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Ehrenfest approach to open double-well dynamics
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We consider an Ehrenfest approximation for a particle in a double-well potential in the presence of an external
environment schematized as a finite resource heat bath. This allows us to explore how the limitations in the
applicability of Ehrenfest dynamics to nonlinear systems are modified in an open system setting. Within this
framework, we have identified an environment-induced spontaneous symmetry breaking mechanism, and we
argue that the Ehrenfest approximation becomes increasingly valid in the limit of strong coupling to the external
reservoir, either in the form of an increasing number of oscillators or increasing temperature. The analysis
also suggests a rather intuitive picture for the general phenomenon of quantum tunneling and its interplay with
classical thermal activation processes, which may be of relevance in physical chemistry, ultracold atom physics,
and fast-switching dynamics such as in superconducting digital electronics.
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I. INTRODUCTION

The analysis of the relationship between full quantum
solutions and their semiclassical or classical counterparts
has played an important role in modern physics both for
promoting a better conceptual understanding of its foundations
and for simplifying complex problems. Prominent among the
many techniques introduced to treat quantum systems is the
approximation known as Ehrenfest dynamics [1] extensively
used both for its generality and for ready comparison to the
classical limit. This latter feature has resulted in its use in
the analysis of nonlinear dynamical systems, including those
which exhibit chaotic properties [2].

Here we consider a one-dimensional dynamical system with
nontrivial properties describing a particle moving under the
simultaneous influence of a double-well potential and a heat
bath defined in terms of its density of states and temperature.
The case of a double well is very important for various
reasons, and an Ehrenfest treatment is obviously going to be
approximate, giving rise to misleading results on long time
scales, as discussed in [3–6]. Nevertheless, this is a study of
intrinsic value for various reasons.

First, the double well is a paradigmatic example of a
dynamical system sufficiently different from that of the
harmonic oscillator, with a rich interplay between intrawell and
interwell dynamics. Second, the shortcomings of Ehrenfest
dynamics may be mitigated in contexts in which the dynamics
is frequently switched. Superconducting digital electronics
provides an example for which the dynamics is frequently
reset, and as such, no significant traces of the deviations
between the Ehrenfest and the exact quantum dynamics should
appear even on long time scales. Further, the double-well
description here allows naturally for defining a dichotomous
variable associated with quantities which are functions of
the two potential minima. Third, there is a crossover regime
between classical and quantum stochastic resonance in double-
well systems [7], and the Ehrenfest dynamics may help fill this
gap with simple, easily recognizable, dynamical structures, a
sort of “coarse graining” of the full Hilbert space. In particular,
we are able to interpolate between the situation of a purely
quantum closed system dynamics, with the possibility of

tunneling, and an open semiclassical or classical system in
which hopping between the two minima of the double-well
potential is instead achieved via thermal activation. In the
open system case, the reservoir is schematized as a number of
harmonic oscillators, with uniform density of frequencies in a
finite bandwidth, linearly coupled to the particle in the double
well. This represents the closest approximant to the ideal case
of the Caldeira-Leggett model with infinite oscillators [8,9]
and can also be considered as a general model for describing
solid-state devices.

This paper is structured as follows. In Sec. II we introduce
the model and discuss a feature which emerges already at
the classical level, a sort of phase transition from a bistable
to a monostable potential with an increasing number of bath
oscillators. In Sec. III we discuss the Ehrenfest approximation
to the double-well potential and introduce the extended
phase space structure. Numerical results for the Ehrenfest
model of a double well are reported in Sec. IV, including
the classical limit and the Fourier analysis of the particle
motion. In the concluding section we discuss the relevance of
our considerations for the debate surrounding the Ehrenfest
construction as applied to the double-well model, arguing
that in the macroscopic limit, i.e., with a large number
of oscillators, and/or in the high-temperature regime, the
Ehrenfest approximation becomes more valid.

II. CLASSICAL CONSIDERATIONS

The double-well external potential acting on a particle of
mass M is assumed to be of the form

V (Q) = −μQ2 + λQ4, (1)

where the two minima of the potential occur at ±√
μ/(2λ) and

an energy barrier, relevant to the interwell dynamics, equal to
�E = −μ2/(4λ). In the presence of a translationally invariant
heat bath, the total Hamiltonian becomes

Htot = P 2

2M
− μQ2 + λQ4 +

N∑
n=1

[
p2

n

2m
+ 1

2
mω2

n(qn − Q)2

]
,

(2)

1539-3755/2015/92(4)/042907(6) 042907-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.042907


STEPHEN CHOI, ROBERTO ONOFRIO, AND BALA SUNDARAM PHYSICAL REVIEW E 92, 042907 (2015)

which can be easily regrouped as

Htot = P 2

2M
−

(
μ − m

2

N∑
n=1

ω2
n

)
Q2 + λQ4

−m

(
N∑

n=1

ω2
nqn

)
Q +

N∑
n=1

(
p2

n

2m
+ 1

2
mω2

nq
2
n

)
. (3)

Notice that in the large N limit, if the initial positions
of all particles are all randomly distributed (with their sign
too), the linear term in Q is negligible. In the realistic case of
finite N , this term will induce an external fluctuating, spatially
independent force on the test particle resulting from the finite
number of kicks due to the bath particles. Also, the effect of
the heat bath is a renormalization of the quadratic term of
the test particle potential energy, i.e., μ �→ μ − m〈ω2〉N/2,
where 〈ω2〉 = ∑N

n=1 ω2
n/N . This is important because the

heat bath renormalization term may change qualitatively the
behavior which, in the large N limit, will end up in a quadratic
plus quartic oscillator with no bistability. The average critical
number of oscillators which defines the transition from a
bistable to a monostable potential is easily written as 〈Ncrit〉 =
2μ/(m〈ω2〉). By assuming a uniform distribution of the
frequencies in the interval [ωmin,ωmax], we obtain

〈Ncrit〉 = 6μ
/[

m
(
ω2

max + ωmaxωmin + ω2
min

)]
= 2μ

mω2
0

1

1 + �ω2
/(

12ω2
0

) , (4)

where in the last expression we have introduced the average
angular frequency ω0 = (ωmax + ωmin)/2 and the bandwidth
�ω = ωmax − ωmin. In Fig. 1 we plot the absolute value of
the minimum of the double-well potential, an indicator of
the transition from bistable to monostable behavior, versus
the number of oscillators. The presence of an increasing
bath frequency bandwidth decreases the critical value of the
number of oscillators for the transition, and the fact that
these frequencies are randomly selected results in a stochastic
component to the potential as well as in the location of its
minimum. This provides an example of spontaneous symmetry
breaking in which the environment restores the full symmetry
of the ground state when the number of harmonic oscillators
effectively interacting with the particle exceeds a threshold.
The situation discussed here is similar to the one discussed in
Ref. [10], in which localization is induced in a gas of pyramidal
molecules (for which the interatomic interaction can be also
approximated by a double-well potential) by the presence of
the other molecules. Both situations can be considered cases
in which there is a density-dependent phase transition. Notice
that once the double-well potential is introduced, regardless of
its microscopic origin, the phase transition occurs already in
the classical limit, as our discussion thus far does not involve
any consideration of quantum effects.

III. EHRENFEST APPROACH TO THE DOUBLE-
WELL POTENTIAL

In order to analyze the quantum case within the Ehrenfest
framework, we introduce the Heisenberg equations associated

FIG. 1. (Color online) Transition from bistable to monostable
behavior induced by the external environment. The absolute value
of the minimum of the potential is plotted vs the number of involved
harmonic oscillators with uniform distribution of their angular
frequency in a range centered around ω0 = 5 for different values
of their bandwidth �ω = 0,2,6,10 (from top to bottom, black, red,
blue, and green curves, respectively). The case of a monochromatic
bath yields the only deterministic curve and gives a value of Ncrit =
2μ/(mω2

0) = 800 for μ = 1 and m = 10−4, both in arbitrary units.
The opposite case of maximal bandwidth yields instead a value which
is smaller by a factor of 1 + �ω2/(12ω2

0) = 4/3, i.e., Ncrit = 600, in
good agreement with the observed behavior of the curve at the end
point. The inset explicitly shows the changing effective potential
for an increasing number of oscillators, Nosc = 1,300,600,900 (from
bottom to top, black, red, blue, and green curves, respectively), with
the dashed curve indicating the threshold case of 〈Ncrit〉 = 600. The
bandwidth in this case was taken to be the maximum value, �ω = 10.

with the closed system Hamiltonian Ĥ = P̂ 2/2M + V (Q̂,t),

dQ̂

dt
= P̂

M
,

dP̂

dt
= −∂V (Q̂,t)

∂Q
. (5)

Each operator can be written as Â = 〈Â〉 + �Â, where 〈· · · 〉
denotes the expectation value so that 〈�Â〉 = 0. Taylor ex-
panding the potential V (Q̂,t) about 〈Q̂〉 leads to the Ehrenfest
equations

d〈Q̂〉
dt

= 〈P̂ 〉
M

, (6)

d〈P̂ 〉
dt

= −
∞∑

n=0

1

n!
V (n+1)(〈Q̂〉)〈�Q̂n〉, (7)

where V (n) = ∂nV/∂Qn. Writing down the corresponding
evolution equations for 〈�Q̂n〉 leads to an infinite hierarchy
of equations [3–6]. While we summarize below the formalism
with the goal of applying it to a double-well potential, we
refer the interested reader to our recent discussion in Sec. II
of [11] for a detailed description of the delicate interplay
between the Heisenberg equations, the infinite hierarchy of
Ehrenfest equations, and their truncation by using the Gaussian
approximation.

Due to the presence of a quartic term in the polynomial form
of the potential energy for a double well, moments across
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different orders are coupled to each other, and higher-order
moments grow and eventually become significant even if they
were initially zero.

The Ehrenfest expansion in the Gaussian approximation
becomes

dQ

dt
= P

M
, (8)

dP

dt
= −

∞∑
n=0

V (2n+1)(Q)
ρ2n

n!2n
, (9)

dρ

dt
= �

M
, (10)

d�

dt
= �

2

4Mρ3
−

∞∑
n=0

V (2n+2)(Q)
ρ2n+1

n!2n
, (11)

where Q ≡ 〈Q̂〉 and P ≡ 〈P̂ 〉 are the expectation values of
position and momentum, respectively. Here odd cumulants
are identically zero, and even cumulants can be written in
terms of the variable ρ as 〈�Q̂2n〉 = ρ2n/[(2n!)2nn!]. As
done earlier [3–5], we also introduce a new variable, � =
〈�Q̂�P̂ + �P̂�Q̂〉/2ρ, which, as is clear from its definition,
reflects the correlation between �Q̂ and �P̂ . Hamilton’s
equations for the extended open system are now written as

dQ

dt
= P

M
, (12)

dP

dt
= 2(μ − 6λρ2)Q − 4λQ3 + m

N∑
n=1

ω2
n(qn − Q), (13)

dρ

dt
= �

M
, (14)

d�

dt
= �

2

4Mρ3
+ 2

(
μ − 6λQ2 − m

2

N∑
n=1

ω2
n

)
ρ − 12λρ3,

(15)

dqn

dt
= pn

m
, (16)

dpn

dt
= −mω2

n(qn − Q), (17)

corresponding to an extended Hamiltonian for the total system
of the form

H (Q,P ; ρ,�; qn,pn) = P 2

2M
− μQ2 + λQ4 + 6λQ2ρ2

+ 1

2
m

N∑
n=1

ω2
n(qn − Q)2 + �2

2M
+ �

2

8Mρ2
− μρ2

+ 3λρ4 + 1

2
m

(
N∑

n=1

ω2
n

)
ρ2+

N∑
n=1

p2
n

2m
. (18)

Together, the 4 + 2N Hamilton equations fully describe the
evolution of both the centroid and the spreading of the
wave packet associated with the particle experiencing both
the double-well potential and the classical motion of each
of the particles making the heat bath, including the back-
action effect of the particle on the heat bath as seen in

Eq. (17). With respect to the classical Hamilton’s equation,
there is a renormalization term in the quadratic coefficient
and cross terms relating fluctuational and configurational
dynamics, written as −12λρ2Q and −12λQ2ρ, respectively.
The presence of these cross terms (absent in the case of a
harmonic oscillator, which may be obtained as a specific case
for μ < 0, λ = 0) shows that configurational and fluctuation
dynamics are reciprocally interrelated, at variance with the
case of the harmonic oscillator.

IV. NUMERICAL RESULTS

We have numerically integrated the equations of motion
under a wide range of bath and test particle conditions using
a variable-step, predictor corrector integration scheme, with
absolute and relative errors in the 10−10–10−12 range. In
particular, we have explored the test particle dynamics for
different initial conditions in the presence of the bath. The bath
oscillators had energy drawn from a Boltzmann distribution,
and the number of oscillators, the mass of the harmonic
oscillators, the angular frequency bounds, and the spectral
distribution between these two extrema were all varied. For the
results shown, we have chosen, for simplicity and to contrast
with the findings in [12], a uniform distribution of frequencies.
However, more generic distributions [13] are easily analyzed
with our numerical tools, although we do not expect any new
or novel qualitative features to emerge [14].

We begin with the absence of a bath and consider a partic-
ularly intriguing choice of initial conditions corresponding
to the test particle being located at rest at the minimum
of the double-well potential. In this case we expect no
dynamics in the classical limit. The corresponding extended
space evolution is shown in the top panels of Fig. 2 and is
considerably different. This results from the purely quantum
evolution in the (ρ,�) space and can be thought of as arising
from auxiliary kinetic energy associated with quantum fluctu-
ations and resulting from the enforcement of the Heisenberg
principle. This emphasizes the crucial role of the (ρ,�) space
in providing fluctuation energy to the regular phase space. It
is also evident that there are initial conditions in the former
space for which no tunneling dynamics is achieved, i.e., in a
region centered around ρ = 1,� = 0. As far as we know, there
has been little discussion of this interpretation of quantum
tunneling resulting from the energy available in pure quantum
fluctuations, even if the system is nominally, on average, at
rest at a classical minimum of the potential. If the particle
starts from initial conditions corresponding to higher energy,
the dynamics changes accordingly, as seen in the bottom
panels of Fig. 2. The particle dynamics starting with the same
initial conditions is qualitatively quite different when the bath
oscillators are included in the dynamics. In Figs. 3 and 4, we
show cases in which the bath temperature is varied.

If the temperature is not very large, as in Fig. 3, the
generalized phase space trajectories of the two different
initial conditions are clearly distinct. By contrast, as seen
in Fig. 4, coupling to a high-temperature bath gives rise to
nearly indistinguishable trajectories in the generalized phase
space. The interpretation is that Fig. 3 results from the
combined action of the fluctuational quantum energy and
the thermal energy, while in Fig. 4 the thermal activation
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FIG. 2. The test particle’s phase space (Q,P ) and fluctuational
phase space (ρ,�) for the case of μ = 1,λ = 1, M = 1. Initial
conditions in (Q,P,ρ,�) space are (1/

√
2,0,0.03,0), corresponding

to the test particle sitting in the minimum of the potential well with
zero initial momentum (top plots), and (1,0,0.03,0), for which the test
particle starts away from the minimum of the double well (bottom
plots). The time evolution lasts for five periods, where the cycle
time is defined by the effective period of the intrawell oscillations,
τ = 2π/

√
2μ. Even starting at the minimum of the potential well with

zero kinetic energy in real phase space, the kinetic energy associated
with fluctuations feeds back on the phase space, giving rise to quantum
tunneling.

processes dominate the dynamics. Also, the back-action in
the fluctuation sector of phase space is more clearly manifest
in Fig. 4, as seen from the wider excursions in � due to the
stronger correlation to the configurational dynamics due to the
cross terms discussed after Eq. (8). By way of contrast, we
show in Fig. 5 the strictly classical counterpart of the motion
in the absence and presence of a heat bath with increasing
temperature and the associated growth in thermal activation.
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FIG. 3. Same as Fig. 2, but with the test particle in contact with
a bath with a temperature T = 10−6. The heat bath is made of 2000
oscillators with frequencies uniformly distributed in the range [0,10]
and mass m = 10−9.
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FIG. 4. Same as Fig. 3, but with the test particle in contact with
a bath with a temperature T = 10−3, corresponding to thermally
activated hopping processes.

The dependence of the interwell period of oscillation upon
the initial position of the test particle with a zero-temperature
heat bath is shown in Fig. 6, where the interwell period grows
quickly in a narrow region of Q/Qmin around unity. On closer
inspection, it is evident that the maximum slope of the interwell
period with respect to Q/Qmin occurs away from the actual
minimum of the potential, consistent with the fact that energy
coming from the (ρ,�) space is also available for hopping.
Moreover, the presence of the bath, even at zero temperature,
renormalizes the bare potential of Eq. (1), as discussed in
Fig. 1, resulting in a minimum at a value smaller than
Q/Qmin = 1. The increase in period is a manifestation of a
lower transition probability, and one may extend this inference
to baths at different temperatures. Thus, the crossover regime
between hopping due to individual or collective mechanisms of
quantum and thermal fluctuations can be explored. However,
a closer inspection of the time dependence of Q with an
fast Fourier transform (FFT) analysis shows that, even for
a closed system, there are various frequencies contributing to
the motion.

Therefore the interwell period of oscillation has to be read
as a coarse-grained observable associated with the Fourier
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FIG. 5. Trajectories in phase space for the classical case (� =
0,ρ = 0) for a particle (left) in a double well without external heat
bath and in contact with a heat bath at (middle) T = 10−6 and (right)
T = 10−3, with initial conditions very close to the minimum of the
potential, such that there is nearly no evolution in the first case, some
random motion without hopping in the second case, and effective
thermal activation in the third case.
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FIG. 6. (Color online) Interwell period vs the initial position of
the test particle (black solid line, left vertical scale) and corresponding
potential energy (red dashed line, right vertical scale). A dramatic
increase in period corresponds to the initial position at the minimum of
the potential, with the interpretation of a lower transition probability.
Here the temperature of the bath is assumed to be zero and μ = λ = 1,
and the initial conditions for P,ρ,� are the same as in Fig. 2.

spectrum of Q(t). The FFT spectrum is a more detailed
indicator and strongly depends on the temperature of the heat
bath, as shown in Fig. 7. At low temperature there are few
prominent peaks, while at the highest explored temperature
the peaks are barely recognizable as they are submerged in a
broadband spectrum of frequencies.

This suggests that precision thermometry of tunneling
electrons should be achieved by looking at the FFT spectrum of
the Josephson current, or related quantities such as the integral
of the FFT spectrum over the frequency range or the frequency
of the peak value in the FFT spectrum, which is manifestly
broadened as the temperature increases. Thermometry based
on FFT analysis of transport properties could be more robust
than the one based on decoherence of the interference fringes
and could be implemented in the same measurement run by
nondestructive imaging techniques in the case of ultracold
atoms [15]. While thermometry using Josephson junctions
is already available in the solid state [16], thermometry of
ultracold atoms is a crucial issue [17], and the influence of
a finite-temperature environment on quantum tunneling in a
double-well trap [18,19] has been observed [20,21].

V. CONCLUSIONS

In conclusion, we have discussed within a unified frame-
work the interplay between quantum and classical fluctuations
in the nontrivial case of an open double-well system using
the Ehrenfest approach implemented through the Gaussian
approximation. We have provided plausibility arguments
according to which this approximation should become increas-
ingly reliable as the heat bath dominates the dynamics, which
happens in the limits of high temperature and/or a large number
of bath oscillators. At finite times, the method may include the
case of resetting dynamics like the one of superconducting
electronics or, possibly, time-dependent situations such as the
ones related to stochastic resonance [7], readily achievable by

FIG. 7. (Color online) Fast Fourier transform of the time-
dependent position of the particle in the double-well potential for
different temperatures of the reservoir; from top to bottom on the
right side of the plot: T = 10−2 (green curve), T = 10−4 (blue),
T = 10−6 (red), and T = 10−8 (black), in arbitrary units. The regime
of thermal activation is marked by the presence of a broad spectrum of
frequencies, while at low temperatures the motion has a small set of
dominant frequencies, peaked around curves progressively broadened
as the temperature is increased. The motion is sampled for 213 = 8192
time steps, with initial conditions and the same system parameters as
in the bottom plots of Fig. 2, and 2000 oscillators in the heat bath.

adding a time-dependent tilting force term to the double-well
potential. From the Ehrenfest viewpoint, stochastic resonance
appears to be a specific example of control of the test particle
Hamiltonian parameters in order to maximize performance, as
measured by the signal-to-noise ratio when the test particle
is subjected to an external perturbation and the fluctuations
induced by the heat bath.

The inclusion of the external environment shows also that
the Ehrenfest approximation is expected to be more reliable
or better able to approximate the quantum dynamics for a
longer time as we increase the coupling to the environment by
increasing the heat bath temperature. This is not surprising as
in this limit the dynamics of the double well is increasingly
ruled by the (classical) heat bath. This is also suggestive of a
possible solution to the controversial issue of the validity of the
Ehrenfest approximation to systems other than harmonic ones.
As neatly pointed out in [22], “when closed-system classical
and quantum dynamics are treated in Gaussian approximation,
they are in fact identical,” which simplifies the situation as
any difference in their average behavior is then due to the
breakdown of the Ehrenfest approximation. Therefore in the
case of an open system the situation is more forgiving, and the
breakdown of the Ehrenfest approximation occurs either on
much longer time scales, of the order of �/�E (where �E is
the minimum spacing of the relevant energies significantly
contributing to the motion), or never for conditions under
which the effective potential becomes monostable. As seen
in Fig. 7 for higher temperatures, an increasing number of
harmonics contribute, therefore making �E smaller with re-
spect to the closed system. This should alleviate both the issues
raised for a closed system in [23,24] and the need for using a
superposition of Gaussian wave packets suggested in [25].
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Less trivial is the dependence of the dynamics on N in the
macroscopic limit, N → ∞. Based on the considerations on
the phase transition occurring when the number of oscillators
exceeds Ncrit as seen in Eq. (4), we notice that the same effect is
applicable to Eqs. (13) and (15), where the cross term 6λQ2ρ2

no longer affects the qualitative analysis. This means that for
the number of oscillators N > Ncrit the effective potentials in
both Q and ρ are monostable. Thus the dynamical behavior
will be qualitatively quite similar to the case of a harmonic
oscillator for which the Ehrenfest dynamics is valid for all
times. Since, typically, the number of degrees of freedom
of a bath also depends on temperature, with more degrees
of freedom becoming unfrozen with increasing temperatures,
there is a range of possible behavior in this macroscopic
limit, depending on the concrete model schematizing the heat
bath. We also note that the Caldeira-Leggett model, originally
introduced to describe the influence of a high-temperature,
infinite-bandwidth bath on a double-well system, is expected
to fail at low temperatures for which ultraviolet cutoffs in
the frequency spectrum of the bath oscillators are necessarily
operative. This expected failure is consistent with our finding

of a phase transition to a monostable potential for the case of a
finite bandwidth and a number of oscillators in the bath above
a well-defined threshold, a situation which could be indeed
realized in low-temperature setups.

From the experimental perspective, in the framework of
Bose condensates the system can be further generalized by
including interatomic interactions [26,27]. For instance, in the
experiment [20], the double well is created from a preexisting
harmonic potential via a slow ramping up of a barrier. It
remains to be understood if residual nonadiabaticity in the
ramp-up may be a cause for temperature increase of the sample.
The formalism developed here allows the implementation
of strategies, such as frictionless cooling [28–32], capable
of minimizing this heating source. Work on extending the
Caldeira-Leggett model in the framework of trapped atoms
is ongoing [33]. However, the functional dependence of the
interacting Hamiltonian, necessary for making the test particle
bath-particle interaction local, precludes closure of the system
of equations even in the Gaussian approximation, so all
current indications are that this formalism may not be trivially
extended to this important class of many-body systems.
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[32] E. Torrontegui, S. Ibáñez, S. Martı́nez-Garaot, M. Modugno,
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