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Diffusion for ensembles of standard maps
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Two types of random evolution processes are studied for ensembles of the standard map with driving parameter
K that determines its degree of stochasticity. For one type of process the parameter K is chosen at random from
a Gaussian distribution and is then kept fixed, while for the other type it varies from step to step. In addition,
noise that can be arbitrarily weak is added. The ensemble average and the average over noise of the diffusion
coefficient are calculated for both types of processes. These two types of processes are relevant for two types of
experimental situations as explained in the paper. Both types of processes destroy fine details of the dynamics,
and the second process is found to be more effective in destroying the fine details. We hope that this work is a
step in the efforts for developing a statistical theory for systems with mixed phase space (regular in some parts
and chaotic in other parts).
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I. INTRODUCTION

Typically physical systems are modeled by Hamiltonians
or maps leading to dynamics in mixed phase space [1–3]. In
such a phase space, the dynamics in some parts is chaotic
and in other parts it is regular. Here we consider the case of
conservative dynamics (area in phase space is conserved). The
phase space exhibits structures on all scales. These fine details
are typically very sensitive to the values of parameters, far
beyond experimental resolution. In mixed systems, transport
is affected by “sticking” to regular structures such as islands
chains; see also Refs. [4,5]. By sticking we mean that a
trajectory is trapped for a very long time near some structure.
The regular structures are typically surrounded by broken
invariant circles called “cantori” which function as barriers to
the flux of chaotic trajectories. Chirikov and Shepelyansky [6]
studied the decay of correlations near the critical point Kc

of the standard map, where chaos becomes unbounded [see
Eq. (1) and discussion that follows]. They observed an
algebraic decay of correlations for long times. This calls for a
statistical description of such systems [7].

Although time correlations in a specific region of phase
space may decay algebraically, rapid decay of time correlations
between different parts of phase space should be considered.
Therefore, a statistical approach may be applicable to a single
system. A comprehensive model for transport in such systems
was proposed by Meiss and Ott [8], where a construction
of a distribution of fluxes through different structures was
introduced. In this way a complicated deterministic process
was replaced by relatively simple random one. The distribution
of flux ratios relevant for this process was calculated for the
Hénon map in Ref. [7]. Recently an important contribution was
made by Cristadoro and Ketzmerick, who demonstrated the
universality of the decay of correlations in the framework of the
model of Ref. [8]. They examined an ensemble of such systems
by using an arbitrary distribution of transition probabilities in
phase space [9]. Guided by similar ideas, Ceder and Agam [10]
used diagrammatic methods to calculate the exponent of the
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decay of correlations and its fluctuations and found that the
fluctuations are large. A summary of the exponents of the
decay of correlations and relations to exponents characterizing
the spreading is presented by Venegeroles [11].

Another approach to treat statistically this effect in such
systems without modeling phase space was suggested in
the pioneering work of Rechester, Rosenbluth, and White
(RRW) [12,13], where noise was used. This enables one
to define and calculate the diffusion coefficient in phase
space. In particular the limit of vanishing noise was found
to be meaningful. In these calculations the main effect of
noise is to suppress long time “sticking” and to enable
diffusion. Sometimes it is referred to as regularization of
the diffusion process. On the other hand, it was found that
noise may enhance trapping [14]. This motivates calculation
of various scenarios and classification of “noisy” phenomena.
A characterization of this type was introduced by Romeiras,
Grebogi, and Ott [15] (see also Ref. [16]):

Problem 1: Noisy map. For an ensemble of trajectories each
encounters different random perturbations.

Problem 2: Random map. For an ensemble of trajectories
all encounter the same random perturbation.

In the present work we apply noise as in Problem 1, of small
variance, and in some cases we consider a random map as in
Problem 2. The processes we study can be classified into two
types:

Type I is an ensemble of systems, each with a different
parameter value that is constant in time.

Type II is an ensemble of systems where the parameters
vary randomly with time, where each member is like Problem
2 (random map).

Randomness of type I is relevant for ensembles of devices
such as driven Josephson junctions and Superconducting
Quantum-Interference Devices [17]. Randomness of type II
may be relevant for atomic billiards [18,19], where in spite of
the experimental efforts the walls of the billiard move during
the experiment.

The noise introduced by RRW (Problem 1) results most
naturally in experiments, as a result of the interaction with the
environment. The purpose of the present paper is to explore
the statistical effects of the randomness of types I and II in the
presence of weak noise of the type introduced by RRW. We
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explore in particular the question of the effect of the two types
of randomness on the fine details of the system. The noise was
introduced by RRW to regularize the map and to be able to
define the diffusion coefficient. The reason the result is mean-
ingful, also in the absence of noise, is the fact that for short
times correlations fall off exponentially, as in the case of ideal-
ized fully chaotic systems in the asymptotic infinite time limit
[20–22]. This leads to a result similar to the one of RRW [23].
The main goal of introducing randomness in the present work
is to study ensembles of mixed systems rather than achieving
regularization for a specific system. The calculations in the
present paper are performed for the standard map [2,3,24].
This map is given in terms of the variables θ and J :

θt+1 = θt + Jt+1, Jt+1 = Jt − K sin(θt ), (1)

where the parameter K controls the level of chaos. For
K > Kc = 0.971635 . . . it exhibits diffusionlike dynamics in
momentum J for most values of K . The diffusion coefficient is

D(K) = lim
t→∞

1

2t
〈(Jt − J0)2〉, (2)

where 〈 〉 denotes the average over initial conditions in the
chaotic component. If RRW’s type of noise is added also
averaging over the noise is understood. Fine details of the
system are the accelerator modes; that is, for K in the vicinity
of K = 2πn, where n is an integer, acceleration is found for
some initial conditions. Effects of noise (Problem 1) were
studied specifically for accelerator modes [25]. Deviations
from diffusion as a result of sticking were studied by Zaslavsky
and Edelman [5] and later by Venegeroles [22]. A process of
type II leads to diffusion into islands of the standard map [26].

In the present work, suppression of accelerator modes by
randomness of types I and II are studied. The outline of
this paper is as follows. In Sec. II approximate analytical
expressions for the diffusion coefficient in phase space of the
standard map are derived for processes of types I and II. These
are compared and tested numerically in Sec. III. The results
are summarized and discussed in Sec. IV.

II. ENSEMBLES OF STANDARD MAPS

The standard map is defined by Eq. (1). For any K > 0,
chaotic regions in phase space are found. There is a critical
value K = Kc � 0.9716 so that for K < Kc the various
chaotic regions are separated by invariant circles, while for
K > Kc chaotic regions merge so that there is an infinite
chaotic component and diffusion in momentum is found in
numerical calculations for many values of K .

The diffusion coefficient was calculated as an expansion
series in powers of 1√

K
[12]. To define and calculate the

diffusion coefficient, noise was introduced by the distribution
of the random variable δθ [12,13,25],

η(δθ,J ) = 1√
2πσ

∞∑
n=−∞

e
− (δθ−J+2πn)2

2σ2 , (3)

which centers δθ around a mean value equal to J + 2πn as in
Eq. (1). It may be replaced with help of the Poisson summation

formula by

η(δθ,J ) = 1√
2πσ

∞∑
m=−∞

e− 1
2 σ 2m2+im(δθ−J ). (4)

The deterministic evolution (1) in time is then replaced by a
probabilistic one given by the distribution

P (θ,J,t) =
∫ 2π

0
dθ ′η(θ − θ ′,J )P (θ ′,J + K sin(θ ′),t − 1),

(5)

where θ,J are the values at time t and θ ′,J + K sin θ ′ are
the values at time t − 1. Considering the initial probability
density P (θ,J,t = 0) = 1

2π
δ(J − J0), the diffusion coefficient

in momentum space to leading order in 1√
K

is

DSM(K) ≈
(

K

2

)2[
1 − 2J2(K)e−σ 2]

, (6)

where Jn(K) are the Bessel functions of order n, as found by
RRW [12]. For large K it reduces approximately to

DQL := K2

4
. (7)

In the limit σ → 0, Eq. (6) approximates extremely well
the momentum diffusion coefficient for nearly all K > Kc,
excluding small intervals near K ≈ 2πn (with integer n)
where the acceleration modes are found. Although the limit
σ → 0 of Eq. (6) exists, for the standard map (1) without
noise the diffusion coefficient is not defined, as a result of
“sticking” to regular structures. In the present work ensembles
of standard maps are introduced in terms of the distribution of
the parameter K . As explained in the introduction it describes
physical situations where either the value of the parameter
K is not known exactly but is fixed or it is not known
and it is varying. We assume that the parameter K is taken
from a Gaussian distribution with average K̄ and standard
deviation σK :

P (K) = 1√
2πσK

e
− (K−K̄)2

2σ2
K . (8)

This randomness is applied in two ways, defining two types of
processes and ensembles.

A. Type I: The parameter K is fixed but not known

In this type of dynamics each system is evolved with the
parameter K taking the same value, which is chosen at random
from the Gaussian distribution (8). The diffusion coefficient
for each system is given by Eq. (6) and the average diffusion
coefficient is found by

DF (K̄,σ,σK ) =
∫ ∞

−∞
dKP (K)DSM(K). (9)

In the leading order in σK it reduces to

D′
QL :=

(
K̄

2

)2

+ σ 2
K

4
. (10)

The symbol F stands for averaging over final results of
DSM(K).
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B. Type II: Changing parameter at each step

In this type each system is evolved in a way that K changes
at random at each step and is chosen at random with the
distribution (8). In this case the distribution (5) is replaced
by

P (θ ′,J + K sin(θ ′),t − 1)→〈P (θ ′,J + K sin(θ ′),t − 1)〉K,

(11)

where 〈 〉K denotes averaging with respect to Eq. (8), leading
to

P (θ,J,t) =
∫ 2π

0
dθ ′η(θ − θ ′,J )

∫ ∞

−∞
dKP (K)

×P (θ ′,J + K sin(θ ′),t − 1). (12)

Taking the initial probability

P (θ,J,0) = 1

2π
δ(J − J0) (13)

and calculating the paths in Fourier space following Ref. [12]
one obtains an expression in next to leading order in 1√

K
for

the diffusion coefficient:

DE(K̄,σ,σK ) ≈
(

K̄

2

)2

+ σ 2
K

4
− 2

(
K̄

2

)2 ∞∑
l′=−∞

J2l′+2(K̄)Il′

×
(

σ 2
K

4

)
e−σ 2

e− σ2
K
4 , (14)

where Jl and Il are the first order Bessel functions and first
order modified Bessel functions, respectively. E stands for
changing parameter at each step. The details of this calculation
are presented in the Appendix. In the leading order in 1√

K

where the sum can be neglected, one obtains for Eq. (14)
the same result as Eq. (10). That is, in the leading order in

1√
K

,DF = DE .

III. COMPARISON OF THE RESULTS FOUND FOR
THE TWO DIFFERENT ENSEMBLES

In this section the values of the diffusion coefficient DF

[Eq. (9)] and DE [Eq. (14)] are compared, and comparison to
the results of numerical simulations are presented. For both
processes, types I and II, N = 10 000 initial conditions were
used for each value of K and the map was iterated Nt = 100
steps. The number of values of K chosen from the ensemble
defined by Eq. (8) is N ′ = 10 000. The map (1) was evolved
in the presence of noise with the distribution (4). The variance
σ of the noise was set to a small value, namely 10−5, and was
kept constant, while the variance of K , σK , was varied and
the diffusion coefficient was calculated by Eqs. (9) and (14).
The corresponding numerical calculations were done for 200
different values of K̄ in the interval K̄min = 5 and K̄max =
30. For a given K the diffusion coefficient was calculated
numerically by

D(K̄,σ,σK ) = 〈(J − 〈J 〉)2〉
2Nt

. (15)

Figure 1 presents the numerical results of DE and DF for
various values of σK . It is shown that while the oscillations

(a)

(b)

FIG. 1. (Color online) Diffusion coefficients found by numerical
simulations [analytic results of Eqs. (14) and (9)]: (a) DE and (b) DF

for problems of type II and type I, respectively, as a function of K̄

for various values of σK . σK = 0.1 in red ◦ (−−), σK = 1 in blue
� (· · · ), σK = 3 in magenta � (− · −), and σK = 1 × 10−5 in black
� (−). The black line in (b) was calculated from Eq. (2) contrary to
other cases. In the calculation of DF by Eq. (9), DSM was obtained
from a numerical simulation

in DE decay with increasing the value of σK , the values of
DF exhibit enhanced diffusion in the entire range compared
to DE . This is due to the effect of convolution of the Gaussian
probability with the accelerator modes. Furthermore, the
accelerator modes disappear in DE for smaller values of σK

than they do for DF ; therefore, DF is time dependent.
In Fig. 2 the diffusion coefficient is presented for moderate

σK = 1. Numerical and analytical calculations are shown for
the two types and compared with Eq. (6) where K is replaced
by K̄ . Depletion or blurring of the accelerator modes is clearly
shown for type II processes, such that for this value of σK the
diffusion is well described by Eq. (14). RRW [12] found that
the peak of the accelerator mode is obtained by summation
Fourier paths of very high order (Fig. 9 in Ref. [12]). Since
there is no exact analytic expression for the accelerator modes,
we found numerically D(K) of Eq. (2) with only RRW type
of noise and used it in Eq. (9). For σK = 10−5 we assumed
DF (K̄) = D(K̄). The time dependence of DF (resulting from
the accelerator modes) is demonstrated in the inset of Fig. 2.

042904-3



OR ALUS AND SHMUEL FISHMAN PHYSICAL REVIEW E 92, 042904 (2015)

FIG. 2. (Color online) Comparison between analytical and nu-
merical calculations of DF and DE for σK = 1. Numerical results
for DF are shown in black �, and for DE are in red . Analytic
calculation for DF [Eq. (9)] is represented by black solid line, and for
DE [Eq. (14)] in gray (red). The analytical results of DSM [Eq. (6)]
are represented by the dash-dotted (green) line. The inset shows the
numerical results for DF for Nt = 1000 in blue , and for Nt = 100
in black �. The analytical results are in blue dashed and black solid
lines, correspondingly.

The elimination of the accelerator modes for the type II
system can be explained by the following. Because contribu-
tion to it comes from Fourier paths of high order, multiplying
each step of the path by e−k′2σ 2

K/4 in Eq. (A4) affects the
contribution strongly. In this sense this type of randomness
eliminates the accelerator modes more effectively than the
RRW type of noise. Increasing time (not shown here) leads to
an even further diminishing effect of the accelerator modes.
Although longer paths give a contribution, it is negligible due
to division by 1/2Nt .

IV. SUMMARY

In the present work two ensembles of standard maps of the
form (1) with a Gaussian distribution of the driving parameter
K were studied. In one case (type I) the K was kept fixed and
finally the average over the diffusion coefficient was taken,
while in the other process (type II) K was varied at each step.
Noise with standard deviation σ = 10−5 was added to make
the diffusion well defined. The resulting diffusion coefficients
differ, as discussed in what follows. Increasing σ 2

K , the variance
of K , tends to wash out details; hence, the effect of acceleration
modes weakens, as can be seen from Figs. 1 and 2. We see
that relatively weak randomness is sufficient to wash out the
fine details of the dynamics generated by the map. The most
important is the effect of this on accelerator modes. We find
that the averaged diffusion coefficient exhibits oscillations as
a function of the averaged driving parameter K̄ similar to the
situation found for fixed K [12]. The type I processes result in
replacement of the acceleration modes by enhanced diffusion
for a wide range of K̄ . The type II process where the driving
parameter K is chosen at each step is more effective in washing
out the accelerator modes than the type I processes where K

is chosen at random but is kept fixed for the entire evolution
time. This leads us to conjecture that processes of type II are
more efficient in eliminating fine details of mixed systems.

The processes of types I and II are paradigms of various
physical situations and the difference found here may give
hope to develop statistical theories for mixed systems as
proposed by Refs. [8–10] and others, and to classify relevant
averaging processes into few classes.

ACKNOWLEDGMENTS

The work was supported in part by the Israel Science
Foundation (ISF) Grant No. 1028/12, and by the US-Israel
Binational Science Foundation (BSF) Grant No. 2010132,
by the Shlomo Kaplansky academic chair. We would like to
thank James Meiss, Edward Ott, and Hagar Veksler for fruitful
discussions.

APPENDIX: CALCULATING THE DIFFUSION
COEFFICIENT DE

We start the calculation from Eq. (12). The Fourier
expansion is

P (θ,J,t) = 1

(2π )2

∞∑
m=−∞

∫ ∞

−∞
dk at

m(k)ei(mθ+kJ ). (A1)

We now turn to find the recursion relation of the expansion
coefficient at

m(k). Substituting the Fourier expansion for the
distribution at time t − 1, one finds

P (θ,J,t) =
∫ 2π

0
dθ ′ 1

2π

∞∑
m̃=−∞

e− σ2m̃2

2 +im̃(θ−θ ′−J ) 1

(2π )2

×
∞∑

m′=−∞

∫ ∞

−∞
dk at−1

m′

∫ ∞

−∞
dK

×
[

1√
2πσK

e
− (K−K̄)2

2σ
′2 ei(m′θ ′+kJ+kK sin θ ′)

]
. (A2)

Integrating over the noise and averaging over K one finds

P (θ,J,t) =
∞∑

m̃=−∞
e− σ2m̃2

2 +im̃θ

∞∑
m′=−∞

∫ ∞

−∞
dk′ at−1

m′ (k′)e−k′2 σK
4

×
∞∑

l=−∞
Jl(|k|K̄)ei(k′−m̃)J

∞∑
l′=−∞

Il′

(
k2σ 2

K

4

)

× δ(m′ − m̃ + lsignk′ + 2l′). (A3)

Taking the sum over m′ and making use of the orthogonality
of the Fourier components one finds the recursion relation of
the Fourier components,

at
m(k) = e− σ2m̃2

2 e−k′2 σ2
K
4

∞∑
l=−∞

Jl(|k|K̄)

×
∞∑

l′=−∞
Il′

(
k2σ 2

K

4

)
at−1

m̃−lsignk′−2l′ (k
′) (A4)

with the following relations:

m̃ = m, k′ = k + m, m′ = m − lsignk′ − 2l′. (A5)
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Next using paths in Fourier space the leading order in the
Bessel functions can be evaluated. The diffusion coefficient is

D = lim
t→∞

〈(Jt − J0)2〉
2t

, (A6)

where [12]

〈(Jt − J0)2〉 = i2 lim
k→0+

(
∂2

∂k2

)
at

0(k). (A7)

The leading order term is the path which stays at the origin
for t steps; that is,

at
0(k) =

[
e−k′2 σ2

K
4

∞∑
l=−∞

Jl(|k|K̄)
∞∑

l′=−∞
Il′

(
k2σ 2

K

4

)]t

a0
0(0).

(A8)

Since when differentiating twice and taking the k → 0+ limit
only the J0,I0 contribute, one finds

at
0 �

[
e−k2 σK

4

[
1 −

(
kK̄

2

)2][
1 +

(
k2σ 2

K

8

)2]]t

. (A9)

The leading term is Eq. (10).

The next term is calculated using a path that leaves the
origin. Leaving and returning to the origin have to be done
using two different points. The shortest path possible is of the
form

0,0 → k, m → k′, m′ → 0,0 (A10)

using the relations (A5), when leaving the origin

−m = −l − 2l′ (A11)

and when entering the origin

m′ = 0 − l − 2l′. (A12)

The only paths making a contribution to the diffusion are as in
Refs. [12,13],

(0,0) → (1, − 1) → (0,1) → (0,0),
(A13)

(0,0) → (−1,1) → (0, − 1) → (0,0),

and each has an equal contribution. For the second transition
in the first path we get

1 = −1 + l − 2l′ (A14)

or

l = 2 + 2l′, (A15)

leading to

at
0(k) = 2(t − 2)

( ∞∑
l′=−∞

J2l′ (|k|K̄)Il′

(
k2σ 2

K

4

))t−3 ∞∑
l′=−∞

J−2l′−1(|k|K̄)Il′

(
k2σ 2

K

4

)

×
∞∑

l′=−∞
J2l′+2(| − 1 + k|K̄)Il′

(
(−1 + k)2σ 2

K

4

)
e− σ2

2 e−(−1+k)2 σ2
K
4

∞∑
l′=−∞

J−2l′−1(|k|K̄)Il′

(
k2σ 2

K

4

)
e− σ

2 . (A16)

Using Eqs. (A6) and (A7) and including the leading term one finds Eq. (14).
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