
can be exploited for prediction tasks. For instance, when ex-
citations propagate through a system, can measurements from
neighboring locations be helpful to forecast the occurrence of
an excitation at an adjacent site?

As pointed out in earlier work, components of embedding
vectors can be chosen from different time series (and thus
different locations of a system) in order to reconstruct an
embedding space (see, e.g., Refs. [31,34]). It was Parlitz and
Merkwirth [18], however, who assumed that local states exist
in a deterministic sense which can be reconstructed in local
embedding spaces: In a spatially extended system, where
the different degrees of freedom refer to different places in
space, the coupling between those degrees of freedom is
typically very much restricted. As an example, consider a
one-dimensional lattice and a nearest neighbor coupling, and
denote by gi the degrees of freedom of a lattice site i of
the phase-space vector g. The near future of the site i will
essentially depend only on the state of the site i itself, gi , and
the states of its two nearest neighbor, gi+1 and gi−1. Hence,
a local embedding aims at reconstructing the information
contained in these three vectors from the array of observations,
yielding local embedding spaces whose dimension can be
much lower than that of the whole system’s original state space
and even lower than the fractal dimension as demonstrated in
Ref. [18]. Since for finite T these lower dimensional spaces
can be populated more densely with embedding vectors, we
are more likely to find good analogues that allow us to
predict the next observation at site i. Doing this in parallel for
every i yields a prediction of the observation array at the next
time step.

We adopted and modified this concept in order to predict ex-
treme events in the dynamics of the system described in Sec. II:
In contrast to Ref. [18], in which systems were homogenous
and a single embedding space was used for predictions, our
system is heterogeneous [parameter heterogeneity, cf. Eq. (1);
structural heterogeneities, cf. Eq. (2)]. Moreover, most units
are coupled to more than one nearest neighbor to their left
and right. In order to account for these heterogeneities, we
construct a local embedding space Ei for each unit i separately.
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FIG. 3. (Color online) Scheme demonstrating the construction of
an exemplary embedding vector st

i (blue [gray] box) for unit i at
time step t . The components of each embedding vector of unit i

are values of the multivariate time series x. These values reflect
the present and immediate past of unit i (t, . . . ,t − mt ) as well
as the corresponding time series values of those units j which are
spatially close to unit i (j ∈ {i − ms, . . . ,i − 1,i + 1, . . . ,i + ms} if
i is not close to a boundary). The local embedding space of unit i

is populated with vectors sT
i , . . . ,smt +1

i before the future value xt+1
i

is predicted via nearest-neighbor search. The embedding parameters,
i.e., the numbers of spatial neighbors ms and delayed values mt , are
determined by minimizing the prediction error (see text).

The embedding vectors st
i for unit i are defined (cf. Fig. 3) by

st
i = (

xt
i−m∗

si
, . . . ,xt

i , . . . ,x
t

i+m
†
si

, . . .

x
t−mt

i−m∗
si
, . . . ,x

t−mt

i , . . . ,x
t−mt

i+m
†
si

)
, (3)

with

m∗
si = ms − �(ms − i)(ms − i + 1),

(4)
m

†
si = ms − �(ms − (N − i))(ms − (N − i)),

where � denotes the Heaviside function [�(z) = 1 if z � 0
and �(z) = 0 everywhere else]. mt denotes the number of
delayed values and ms denotes the number of spatial neighbors
to the left and to the right sides of those units i that are not
close to the boundaries. Equations (4) ensure that embedding
vectors for units near the boundaries only include the available
spatial neighbors. The dimensions di of the local embedding
spaces are given by

di = (m∗
si + m

†
si + 1)(mt + 1), (5)

which is reduced to (2ms + 1)(mt + 1) for units not close to the
boundaries (i.e., for i ∈ {ms + 1, . . . ,N − ms}). Given a time
series of length T , the embedding space Ei can be populated
with (T − mt ) vectors (t ∈ {T ,T − 1, . . . ,mt + 1}).

Determining the embedding parameters mt and ms is crucial
for the construction of local embedding spaces and thus for a
successful prediction of the dynamics. We constructed local
embedding spaces for all combinations of values (mt,ms) ∈
{0, . . . ,3} × {0, . . . ,7}\{(0,0)}. For each combination of

values, local embedding spaces were populated with vectors
derived from a training set (see Sec. IV), and Nsteps = 40
iterative prediction steps were undertaken to predict the
beginning of a propagation of an extreme event (starting at
time ts) in a test set (see Sec. IV). Let xt

i denote the value of
the excitatory variable of unit i at time t , and let x̃t

i (mt,ms)
denote the corresponding value that was predicted by iterative
predictions based on local embedding spaces with parameters
mt and ms . We used the root of the mean squared error (ψ),
defined as

ψmt ,ms
=

√√√√∑N
i=1

∑ts+Nsteps
t=ts

(
x̃t

i (mt,ms) − xt
i

)2

NNsteps
, (6)

to quantify the prediction error [35,36]. We observed
(mt,ms) = (2,2) to yield the lowest ψ and used these embed-
ding parameters in all subsequent prediction tasks. This choice
led to local embedding spaces with a maximum dimension of
15 [cf. Eq. (5)].

IV. DATA-BASED PREDICTION OF EXTREME EVENTS

Time series of the voltage-like variables xt
i , i ∈ {1, . . . ,N},

of the system dynamics were obtained by integrating the
equation of motions as detailed in Sec. II. For each unit i, a
local embedding space was populated with vectors constructed
from the multivariate time series (training set) of T = 105 data
points, containing 13 extreme events of different shape. The
system was further integrated with the same parameters to
obtain a test set containing 66 extreme events. Embedding
parameters of the local embedding spaces were chosen
according to the previous section.

Knowing the last observations xt of the system, we predict
the future values x̃t+1 by making use of Lorenz method of
analogues [33]. For each unit i, we construct the vector st

i that
corresponds to xt

i in the embedding space Ei . The vector st ′
i of

the training set with the smallest Euclidean distance to st
i (i.e.,

the nearest neighbor of st
i) is determined. The vector st ′+1

i is
obtained and its associated value xt ′+1

i is taken as the predicted
value, i.e., x̃t+1

i = xt ′+1
i . After predictions have been obtained

for all i, x̃t+1 are used to construct a new embedding vector in
each of the N embedding spaces. The future values x̃t+2 can
then be predicted by applying the same prediction scheme but
now starting with x̃t+1. This way, iterative predictions can be
made arbitrarily far into the future.

In Fig. 4 we show the temporal evolution of two exemplary
extreme events [Figs. 4(a1) and 4(a2)] from the test set as
well as attempts to predict these events [Figs. 4(b1)–4(e1)
and 4(b2)–4(e2)]. The period of time between the start of the
iterative predictions (indicated by black vertical lines) and the
onset of the actual extreme event (here defined as the first
point t∗ in time for which xt∗

i > 0.22 for some i) is called the
lead time. Each prediction attempt consisted of 200 iterative
prediction steps. For lead times larger than 200, we observe
the method to correctly predict low-amplitude oscillations of
all units [Fgis. 4(b1) and 4(b2)]. However, as the iterative
predictions proceed, prediction errors accumulate, which is
reflected in small artifacts [cf. Fig. 4(b2) for t ∈ [150,210]
and i ∈ [85,95]]. For the first event, when the lead time is

042910-4



DATA-DRIVEN PREDICTION AND PREVENTION OF . . . PHYSICAL REVIEW E 92, 042910 (2015)

i

t

(a1)

100 200 300 400

20
40
60
80

100

(b1)

100 200

20
40
60
80

100

(c1)

100 200 300

20
40
60
80

100

(d1)

100 200 300

20
40
60
80

100

(e1)

100 200 300 400

20
40
60
80

100

i

t

(a2)

100 200 300 400

20
40
60
80

100

(b2)

100 200

20
40
60
80

100

(c2)

100 200 300

20
40
60
80

100

(d2)

100 200 300

20
40
60
80

100

(e2)

100 200 300 400

20
40
60
80

100

xi
0.4

0.8

0.0

FIG. 4. (Color online) (a) Temporal evolution of the first dynamical variables xi (color coded) of all units before and during two exemplary
extreme events. Panels (b)–(e): Predictions which consist of 200 iterative steps and start at different points in time (indicated by vertical black
lines).

decreased, low-amplitude oscillations are predicted and the
extreme event is missed [Fig. 4(c1)]. For a smaller lead time
[Fig. 4(d1)], the method predicts low-amplitude oscillations,
followed by the onset as well as the propagation of an
extreme event, which does not precisely coincide with the
spatiotemporal onset of the event in the original dynamics,
though. Finally, when decreasing the lead time even further
[Fig. 4(e1)], we observe the predicted onset as well as the
propagation of the extreme event to closely reflect the event in
the original dynamics.

We observed this scheme—better predictability for smaller
lead times—to hold for many prediction attempts and we
quantify this observation in the next section. However, we also
observed a sensitive dependence on the lead time: For instance,
for the second event depicted in Fig. 4, decreasing the lead
time first led to a successful prediction of an extreme event
[Fig. 4(c2)], but for a further decrease, our method missed
predicting the event [Fig. 4(d2)]. Only after decreasing the lead
time even further was the extreme event again successfully
predicted [Fig. 4(e2)]. We hypothesize that this observation
is related to different nearest neighbors found in embedding
spaces depending on the lead time.

In order to get more insight into the structures present in
the local embedding spaces, we show in Fig. 5(a) a three-
dimensional projection of the 15-dimensional embedding
space of unit 40 with vectors from the training set. In region (1)
of Fig. 5(a), we observe a limit-cycle-like structure (depicted
from the side), which reflects the dynamics associated with
low-amplitude oscillations. From this structure, two bunches
of trajectories emerge, which reflect the excitations of unit 40
during extreme events and can be distinguished with respect to
the direction in which excitations propagate (blue [dark gray]
vs green [light gray]). Thus, local features of the dynamics of
this unit being embedded in a larger network are reflected by
embedding spaces.

In Fig. 5(b), we show an enlargement of region (2) of
Fig. 5(a) with additional vectors (blue [dark gray] dots) that
were obtained by a prediction of the dynamics of unit 40 for
an extreme event from the test set. The predicted trajectory
evolves along existing trajectories in embedding space but
differs from them. This is due to the construction of embedding
vectors: Each (predicted) embedding vector incorporates not
only information about the temporal past of the unit but also
information from topological neighbors.
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FIG. 5. (Color online) (a) Three-dimensional projection of a 15-dimensional local embedding space of unit 40 constructed from time series
of the training set (which included 13 extreme events). (1) marks a small subspace in which all vectors representing low-amplitude oscillations
reside. Vectors corresponding to excitations (i.e., extreme events) propagating over unit 40 from lower-numbered units are colored blue (dark
gray), and those from higher-numbered units are colored green (light gray). (b) Enlargement of region (2) of panel (a) showing vectors of the
training set (green [light gray]) as well as an iterative prediction (blue [dark gray]) representing an excitation of unit 40. Each vector from the
last prediction step is connected to its nearest neighbor (green [gray] triangle) with a dashed line. The image of the nearest neighbor as well
as the vectors of the neighboring units are used to construct the next predicted vector. Colored arrows in both panels indicate the direction of
temporal evolution. The axes z1, z2, and z3 span the space of the three-dimensional projection as determined by isomap [37,38], using εNG = 0.5
for the construction of the neighborhood graph.

V. STATISTICAL RESULTS ON FORECAST
PERFORMANCE

The extreme events in our system start with an excitation
of one or a few units, after which the excitation propagates
through the network topology. To evaluate the forecast per-
formance of our method, we focus on the prediction of the
onset of extreme events. The spatiotemporal onset is defined
as in the previous section; i.e., it is the point in time t∗ and
the set of units i whose excitatory variables xi first cross a
predefined threshold (0.22). Since Fig. 4 suggests that forecast
performance may depend on the lead time (i.e., the time
between the start of our prediction attempt and the actual onset
of the extreme event), we quantify prediction performance
depending on the lead time or, equivalently, on the number of
iterative prediction steps.

For possible applications, two quantities are of particular
interest: the probability to correctly predict the onset of an
extreme event and the probability to (wrongly) predict an onset
of an event that is not present in the original dynamics. For
practical uses, it may even be sufficient if the predicted onset
(at time tpred and unit ipred) is spatiotemporally close to the
actual onset (at time ttrue and unit itrue). We thus require that a
correct prediction of an onset needs to satisfy |tpred − ttrue| < εt

and |ipred − itrue| < εs . Increasing εs and εt will make correct
predictions of onsets easier. In the rare cases in which predicted
onsets or actual onsets consist of more than one unit, we require
that our method correctly predicts at least one unit involved in
the onset.

To quantify the probability to correctly predict onsets of
extreme events (i.e., the true-positive rate, TPR), an ensemble
of Pe = 66 extreme events was selected from the test set.
We chose a lead time tlead and, for each event in the test set,
we started a prediction attempt (consisting of 200 iterative

prediction steps) at that lead time. The true-positive rate is
then defined as TPR(tlead) = TP(tlead)/Pe, where TP(tlead) is
the number of correct predictions (according to the previous
paragraph) for lead time tlead in the test set.

Prediction errors likely accumulate with increasing number
of iterative prediction steps, which may lead to the prediction
of extreme events which are not present in the actual dynamics
(false positives). Several approaches can be conceived to
quantify the probability of obtaining false positives. One
approach would be to estimate the probability of obtaining
a false positive for a particular step tstep within the iterative
prediction steps. However, in practical applications it is usually
more informative to learn about the probability to erroneously
predict an extreme event within the first tstep iterative prediction
steps. To quantify the latter, we regarded an ensemble of
Ne = 1000 randomly chosen, nonoverlapping and event-free
intervals (each of length 200 time units) from the test set.
We started a prediction attempt (consisting of 200 iterative
steps) at the beginning of each interval. For each attempt e ∈
{1, . . . ,Ne}, we determined the iterative step t∗e where an onset
of an extreme event was (erroneously) predicted. If no onset
was predicted, we set t∗e = ∞. The probability of predicting an
extreme event not existing in the original dynamics within the
first tstep iterative prediction steps (i.e., the false-positive rate,
FPR) is then defined as FPR(tstep) = N−1

e

∑Ne

e=1 �(tstep − t∗e ).
Figure 6(a) shows the dependence of the true-positive rate

(determined for all Pe events in the test set) on the lead time.
We observe the TPR to (roughly) increase for decreasing lead
time, which is in accordance with our observations of the
previous section that events become better predictable in space
and time the closer they are in time. The TPR decreases fast
with increasing lead time, crossing the 0.5 value at tlead ≈ 19.
However, we still found TPR values above 0.1 for larger lead
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FIG. 6. (Color online) (a) Dependence of the true-positive rate on
the lead time tlead determined from all extreme events in the test set
(TPR, dotted blue [dark gray] line, 66 events), determined only from
the extreme events with onsets at the border of the chainlike topology
(TPRb, red [gray], 27 events), and from those with onsets everywhere
else (TPRm, green [light gray], 39 events). TPR values were obtained
using εt = 3 and εs = 5. (b) Dependence of the false-positive rate
(FPR) on the number of iterative prediction steps tstep.

times (e.g., TPR(70) = 0.11). For small lead times (tlead < 14),
we obtained TPR values larger than 0.8 but did not observe
values of 1, i.e., a true-positive rate of 100 %. We determined
the true-positive rate for various values of εs and εt (data not
shown) and observed the TPR only to slightly increase with
εs and εt (depending on the lead time), indicating that if our
method predicted an onset, it was in the spatiotemporal vicinity
of the true onset.

To investigate whether the predictability of extreme events
differed according to onset locations, we divided the ensemble
of extreme events into two ensembles, one containing events
with onsets at the border of the chain-like topology [TPRb

in Fig. 6(a), red (gray) line] and one containing all other
ones (TPRm, green [light gray] line). We observed the TPR
for extreme events of the latter group to obtain larger values
for small lead times (TPRm = 1 for tlead < 8) than for those
in the former group (maximum value: TPRb = 0.81). We
investigated whether this difference in predictability may be
attributed to properties of the training set. As the quality of the
prediction of the dynamics depends on the ability to find good
analogues in local embedding spaces (i.e., nearest neighbors
which are very close to the last known state), we investigated
at which units we could observe single excitations to start and

later to spread to neighboring unit. We found that the training
set contained such a pattern for every unit that was involved in
an onset in the test set, including the one at the border (4 out of
the 13 extreme events in the training set started at the border).
Thus the difference in predictability of extreme events starting
at the border cannot be explained by a lack of corresponding
analogues in the training set.

The false-positive rate (FPR) is below 1 % for tstep < 86
[cf. Fig. 6(b)]. As the number of iterative steps increases,
prediction errors accumulate, leading to an increase of the
FPR. For the maximum number of iterative prediction steps
investigated here (200 steps), in 30% of prediction attempts an
extreme event is predicted to occur which does not occur in
the actual dynamics [FPR(200) = 0.3].

Prediction attempts aiming at predicting extreme events
long in advance (which implies large lead times) will produce
many false positive findings (large FPR for a large number of
iterative steps), whereas the probability of a correct prediction
is low (low TPR). On the other hand, prediction attempts
with small lead times come along with high probabilities to
correctly predict the occurrence of an extreme event (large
TPR for small lead times) and with low probabilities of false
alarms (low FPR), but provide only short time windows for
possible interventions or warnings. Thus, we face a tradeoff
between a desired large lead time on the one side and desired
optimal values for TPR and FPR on the other. We note that
we do not face a tradeoff between TPR and FPR given
the lead time as a free parameter: Decreasing the lead time
optimizes both (i.e., TPR increases while FPR decreases),
which is the reason why we refrain from conducting a receiver
operating characteristic (ROC) analysis [39] (which is suited
for situations in which increasing TPR values come along with
increasing FPR values).

VI. PREVENTING EXTREME EVENTS
WITH SMALL INTERVENTIONS

The ability to forecast extreme events in our system can
provide us with a period of time during which an event
is predicted to occur but has not yet started. During such
time spans, interventions (i.e., perturbations of the system
dynamics) could be applied to prevent extreme events. We
investigated whether small perturbations of single units at
single points in time can prevent extreme events from occurring
in our system and when and where such perturbations are most
effective. To this end, we selected an extreme event from the
test set. For each series of perturbation experiments, we chose
a time point tp and a unit i and added a small positive value
(i.e., the perturbation) to the variable yi(tp). We integrated the
equations of motions and evaluated whether an extreme event
occurred within a period of time after the perturbation. During
the evaluation period, which started at tp and ended 98 time
units after the onset in the unperturbed dynamics, we checked
whether x̄ exceeded 0.1 [which indicated the occurrences of
an extreme event; cf. Fig. 1(a)]. Repeating this experiment
with varying amplitude, we identified for each i and tp the
minimum perturbation amplitude that was sufficient to prevent
the extreme event from occurring.

In Fig. 7, this amplitude is shown for different units i and
times tp and for an exemplary event. We observe the minimum
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FIG. 7. (Color online) Minimum amplitude (color coded, capped
at 103) of a perturbation at time t = tp of the inhibitory variable of
unit i to prevent an exemplary extreme event from occurring before
t = 98. The onset of the extreme event in the case of unperturbed
dynamics was located at t = 0 and i = 56 (indicated by a red [gray]
circle). At t = 1, a second unit, i = 51 (red [gray] circle), crossed the
threshold.

perturbation amplitudes to be orders of magnitudes smaller for
units involved in or topologically close to the onset (e.g., 10−4

for units 51 and 56 at tp = −40) than for those more distant
to the onset (e.g., 102 for unit i = 19 at tp = −40). For units
that are topologically far away from the onset, the maximum
perturbation amplitude (103) investigated in our experiments
was not sufficient to prevent extreme event from occurring
(e.g., units i < 15 and i > 92). Moreover, we observed the
region of units with small perturbation amplitudes (<10−1)
to decrease when approaching the onset of the extreme event.
Even in the time span after the onset but before the spreading of
the excitation to neighboring units (0 � tp � 45), the extreme
event could still be prevented by perturbing single units.
However, in this case, the necessary perturbation amplitudes
are orders of magnitudes larger than those for the same units
before the onset. Thus, predicting the onset of an extreme event
enables us to prevent it via a minimum intervention, i.e., by
applying a perturbation of minimum amplitude.

Combining the insights gathered in the previous exper-
iments, we investigate whether repeated predictions of the
dynamics together with small perturbations can control the
dynamics such that no extreme events occur any more. Initial
conditions were randomly chosen, and the dynamics was
integrated for 10 time units, after which the future temporal
evolution was iteratively predicted (using the same embedding
spaces as in Sec. IV). If an onset was predicted, a perturbation
with amplitude 10−1 was applied to the unit of the event’s
onset. If the forecast predicted the voltage-like variable of
other units to also cross the threshold within five time units
after the onset, a perturbation was also applied to up to 2 of
these additional units. Whenever a perturbation was applied,
we also integrated the unperturbed dynamics of the system in
order to assess whether the prediction of an onset of an extreme
event was correct (true positive) or not (false positive). If no
onset was predicted, no perturbation was applied. Afterwards
and in both cases, the dynamics was integrated for another
10 time units. The steps of prediction, possible intervention,
and integration were repeated until a total time span of 204 000
time units was obtained.

For our iterative predictions, we chose a lead time of 30 time
units because for this lead time the probability of false positives
is low [FPR(30) = 10−3, cf. Fig. 6(b)]. At this lead time, the
probability of correctly predicting the onset of an extreme
event is nonzero but still small (TPR(30) = 0.26). However, if
the prediction scheme misses to predict an extreme event for
large lead times (tlead > 20), then the extreme event can still be
located after the next integration step with a larger probability.
Due to this strategy, there are up to three opportunities (coming
with different lead times) for our prediction scheme to forecast
a given event.

In Fig. 8(a), we illustrate the effect of this prevention
scheme. The mean value x̄ never exceeds 0.1, which shows
that no extreme event occurred during the simulation [cf.
Sec. II and Fig. 1(a)]. We observed that onsets of extreme
events were predicted [cf. Fig. 8(b)], and interventions were
carried out. Among the total number of 262 predicted onsets
in the simulation, 188 (72%) were correct (true positives;
blue [dark gray] circles) and 74 (28%) were erroneous
(false positives; red [gray] triangles). Together with 20 401
total prediction attempts during the simulation, this yields a
small false-positive rate of 3.6 × 10−3. For the unperturbed
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FIG. 8. (Color online) (a) Temporal evolution of the mean value x̄ of the voltage-like variables xi , i ∈ {1, . . . ,N} for a control experiment
spanning 204 000 time units. The gray background marks the region for which the temporal evolution of all xi is shown in panel (b).
(b) Temporal evolution of xi [color coded as in Fig. 1(b)] for all units i and for an exemplary excerpt of panel (a) (marked gray). Blue (dark
gray) circles mark points in time and in space for which prediction attempts correctly predicted the occurrence of an extreme event. Red (gray)
triangles mark points in time and in space for which prediction attempts erroneously predicted the occurrence of an extreme event.
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dynamics of the simulation period, the expected number
of extreme events is 31 (given an extreme events rate of
1.54 × 10−4; cf. Fig. 2), which is smaller than the number
of true positives. This can be explained by the observation that
small perturbations sometimes prevent events by “delaying”
them, yielding predicted onsets which are clustered in time [cf.
Fig. 8(b)]. To briefly summarize, we were able to successfully
prevent extreme events via small interventions which were
targeted to perturb just very few units at particular points in
time.

VII. DISCUSSION

The rareness of extreme events, which is a consequence
of their impact and implied by their definition (societies
and environments usually adapt to frequently occurring, and
thus ordinary, events) [12], poses particular challenges for
their prediction. First, regular prediction attempts to forecast
rare events require small false-positive rates, in particular if
erroneous warnings or preventions are expensive, consume
limited resources, or come along with unwanted side effects.
Our results in Sec. VI reflect this requirement: Despite a
low false-positive rate (FPR < 0.01 for tstep < 86), 28% of
all positive findings were false positives (FP). The large
number of prediction attempts (due to the rareness of extreme
events) translates into a large number of attempts which should
raise no warning (i.e., a large number of negatives, Ne).
Since FP = FPR × Ne increases with the number of negatives
(which, in turn, becomes larger the rarer the events), this calls
for prediction methods with exceptionally small FPR values.
Such values come along with small lead times (cf. Fig. 6),
limiting the warning time before an extreme event.

Second, in field studies, the rareness of extreme events
implies that measurements need to be performed over a long
period of time in order to observe a reasonable number of
extreme events for the training set upon which the prediction
method is based. The rare occurrence of extreme events (rare
trajectories) leads to local embedding spaces in which most
vectors reflect the regular dynamics and only a few reflect the
dynamics before or during an extreme event [cf. Fig. 5(a)].
This can pose challenges with respect to efficient nearest-
neighbor searches, storage requirements, and, more important,
the ability of the method to find good analogues before an
impending extreme event. Limited storage capabilities could
be more efficiently used by choosing vectors in a way that
allows for a selective and denser coverage of regions of
interest in embedding spaces such as those reflecting the
dynamics before and during extreme events. Such a sampling
strategy, which would also relax computational requirements
for efficient nearest-neighbor searches, has already been
proposed in the context of data streams [40]. If different initial
conditions can be explored, importance sampling Monte Carlo
methods may also provide an efficient means towards a denser
coverage of regions of interest in embedding spaces [41].

Prediction performance may be improved in different ways.
We observed our method to yield different true-positive rates
depending on where the onsets of extreme events were located
[cf. Fig. 6(a)]. This finding may suggest that some extreme
events observed in our dynamics might be intrinsically better
predictable than others. However, the differing true-positive

rates may also be related to the way how embedding parameters
were determined. For all units, the same embedding parameters
(mt,ms) were determined by minimizing the root-mean-square
error globally [cf. Eq. (6)], leading to local embedding spaces
of different dimensionality [e.g., d1 = d100 = 9 at the border
and d50 = 15 in the center of the chain-like topology; cf.
Eq. (5)]. Thus, the true-positive rate may be improved by
determining embedding parameters for each unit separately,
e.g., by minimizing a local root-mean-square prediction error.

Further improvements in prediction performance may
be achieved by devising methods for the construction of
embedding vectors which systematically account for physical
scales present in the dynamics, for instance, by introduc-
ing varying and adjusted lags between consecutive vector
components [42] or by choosing a different spatiotemporal
shape for the local embedding vectors: the rectangular region
(cf. Fig. 3) could be replaced by a triangular one [43,44], a
pyramid [45], or a light cone [18] to account for the fact that
physical information propagates at some maximum velocity.
Employing more sophisticated schemes to obtain predictions
in local embedding spaces may yield further improvements in
prediction performance. For instance, the average of images of
nearest neighbors may provide a more robust prediction than
the image of one nearest neighbor alone; or local linear models
or a global nonlinear model could be fitted to the structures
in local embedding spaces to assist predictions [16]. Besides,
predictions will improve with an increasing number of vectors
contained in embedding spaces as better analogues become
available. For finite multivariate time series, more densely
populated embedding spaces may be obtained by exploiting
symmetries of the system if they exist and are known: If some
subsets of units of the dynamics are similar with respect to their
local dynamics and local coupling neighborhood, similarity
classes could be defined. The embedding space associated
with a similarity class would incorporate all embedding vectors
created from the data of the units of this class. Such a strategy
can be successful for homogenous systems (as demonstrated
in Ref. [18]) and may possibly be even successful for weakly
heterogeneous systems (as suggested by data-assimilation
experiments [46]).

In order to define local embedding spaces, we relied on the
knowledge of the coupling topology (i.e., the adjacency ma-
trix) of the system. Together with the embedding parameters,
the adjacency matrix determined the neighbors to consider
when constructing vectors of a local embedding space. While
in modeling studies the adjacency matrix of the system under
consideration is known, in field studies this is usually not
the case. In spatially extended systems, observables which
are spatially close may be considered as natural coupling
candidates. However, spatial closeness might not always be a
good criterion for dynamical systems in which observables can
be related to each other at large distances (e.g., teleconnections
in the climate system [47] or long-distance pathways in the
human brain [48]). The inference of the adjacency matrix from
empirical data may be thus recognized as a first step towards a
successful prediction of the dynamics for such systems. Recent
years have seen progress in this respect [49], yielding methods
differing according to the influence which can be exerted on the
system: If the system can be driven, driving-response-based
methods (see, e.g., Ref. [50]) may be appropriate, whereas
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correlation-based methods, which are likely affected by the
spatial [51] and temporal [52] sampling of the dynamics,
may be considered for systems whose dynamics can be only
observed but not manipulated in a controlled way (see, e.g.,
Ref. [53]).

We prevented extreme events from occuring by perturba-
tions which were localized in space and in time according to
the predicted onset of extreme events. Alternative prevention
schemes may yield even lower perturbation strengths, for
instance, by expanding the period of time during which a unit is
perturbed or by perturbing multiple units in the spatiotemporal
vicinity of the predicted onset. Targeted perturbations were
also reported to be successful in preventing extreme events
in the complex Ginzburg-Landau equation [54–56]. In these
studies, extreme events were prevented by applying a local
perturbation [54,55] or by perturbing a whole region [56]
whenever an observable crossed a specified threshold (this
prevention scheme was also used for low-dimensional dy-
namics [57,58]). We note that such a strategy could also be
adopted for our system: The crossing of a threshold would
indicate the beginning of an extreme event and would coincide
with our definition of the spatiotemporal onset (cf. Fig. 7,
tp = 0). Figure 7 illustrates that extreme events could still
be prevented (for 0 < tp � 45), however, using perturbation
strengths which are orders of magnitudes larger than those
required when applied before the threshold crossing.

We close this discussion by noting that the construction of
local embedding spaces may be considered as a strategy which
avoids high-dimensional spaces. The latter often come along
with the so-called curse of dimensionality; i.e., a finite amount
of data rapidly becomes sparse as the dimension of the space
(and thus its volume) increases [38]. Moreover, with increasing
dimension, Euclidean distances between any two vectors
tend to become more similar and thus less discriminative
(also known as concentration of norms), which can cause
problems for nearest-neighbor searches [59,60] and time-
series prediction [61]. To deal with the challenges associated
with high-dimensional systems, alternative strategies may
comprise dimensionality-reduction techniques applied as a
preprocessing step [61], the use of alternative distance met-
rics [62], or reduced models which mimic the extreme-value

characteristics of the full models and thus may allow for a
successful statistical prediction of extreme events [63].

VIII. CONCLUSIONS

We predicted the beginning, propagation, and termination
of extreme events in a spatially extended, heterogeneous,
excitable system, in which events occur in a temporally and
spatially irregular way. Iterative predictions of the beginning
of extreme events enabled us to suppress events completely
by small, rare, and spatiotemporally localized perturbations.
The predictions were based on time-series data, replicating the
situation of many field studies, in which the governing equa-
tions of motion of the studied systems are typically unknown
and only a subset of all degrees of freedom of the system
can be observed for a finite period of time. Our approach
is based on the concept of local embedding spaces [18],
in which vectors incorporate information of observables of
coupling neighbors, thereby featuring local characteristics of
the dynamics. Local predictions of the beginning of extreme
events yielded remarkably low false-positive rates and large
true-positive rates for sufficiently small lead times.

Further work will be needed before our prediction approach
can be successfully applied to natural systems. Besides
theoretical work, which could shed light on the concept of local
states, we consider research into the robustness of our method
promising. How will forecast performance be affected by noise
contributions (introduced, e.g., by measurement uncertainties
or by stochastic components in the system dynamics) or
by uncertainties when constructing local embedding spaces
(possibly induced when inferring the coupling topology from
empirical data)? Furthermore, the development of ideas and
methods which are specifically designed to deal with “rare
trajectories” may significantly advance our ability to forecast
extreme events.
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