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Dynamical systems with multiple, hierarchically long-delayed feedback are introduced and studied extending
our previous work [Yanchuk and Giacomelli, Phys. Rev. Lett. 112, 174103 (2014)]. Focusing on the
phenomenological model of a Stuart-Landau oscillator with two feedbacks, we show the multiscale properties
of its dynamics and demonstrate them by means of a space-time representation. For sufficiently long delays, we
derive a normal form describing the system close to the destabilization. The space and temporal variables, which
are involved in the space-time representation, correspond to suitable time scales of the original system. The
physical meaning of the results, together with the interpretation of the description at different scales, is presented
and discussed. In particular, it is shown how this representation uncovers hidden multiscale patterns such as
spirals or spatiotemporal chaos. The effect of the delay size and the features of the transition between small and
large delays is also analyzed. Finally, we comment on the application of the method and on its extension to an
arbitrary, but finite, number of delayed feedback terms.
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I. INTRODUCTION

Complex networks are one of the main subjects of the cur-
rent research on dynamical systems. As part of this research,
it has become necessary to address delayed interactions. In
fact, due to the finite propagation velocity of the information,
additional time scales can be introduced that are typically
comparable to or higher than the intrinsic time scales of the
connected systems. Time delay effects [1] are reported in
fields such as laser physics [2–5], vehicle systems [6], neural
networks [7], and information processing [8], mainly in the
case of the action of a single delayed feedback.

The specific feature of delay dynamical systems is that
the corresponding phase space is infinite-dimensional [9]: in
order to solve the model equations, the state of the system
on a time interval equal to the delay τ has to be provided
as initial conditions. On the other hand, it has been shown
that the dimension of attractors in delay dynamical systems is
finite and it may scale linearly with τ [10]; moreover, a part of
the spectrum of Lyapunov exponents approaches a continuous
limit for a long delay [11–15]. The latter case is of particular
interest, as it indicates that many features of high-dimensional
phenomena are expected to occur, and indeed spatiotemporal
chaos [16], square waves [1,17], Eckhaus instability [18],
coarsening [4], and nucleation [19] have been observed.

In the above-mentioned situations, the inspection of the
dynamics reveals the existence of many different, well-
separated time scales. This allowed a suitable representation to
be built in which the delay time can be interpreted as the size
of a one-dimensional, spatially extended system [16,17,20–
25], and it explains new phenomena [4,18,19,26–28]. New
challenging problems arise in the general case of a system
with several delayed feedbacks, especially when the delays
are acting on different time scales [29].

In this work, we concentrate on the case of multiple, hierar-
chically long delays. In such a configuration, the temporal
dynamics shows a rich structure that can be meaningfully
understood by means of suitable representations. Furthermore,

complex patterning in the time domain results in simple
structures in the new framework. In particular, we focus on
a two-delay model and its multiscale analysis. Nevertheless,
as discussed below, we expect that the dynamical behavior in
more complicated cases would be similar, as it will contribute
on different scales, each with specific features.

This paper extends our previous article [29], detailing
the three-dimensional spatiotemporal representation of the
dynamics of the delayed system with two delays. Moreover, we
present an analysis of the correlations on different time scales
and a complete derivation of the normal form equations, as
was recently outlined in Ref. [29]. The effects of the boundary
conditions and the study of the transition from small to large
delays are also analyzed extensively, together with a discussion
of the case of multiple delays.

The paper is organized as follows. In Sec. II we introduce
the two-feedback model and report some phenomenology from
the numerical integration of it. The multiscale features of the
dynamics are pointed out, and a spatiotemporal representation
is schematized. We outline in Sec. III the details of the
normal form derivation for the model. In Sec. IV we analyze
the transition from small to large delays, while in Sec. V
the extension to a higher number of delayed feedbacks is
considered. Finally, in Sec. VI we draw our conclusions.

II. A MULTIPLE FEEDBACK MODEL:
THE TWO-DELAY CASE

We consider the Stuart-Landau model (describing the
Andronov-Hopf bifurcation) for an oscillatory instability, with
two delayed feedback terms acting on the hierarchically long
time scales 1 � τ1 � τ2:

ż = az + bzτ1 + czτ2 + dz|z|2. (1)

Here, the variable z(t) is complex, the delayed terms are
zτ1 = z(t − τ1) and zτ2 = z(t − τ2), and the parameters a, b,
and c determine the instantaneous, τ1-, and τ2-feedback rates,
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FIG. 1. Time series of |z(t)| from (1), shown at different levels
of zoom. Time is measured in units of τ2 in (a) and (b) and in units
of τ1 in (c) and (d). The parameter values are a = −0.985, b = 0.4,
c = 0.6 (corresponding to P = 0.015), d = −0.75 + i, τ1 = 100,
and τ2 = 10 000. Initial conditions are chosen randomly.

respectively. Using appropriate scaling transformations of the
variable z, the parameter a can be made real and d = −μ + i

with μ > 0. For μ < 0, the nonlinear term becomes expanding
and the system no longer describes realistic bounded motions.

In Figs. 1 and 2, we show the results of the numerical
integration of Eq. (1) for two different parameter choices. In
Fig. 1, the time series of the variable |z| exhibit “almost”
periodic oscillations, with a period on the order of the delay
time τ2 [see Fig. 1(a)]. However, zooming into a time delay
τ2 interval [Fig. 1(b)], complex temporal structures are visible
on a time scale τ1 [Figs. 1(c) and 1(d)]. The same occurs for
the parameters used in the simulation reported in Fig. 2. In
this case, however, the dynamics is much more complicated at
every scale, with large fluctuations of the amplitude.

A. Spatiotemporal representation of the dynamics

To disclose the hidden features of long-delayed dynamical
systems with a single delay, a spatiotemporal representation
(STR) has been introduced [16,20]. In this approach, the
temporal variable t is parametrized by two new variables
{σ,θ}, playing the role of the pseudospace and pseudotime,
respectively:

t = σ + θτ, (2)

where τ is the delay time. The representation (2) is a
unique map from t on (σ,θ ) if it is additionally assumed
that 0 < σ � τ , and θ = 0,1,2, . . . is numbering the delay
intervals. That is, σ = t mod τ , and θ = [t/τ ] with [·] denoting
the integer part. Accordingly, a temporal sequence is cut in
slices of length τ : the variable spanning a single (delay)
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FIG. 2. Same as in Fig. 1 for d = −0.1 + i.

cell is the pseudospace σ , while the index numbering the
slices is the pseudotime θ . The STR allows for a meaningful
description of the dynamics observed both in experimental [4]
and theoretical [16,19,26,30] setups.

As discussed in Ref. [20], the STR is very helpful in the
visualization of some peculiar features of the dynamics of
delayed systems. In particular, when the delay is larger than
the typical time scales of the system without feedback, the
system behavior is mainly determined by a local coupling in
the STR coordinates.

The STR for systems with multiple, hierarchically long-
delayed feedbacks can be generalized as

t = σ + n1τ1 + n2τ2 + · · · + nN−1τN−1 + �τN, (3)

where 1 � τ1 � τ2 � · · · � τN . Here, similarly, one as-
sumes that 0 � σ � τ1 and 0 � nj � [τj+1/τj ]. We notice
that σ and the n’s play the role of pseudospace variables, and
� of the pseudotime variable. A more detailed discussion and
explanation of the variables σ , nj , and � will be given in
Sec. V, where rescaled pseudospatial variables are introduced.

Another explicit introduction of the multiscale variables
can be done as follows: Tj = μj t , j = 0, . . . ,N , where
μj = 1/τj � 1 are small parameters such that μj+1 � μj .
In this case, the new time scale Tj is the time scale induced
by the delay τj . Such an explicit introduction of the time-scale
variables is equivalent to the one given by (3) in the sense that

nj =
[
t mod τj+1

τj

]
=

[
Tj mod

τj+1

τj

]
= [Tj ]

when Tj is considered on a large interval from 0 to τj+1/τj .
The explicit introduction of the time scales will be used in
Sec. III for the derivation of the spatiotemporal model.

In the present case, with the use of STR with two delays,
we obtain a 2D pseudospatial pattern (snapshot) that evolves
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FIG. 3. (Color online) Spatiotemporal representation (see text)
of the dynamics of system (1) in Fig. 1: spiral defects. (a) Snapshot
of the spatial profile in the pseudospace coordinates (x,y), plotted
for θ0 = 0.4. (b) Constant level lines for the phase of z; the circles
denote the positions of defects. The phase is considered in the range
[−π,π ], and the levels for negative and positive phases are shown as
the dashed and solid lines, respectively. The spatial coordinates x and
y are different time scales given by Eq. (37).

in pseudotime. An an example, in Figs. 3 and 4, we plot
two snapshots of the system (1) for the sets of parameters
corresponding to Figs. 1 and 2, respectively. The definition of
the pseudospatial variables (x,y) will be given in the following;
here we anticipate that they are related to specific time scales
of the original time series.

As seen in the pictures, the complex temporal dynamics of
Figs. 1 and 2 uncovers in fact a deeper structure. The points
with almost zero amplitude and τ1 and τ2 periodicity of Fig. 1
correspond to the cores of spiral (topological) defects of the 2D
pattern [Fig. 3(a)], as confirmed by the analysis of the contour
plot for the phase [see Fig. 3(b)]. In Fig. 4, an even more
complicated temporal structure encodes a regime of 2D defect
turbulence, with random creation, motion, and annihilation
of topological defects. The observed patterns both change
smoothly in time.

B. Multiscale dynamics

We return to the case of two delays (1). The phenomenology
reported in the previous subsection indicates that the dynamics
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FIG. 4. (Color online) Spatiotemporal representation (see text)
of the system dynamics in Fig. 2: defects turbulence. Plots are as
in Fig. 3. The jumps of the phase from −π to π are emphasized by
thicker lines.

0 1 2 3 4 5 6

shift

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

R

R(s/τ 2)

R(s/τ)

R(s)

FIG. 5. (Color online) Autocorrelation function R of z for the
solution of Eq. (2) with a = −0.625, b = 0.4, c = 0.225, d =
−0.1 + i, τ1 = τ = 20, and τ2 = τ 2 = 400. R is plotted using three
different rescalings for the shift (see inset).

of system (1) is strongly affected by the two time scales
induced by the delayed feedbacks. A more quantitative
analysis can be carried out on the time series by means of
the (normalized) autocorrelation function

R(s) = 〈[|z(t − s)| − μ][|z(t)| − μ]〉t
σ 2(|z|) , (4)

where 〈·〉t denotes the time average, μ = 〈|z(t)|〉t , and σ (|z|) =
〈(|z| − μ)2〉t are the average and the variance of the intensity.
As shown in Ref. [31] for the single delay case, the autocor-
relation function structure can be derived for a linear model
with delay, and it obeys the very same equation. Moreover, a
comparison with experimental and numerical results indicated
that even such a simple approach is able to reproduce the
findings in the case of more complicated dynamics with
nonlinear terms. It is expected, therefore, that most of the
features of the signal itself (such as the multiscale properties)
are shared by the autocorrelation, even in the multiple delays
case. As an example, the spatiotemporal representation for
the autocorrelation was shown experimentally in Ref. [32]
for a single delay, evidencing a multiscale structure and the
existence of a drift.

In our case, we report in Fig. 5 the typical behavior of R

for the time series of (1) for time delays τ1 = τ = 20, τ2 =
τ 2 = 400, and the other parameter values as indicated in the
figure. The solution at these parameter values corresponds to
spatiotemporal chaos, as shown in Fig. 2. The autocorrelation
R is shown as a function of different rescaled temporal
shifts. When plotted in units of τ2 (black, continuous line),
a strong decay is visible within a τ2 cell as a signature of the
chaotic nature of the solution. However, the autocorrelation
displays revivals at multiples of τ2, indicating that there is a
coherence between the points at t and ≈t − τ2, or, in terms
of the spatiotemporal coordinates (3), this is a high coherence
between the same points in the pseudospace with fixed σ0 and
n1, and which are close in the pseudotime, i.e., n2 and n2 − 1.

When R is displayed in units of τ1 (blue, dashed line), the
fine structure of the first peak at the previous resolution is
shown to reveal many peaks corresponding to multiples of τ1.
Those multiple revivals, decaying within a τ2 interval, indicate
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that a τ1-long pattern is roughly coherent over some units.
Analogously to the case with τ2, this implies the coherence
between the points corresponding to the same σ0 and n2

but neighboring values of n1. The high correlation along the
coordinates n1 and n2 implies that the solution changes slowly
along them, thus allowing a pseudocontinuous description as
a 2D spatial pattern with respect to the spatial coordinates σ0

and n1 and temporal coordinate n2. Finally, the autocorrelation
displays a strong decay (red, dotted line) when plotted without
rescaling (the unit is 1), characterizing the degree of disorder
within a single τ1 unit.

As seen from the Fig. 5, the decay rate of the peak envelope
in the above scalings is of the same order. As a consequence,
the dynamical properties of the system (e.g., coherence length)
as a function of the corresponding rescaled variables are of
comparable magnitude. This is a strong indication that the
system can be effectively treated by means of a multiscale
analysis, i.e., there exists a representation of the dynamics in
terms of suitable variables where the behavior is evolving on
a scale O(1).

III. TOWARD A SPATIOTEMPORAL MODEL

In the previous section, we presented the results of a
numerical integration of system (1). A close similarity to the
dynamics of a spatially extended system is found when the STR
is used to represent the results with suitable pseudospatial and
temporal variables. As a further indication, the analysis of the
autocorrelation function suggests that important features of
the dynamics are connected to specific time scales of the time
series, thus paving the way for a more rigorous approach based
on a multiscale expansion of the model. As a consequence, we
expect to obtain a spatiotemporal normal form in terms of
suitable spacelike and temporal-like variables related to the
above time scales.

As a first step toward the derivation of the normal form from
the model (1), we study the properties of the destabilization of
the steady state z = 0.

A. Destabilization and spectrum of the steady state

The long time delays τ1 and τ2 can be written as τ1 = 1/ε

and τ2 = κ/ε2 with positive parameters ε and κ . Considering ε

as a small parameter ε � 1, the scale separation 1 � τ1 � τ2

is satisfied. The parameter κ is considered to be of order 1.
Note that in the case of more than two delays on different time
scales, one can proceed similarly and introduce the scaling
τn = κn/ε

n. In this work, we concentrate on the case of two
delays and comment on the extension to the general case in
Sec. V. Note that the time scales of the time delays need not
satisfy τ1/τ2 ∼ ε in the general case. In such a case, the normal
form may deviate from the Ginzburg-Landau equation, which
is derived in the present section.

The characteristic equation, which determines the stability
of the zero steady state z = 0, is obtained by linearizing Eq. (1)
and substituting z = eλt :

χ (λ,ε) := λ − a − be−λ/ε − ce−λκ/ε2 = 0. (5)

The stability of the steady state is equivalent to the fact that
all roots λ of Eq. (5) have negative real parts. We assume that
a,b, and c do not depend on ε.

Although the solutions to Eq. (5) are not given explicitly,
their approximations can be found using the smallness of
ε [12–14,33,34] (largeness of the delays),

λ = γ0 + iω0 + ε(γ1 + iω1) + ε2(γ2 + iω2), (6)

where γj and ωj are real unknowns, which do not scale
with ε. Depending on the leading terms in the real part of
this expansion, the system may develop different types of
instabilities: if γ0 > 0, there is strong instability induced by
the instantaneous term [12,13,33,35]. If γ0 = 0 but γ1 > 0,
there is a weak instability caused by the effect of the τ1

feedback [12–14]. In this case, the τ2 feedback does not play an
important role. Hence, in order for the second delay to play the
destabilizing role, one needs γ0 = γ1 = 0 and γ2 to become
positive. Let us consider this in more detail and substitute
Eq. (6) into Eq. (5). We obtain the following equation:

γ0 + iω0 + ε(γ1 + iω1) + ε2(γ2 + iω2) − a

− be−(γ0+iω0+ε(γ1+iω1)+ε2(γ2+iω2))/ε

− ce−(γ0+iω0+ε(γ1+iω1)+ε2(γ2+iω2))κ/ε2 = 0 (7)

for the unknowns ωj and γj .
Our aim now is to derive the conditions under which

the steady state is destabilized and the destabilization is
on the order of the largest time delay τ2. We will see
that these conditions are as follows: a < 0, |b| < |a|, and
P = a + |b| + |c| > 0, with P = 0 playing the role of the
destabilization threshold. To make the following reasoning
more clear, we split it into steps.

Step 1: Identifying singular terms. Equation (7) contains
terms that can become singular with ε → 0:

be−(γ0+iω0)/ε − ce−[γ0+iω0+ε(γ1+iω1)]κ/ε2
.

While the fast oscillating phases iω0/ε, iω0/ε
2, and iω1/ε are

not harmful (the amplitude is bounded), the remaining terms
may become unbounded with decreasing ε. This is the case
when either γ0 or γ1 is negative. Hence, the first solvability
conditions are γ0 � 0 and γ1 � 0.

Step 2: Conditions for the absence of a strongly unstable
spectrum. The condition a > 0 implies the existence of a
characteristic root with strictly positive γ0 ≈ a > 0. Indeed,
the solution λ = a > 0 solves the leading terms from Eq. (7)
that are not vanishing with ε. All other terms become
exponentially small of order e−a/ε and smaller. This leads
to the appearance of a solution in very close proximity to
λ = a for small ε. Such a situation is called strong instability
of the zero steady state; see also [13,18,33] for rigorous proof,
or [35] where it is called the anomalous spectrum. As was
already mentioned, we would like to avoid such a case, since
the perturbations are growing here on the time interval of
order 1/a ∼ 1, which is much smaller that time delays. In
such a case, there is no chance to see high correlations for the
times τ1 = 1/ε or τ2 = κ/ε2. Hence, we make the following
assumption, which guarantees that γ0 = 0 and there is no
strongly unstable spectrum:
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Assumption (I):

a < 0.

In fact, this assumption represents the stability of the system
without feedbacks. Under assumption (I), one has γ0 = 0, and
the expansion (7) reduces to

iω0 + εγ1 + ε2γ2 − a − be−(iω0+εγ1+ε2γ2)/ε

− ce−(iω0+εγ1+ε2γ2)κ/ε2 = 0, (8)

where the higher-order terms εiω1 + ε2iω2 are omitted.
Step 3: Conditions for the absence of the τ1 spectrum. Now

let us find the conditions for which γ1 = 0, since otherwise
the perturbations will grow exponentially on the time scales
of the order 1/εγ1 ∼ τ1, and no correlation of the time scale
τ2 can be observed. For this, we assume γ1 > 0 (it cannot be
negative according to Step 1). Then the nonvanishing terms
from Eq. (8) are

iω0 − a − be−(iω0/ε+γ1) = 0. (9)

From Eq. (9), one obtains

γ1 = − ln

∣∣∣∣ iω0 − a

b

∣∣∣∣ = −1

2
ln

ω2
0 + a2

|b|2 (10)

and

ω0 = −ε arg

[
iω0 − a

b

]
+ ε2πk, k ∈ Z. (11)

Equation (11) allows for a countable set ω0,k of solutions for
ω0. It is not difficult to see that |ω0,k+1 − ω0,k| ∼ ε, i.e., for
small ε they are covering densely any interval −L < ω0 <

L. For any such ω0, the real part γ1 is given by γ1(ω0)
from (10). This part of the spectrum was called pseudocon-
tinuous [13,18,33–35], since with ε → 0 the solutions are
converging to a curve λ = εγ1(ω0) + iω0 in the complex plane,
and this curve describes the stability properties.

We are interested in the case when the function γ1 becomes
negative,

γ1(ω0) = −1

2
ln

ω2
0 + a2

|b|2 < 0 (12)

for all ω0, thus contradicting our assumption γ1 > 0. It is easy
to see that (12) holds for all ω0 if and only if |a| > |b|, which
becomes our second assumption:

Assumption (II):

|a| > |b|.
Under assumptions (I) and (II), the simplified ansatz [instead
of (6)] capturing the leading terms of the spectrum is

λ = iω0 + ε2γ2 (13)

and the expansion (7) reads

iω0 + ε2γ2 − a − be−(iω0+ε2γ2)/ε − ce−(iω0+ε2γ2)κ/ε2 = 0.

(14)
Step 4: Expression for the τ2 spectrum. From Eq. (14), the
nonvanishing terms with ε → 0 are

iω0 − a − be−iω0/ε − ce−iκω0/ε
2−κγ2 = 0. (15)

FIG. 6. Geometric representation of solutions to Eqs. (18)
and (19). The solutions are given as the intersection points of two
functions: φ = −ω0/ε mod 2π and φ = φk(ω0), where the latter
is given implicitly by Eq. (19). Since the distance between the
neighboring solutions is ∼ε, the distance from any point of the domain
to a solution is also ∼ε.

Equation (15) can be rewritten as

iω0 − a − be−iω0/ε

c
= e−iκω0/ε

2−κγ2 . (16)

Taking the absolute value of Eq. (16), one obtains

γ2 = − 1

2κ
ln

1

|c|2 ([ω0 − |b|sin(φ + φb)]2

+ [a + |b|cos(φ + φb)]2), (17)

where φb := arg b and

φ = −ω0/ε. (18)

By taking the phase of Eq. (16), we obtain

1

ε
φ = arg

(
iω0 − a − beiφ

c

)
+ 2πk, k ∈ Z. (19)

Step 5: Showing that solutions (ω0,φ) of Eqs. (18) and (19) are
covering densely a whole domain φ ∈ [0,2π ], ω0 ∈ [−L,L]
with some L > 0. Let us discuss the properties and meaning
of the obtained Eqs. (17)–(19). Omitting a detailed analytical
investigation of Eq. (19), we illustrate and argue geometrically
that the set of solutions (ω0,φ) of Eqs. (18) and (19) covers
a domain ω0 ∈ [−L,L],φ ∈ [0,2π ] such that for any point
(ω0,φ) from this domain, there is a solution to Eqs. (18)
and (19), which is O(ε) close to (ω0,φ). The corresponding
geometric arguments are illustrated in Fig. 6. Equation (18)
determines the set of lines with the slope ε, and Eq. (19)
determines the set of functions φk(ω0), which are shifted by
approximately 2πε. The solutions (ω0,φ) are given by the
intersection points. Hence, the distance from any point in the
domain to a nearby solution is of the order ε.

As a result, in the limit of large delays (small ε), we obtain
the asymptotically continuous set of eigenvalues,

λ(ω0,φ) = iω0 + ε2γ2(ω0,φ), (20)

with γ2 given by Eq. (17), and ω0 and φ can be considered as
continuous and independent parameters.
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Step 6: Condition for the destabilization of the steady state
by the τ2 feedback. Finally, using the eigenvalue approximation
by Eq. (20), one can obtain the stability conditions. If the
condition |c| < −a − |b| is satisfied, the function γ2(ω0,φ) is
negative for all ω0 and φ, implying the stability of the steady
state. Otherwise, γ2 becomes positive and the steady state
is unstable for all small enough ε. In this case, a nontrivial
dynamics is expected.

The obtained conditions determine when the τ2 feedback
destabilizes the steady state. Namely, we have a < 0, |b| < |a|,
and

P = a + |b| + |c|, (21)

with P as the destabilization parameter. The desired destabi-
lization occurs for positive values of P .

B. Derivation of the normal form

1. Equation close to the destabilization

Taking into account that the perturbation parameter is
given by Eq. (21), as well as Assumptions (I) and (II), the
unperturbed system (P = 0) can be written as

z′(t) = az(t) + bz(t − 1/ε)

− (a + |b|)eiφcz(t − κ/ε2) + dz(t)|z(t)|2, (22)

where we substituted c = (−a − |b|)eiφc in order to fulfill
Eq. (21) with P = 0. We also substituted τ1 = 1/ε and
τ2 = κ/ε2. According to assumptions (I) and (II), we have
also a < 0 and |b| < −a. Furthermore, we consider the

perturbed system

z′(t) = (a + pε2)z(t) + bz(t − 1/ε)

− (a + |b|)eiφc z(t − 1/ε2) + dz(t)|z(t)|2, (23)

where P = pε2 is a small perturbation parameter. It should
be pointed out that the choice of the parameter that is
perturbed (here it is a) is arbitrary. One can consider also more
general perturbations of the other parameters b,c, as well as a
nonlinearity. As soon as the smallness of the perturbation is ε2,
the following derivation of the normal form remains practically
the same. The reason for the ε2 order of the perturbation
is the same as in the case of the normal form for the Hopf
bifurcation [36].

2. Multiscale ansatz

We use the following general multiscale ansatz:

z(t) =
∑
j=1

εjuj (T1,T2,T3,T4, . . . ), (24)

where Tk = εkt are different time scales, and the unknown
functions uj are bounded. The factor ε in front indicates that
we are interested in small solutions close to the destabilization.

The main idea is to substitute the ansatz (24) into the dy-
namical equation (23) and split terms with different smallness
with respect to ε. Before doing this, let us calculate different
terms. The time derivative is

z′(t) = ε2D1u1 + ε3(D2u1 + D1u2) + · · · ,

where Dk are corresponding partial derivatives ∂/∂Tk . The
first and the second delayed terms up to the order ε3 read

z

(
t − 1

ε

)
= εu1(T1 − 1, . . . ) + ε2[−D2u1(T1 − 1, . . . ) + u2(T1 − 1, . . . )]

+ ε3

[
−D3u1(T1 − 1, . . . ) + 1

2
D2

2u1(T1 − 1, . . . ) − D2u2(T1 − 1, . . . ) + u3(T1 − 1, . . . )

]
,

z

(
t − κ

ε2

)
= εu1

(
T1 − κ

ε
,T2 − κ, . . .

)
+ ε2

[
− D3u1

(
T1 − κ

ε
,T2 − κ, . . .

)
+ u2

(
T1 − κ

ε
,T2 − κ, . . .

)]

+ ε3

[
1

2
D2

33u1

(
T1 − κ

ε
,T2 − κ, . . .

)
− D4u1

(
T1 − κ

ε
,T2 − κ, . . .

)
− D3u2

(
T1 − κ

ε
,T2 − κ, . . .

)

+u3

(
T1 − κ

ε
,T2 − κ, . . .

)]
,

and the nonlinear terms start from the third order in ε:

z(t)|z(t)|2 = ε3u1|u1|2 + · · · .

In the following, we consider separately terms of different
orders in ε.

3. Solvability conditions for the order-ε terms

By substituting the obtained expansions into Eq. (23), and
leaving only the terms of the lowest order ε, we obtain

au1(T1,T2, . . . ) + bu1(T1 − 1,T2, . . . )

= (a + |b|)eiφcu1(T1 − κ/ε,T2 − κ, . . . ). (25)

Equation (25) can be considered as a linear discrete dynamical
system (two-dimensional map) of two variables (T1,T2), which
determines the value of the function u1 in the point (T1,T2)
given the values of that function in the points (T1 − 1,T2) and
(T1 − κ/ε,T2 − κ). The only possible bounded solutions in
such a system, due to the linearity, are solutions satisfying
u1(T1,T2, . . . ) = eiψ1u1(T1 − 1,T2, . . . ) and u1(T1,T2, . . . ) =
eiψ2u1(T1 − κ

ε
,T2 − κ, . . . ) with some phases ψ1 and ψ2. By

substituting it into Eq. (25), we obtain

a + |b|e−iψ1+iφb = (a + |b|)eiφc−iψ2 . (26)

Since a < 0 and |b| < a by assumptions (I) and (II), Eq. (26) is
only solvable when the corresponding arguments are zero, thus
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ψ1 = φb and ψ2 = φc. Therefore, we arrive at the conditions

u1(T1,T2) = eiφbu1(T1 − 1,T2), (27)

u1(T1,T2) = eiφcu1

(
T1 − κ

ε
,T2 − κ

)

= ei(φc−φb[κ/ε])u1

(
T1 −

{
κ

ε

}
f

,T2 − κ

)
. (28)

Here {·}f is the fractional and [·] is the integer parts of a number.
Note that κ/ε = τ2/τ1. In the case when the ratio of the delay
times is integer { κ

ε
}
f

= 0, the condition (28) can be simplified
as

u1(T1,T2) = ei(φc−φbκ/ε)u1(T1,T2 − κ).

Equations (27) and (28) are the solvability conditions resulting
from the terms proportional to ε. In fact, they will lead to
boundary conditions for the resulting normal form equation.
From another perspective, the discrete dynamical system (25)
obtained to this order is equivalent to the limiting discrete
map obtained by setting the derivative to zero. Such a limiting
map is often used in the case of one large delay [1,37] for an
approximate description of the dynamics of a delay system.
In our case, such a limiting map is neutrally stable for the
unperturbed system (22).

4. Solvability conditions for the order ε2

By collecting terms of the order ε2, we obtain

D1u1 = −bD2u1(T1 − 1,T2)

+ (a + |b|)eiφcD3u1

(
T1 − κ

ε
,T2 − κ

)
+ au2

+ bu2(T1 − 1,T2)

− [a + |b|]eiφcu2

(
T1 − κ

ε
,T2 − κ

)
.

The parts of the obtained equation with the terms u2 have the
same form as Eq. (25). By collecting the terms with u2, one
can see that u2 satisfies the same solvability conditions (27)
and (28) as u1. The remaining terms are

D1u1 = −bD2u1(T1 − 1,T2)

+ (a + |b|)eiφcD3u1

(
T1 − κ

ε
,T2 − κ

)
.

We remind the reader here that the arguments T3,T4, . . . are
omitted for brevity. Taking into account the conditions (27)
and (28), one can eliminate the terms with shifted arguments
and obtain

D1u1 = −|b|D2u1 + (a + |b|)D3u1. (29)

The obtained Eq. (29) connects the derivatives D1u1, D2u1,
and D3u1, i.e., a transport equation. Solutions of Eq. (29) are
arbitrary functions of the form (solutions along characteristics)

u1(T1,T2,T3,T4) = �(T4,T1 − νT3,T2 − ν|b|T3), (30)

where we denoted ν := (−a − |b|)−1 > 0. The new arguments
are

x = T1 − νT3, y = T2 − ν|b|T3, θ = T4. (31)

We do not write here the slower variables T5,T6, . . . , since
the dynamics in which we are interested are limited to T4. A
summary of the solvability conditions from the ε2 terms is
given by Eq. (30). This relation tells us that there is a simple
transport on the time scale ε3t , which results in the relation (30)
between the time scales. As we will see later, this transport will
be responsible for the drift in the spatiotemporal representation
of the solutions of the delay system; see Sec. III C.

It is remarkable that both the drift and the boundary
conditions are determined by the linear terms only. This is
due in particular to the cubic nonlinearity of our system. This
remains true also for higher-order nonlinearities.

5. Solvability conditions for the order ε3

The final order, which we consider here, is ε3, and it will
lead to the normal form equation of the Ginzburg-Landau
type for the function �(θ,x,y) introduced above by Eqs. (30)
and (31). By collecting terms of the order ε3, we obtain

D2u1 + D1u2 = au3 + pu1 + b

{
1

2
D22u1(T1 − 1)

−D3u1(T1 − 1) − D2u2(T1 − 1)

+u3(T1 − 1)

}
+ du1|u1|2

−(a + |b|)eiφc

{
1

2
D33u1

(
T1 − κ

ε
,T2 − κ

)

−D4u1

(
T1 − κ

ε
,T2 − κ

)

−D3u2

(
T1 − κ

ε
,T2 − κ

)

+u3

(
T1 − κ

ε
,T2 − κ

)}
.

The terms with u3 can be eliminated assuming the same
conditions (25) as for u1 and u2. Further, the u2 terms satisfy
the transport equation (29). The remaining part contains only
terms with u1. It can be simplified using (27) and (28) by
eliminating shifted arguments, leading to the expression

−(a + |b|)D4u1 =pu1 − D2u1 − |b|D3u1 + |b|
2

D22u1

− (a + |b|)1

2
D33u1 + du1|u1|2. (32)

Now we use the properties given by Eqs. (30) and (31) and
rewrite Eq. (32) with respect to the function � and new
coordinates x, y, and θ :

ν−1�θ =p� + ν|b|�x − (1 − ν|b|2)�y

+ ν

2
(�xx + 2|b|�xy + |ab|�yy) + d�|�|2. (33)

The obtained equation (33) is already the Ginzburg-Landau-
type normal form equation, at which we are aiming. The
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corresponding boundary conditions follow from the ε1 solv-
ability conditions (27) and (28), which should be rewritten
with respect to � and have the following form:

�(x,y,θ ) = eiφb�(x − 1,y,θ ), (34)

�(x,y,θ ) = ei(φc−φb[ κ
ε

])�

(
x −

{
κ

ε

}
f

,y − κ,θ

)
. (35)

In the case when the ration τ2/τ1 is integer, and, hence { κ
ε
}
f

=
0, the second condition (35) reduces to

�(x,y,θ ) = ei(φc−φbτ2/τ1)�(x,y − κ,θ ).

6. Summary of the normal form equations

Summarizing, we have obtained the normal form equa-
tion (33), which should be equipped with the boundary
conditions (34) and (35). The equation is a Ginzburg-Landau-
type system. The solutions � of this equation are supposed to
approximate the solutions of the delayed equation (23), with
the following relation between the solutions:

z(t) = ε�(ε4t,εt − νε3t,ε2t − ν|b|ε3t) + · · · . (36)

The relation (36) follows directly from Eqs. (24) and (30).
Note that the temporal variable θ = ε4t of the function � is
the slowest time scale. This means that the typical Ginzburg-
Landau dynamics given by the temporal changes according
to the dynamical Eq. (33) will be visible on the time scales
∼τ 4 = 1/ε4 in the dynamics of the delay systems. We will
call the variable θ pseudotime. The two other variables x and
y are scales T1 = εt and T2 = ε2t corrected by a shift on the
time scale T3 = ε3t . We will call these variables pseudospace.
The first pseudospatial variable is connected to the first time
delay τ1, since the change of the real time t by an amount
τ1 corresponds to the change of x by 1. Similarly, the second
pseudospatial variable y is connected to τ2.

Let us describe how the STR in Figs. 3 and 4 have
been obtained. The spatial coordinates in the figures are as
introduced above:

x = (1 − νε2)εt, y = (1 − ν|b|ε)ε2t. (37)

By this relation, for any time point t , there is the corresponding
point (x,y) in the pseudospace and the point of the pseudotime
θ , and the value of the function � in this point is given
by �(θ,x,y) := z(t)/ε. In this way, given a solution z(t) of
the delayed equation (1), one finds the value of the function
� on some points in the space (x(t),y(t),θ (t)) determined
by (31). If ε is small, then these points are densely located
with distances of the order ε, and a good approximation of
the spatiotemporal function � can be made. The resulting
functions are plotted in Figs. 3 and 4 as a color plot for some
fixed value of the pseudotime θ . As the pseudotime is varied,
one obtains dynamical patterns; see the supplemental material
to Ref. [29] for additional details.

7. Discussion of boundary conditions

The obtained boundary condition (35) still depends on the
parameter ε, although in a nonsingular way:

FIG. 7. (Color online) Snapshots for the solutions of the normal
form equation (38). (a) Spiral defects, parameter values: p =
250, a1 = 1.11, a2 = −1.22, a3 = 1.39, a4 = 1.11, a5 = 0.56, and
d = −0.75 + i. (b) Defect turbulence, parameter values are the same
except for d = −0.1 + i. Initial values are random and close to zero.

(i) The simplest case of the periodic boundary conditions on
the domain G1 = [0,1] × [0,κ] arises for φb = φc = 0 (real
positive parameters c and b) and τ2/τ1 = j , where j is an
integer number.

(ii) If only the assumption τ2/τ1 = j is made, then the
boundary condition makes just a phase shift on the boundaries
of the domain G1.

(iii) If no assumptions are made, the condition (35) connects
not only the points on the boundary of the domain, but also
a point inside (x = x − {κ/ε}f ,y = y − κ). In this case, it is
reasonable to consider classes of systems corresponding to the
same value of {κ/ε}f = μ < 1. Any sequence εj of the form
εj = κ/(μ + j ), j = 1,2, . . . , corresponds to the same class
of systems, which involves the points (x = x − μ,y = y − κ)
as a boundary condition.

8. Reduced normal form by neglecting boundary conditions

In many cases, the main features of the dynamics are
independent from the boundary conditions (“bulk” dynamics),
similar to the attainment of the thermodynamic limit in a
spatially extended system (see, e.g., [38]). By neglecting
boundary conditions, one can eliminate the convective terms
with �x and �y and cross-derivative �xy in the normal
form (33) by using an appropriate coordinate transformation.
The resulting equation has a simpler form:

�θ = p� + |a|−1(�xx + �yy) + d�|�|2, (38)

with the real diffusion coefficient |a|−1. The dynamics of (38)
is known [38–40] to possess various phase transitions, spiral
defects (e.g., for d = −0.75 + i), and defect turbulence (e.g.,
for d = −0.1 + i).

We found numerically a good qualitative correspondence
between the dynamics of systems (38) and (1) [29]. As an
example, we report in Figs. 7(a) and 7(b) the results of the
integration of (38) in the cases corresponding to Figs. 3 and 4,
respectively.

C. Drift

1. Drift in multiscale temporal dynamics

The dynamics of patterns takes place on the slow time
scale ε−4, as follows from (36) and (33). By restricting the
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consideration up to time scales ε−3, one observes just a drift.
In order to see this, let us introduce the uncorrected, “natural,”
spatial variables x̄ = εt , ȳ = ε2t , and ū = ε3t capturing the
dynamics up to the scale ε−3. On time scales ε−3, the dynamics
is described by a two-dimensional function �(θ0,x,y) with
a fixed θ0. Taking into account the relation (31), we have
x = x̄ − δū and y = ȳ − |b|δū, and, hence, the solution is
described by (36) with �(θ0,x̄ − δū,ȳ − |b|δū), meaning just a
translation in the natural coordinates x̄,ȳ along the vector Vd =
(−1,−|b|). In practical terms, this means that the dynamics in
the natural coordinates x̄,ȳ exhibit a drift on the time scale
ε−3, which is faster than the time scale ε−4 of the dynamics
given by the normal form. The corrected coordinates x and
y eliminate this fast drift so that the remaining variables are
governed by the Ginzburg-Landau equation.

2. Drift and comoving Lyapunov exponents

The above-mentioned drift could be determined as a conse-
quence of the properties of the maximal comoving Lyapunov
exponent [41]. We give some details of its calculation, since it
could be employed for a higher number of delays as well. The
linearization of (1) in z = 0 is

ż = az + bzτ1 + czτ2 . (39)

We consider now the STR,

t = σ + nτ1 + mτ2,

where σ ∈ [0,τ1), and m and n are positive integers such that
n = 0,1, . . . ,[τ2/τ1]. The new coordinates are related to the
previously introduced coordinates x̄, ȳ, and z̄, such that σ ∼
x̄/ε, n ∼ ȳ/ε, and m ∼ z̄/ε. The multiple-scale ansatz in this
case reads z(t) = Xn,m(σ ), and Eq. (39) is rewritten as

LXn+1,m+1(σ ) = bXn,m+1(σ ) + cXn+1,m(σ ), (40)

where L is the linear operator L = ∂σ − a. Equation (40) can
be solved, e.g., using the Laplace transform, with the initial
conditions X(0)

n,m(σ ) = δn,1 × δ1,m × δ(σ ). It is found that

Xn+1,m+1(σ ) =
(

bn

n!
σn

)(
cm

m!
σm

)
(b + c)eaσ . (41)

This expression generalizes Eq. (8) of [16].
To evaluate the maximal comoving Lyapunov exponent,

we introduce the spherical coordinates m = ρ cos α, n =
ρ sin α cos β, σ = ρ sin α sin β, and define as usual the maxi-
mal comoving Lyapunov exponent as

�(α,β) = lim
ρ→∞

log |Xn,m(σ )|
ρ

. (42)

Using the Stirling approximation, and after some calculations,
it is found that

�(α,β) =a sin α sin β + [1 + log (|b| tan β)] × sin α cos β

+ [1 + log (|c| sin β tan α)] × cos α. (43)

A geometrical interpretation [see Fig. 8(a)] can be intro-
duced using the velocity V = (sin β tan α, cos β tan α), along
which the perturbations evolve with a multiplier e�(α,β). The
propagation cone’s boundaries can be defined as the set
(α,β) such that �(α,β) = 0. The bifurcation point, attained

FIG. 8. (Color online) Drift in the propagation of defect struc-
tures, from the integration of (1). Parameters are those used in
Fig. 1. Using the STR with the uncorrected pseudospace variables,
the defects are moving in pseudotime (a). The components of the
(vectorial) drift can be evidenced by plotting two successive τ2-long
(b) and τ1-long slices (c). The separations between the two vertical
dashed lines are ȳ (b) and x̄ (c) drift components, respectively.

when the maximum of � is equal to zero, is obtained at
V = V0 = ( −1

a+|b| ,
−|b|
a+|b| ) = δVd , corresponding to (α0,β0) =

(tan−1(
√

1+|b|2
a+|b| ), tan−1( 1

|b| )). Here δVd is the same drift ob-
tained from the multiscale ansatz in the previous Sec. III C 1.

The components of the vectorial drift can be shown in
their effects in shifting the time series at the corresponding
scales; we plot in Figs. 8(b) and 8(c) such quantities along the
uncorrected ȳ and x̄ variables, respectively.

The above result (43) extends the standard linear stability
analysis by indicating the direction along which the desta-
bilization takes place. We remark that, since for a choice
of arbitrary parameters the angles are generically nonzero
and bounded below π/2, the disturbances always propagate
with a drift. We notice how the comoving exponent diverges
logarithmically close to the axis α = 0 and β = 0, i.e.,
instantaneous propagations are forbidden. In the opposite limit,
α → π/2 (β → π/2), � approaches the value for the single
delay case c = 0 (b = 0). Finally, when both α,β → π/2
(infinite velocity), � = a and the dynamics is governed by
the local term, as expected.

IV. FROM SMALL TO LARGE DELAYS

For large delays, the normal form (33) seems to reproduce
the dynamics of the delayed system (1). However, for smaller
delays, differences between the two models appear and become
more and more relevant. The effects, related to the finiteness
of the delays involved, are similar to the (finite)-size effects
observed in spatially extended systems. We can estimate
those effects by evaluating the convergence of behaviors
and/or statistical and dynamical indicators when decreasing
the delay values. A transition is expected, where the finite-size
results are significantly different (or scale differently) from the
asymptotic values (or behaviors).

We report in Fig. 9 the dynamics of Eq. (1) for increasing
values of τ1 = ε−1 and keeping τ2 = ε−2 = τ 2

1 . In the left
part, we show the time series obtained after a transient.
The amplitude is rescaled and the time is expressed in units
of τ2 to compare the results. For the parameters used, the
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FIG. 9. Temporal series from system (1) for different values of
the delays. The parameters used are those of Fig. 2. Left column: time
series of |z| with amplitude rescaled by τ1, for increasing values of τ1

(from top to bottom: τ1 = 3, 5, 8, and 15). Time is expressed in units
of τ2. Right: maximum and minimum of the amplitude |z| (a) and of
the rescaled amplitude |z|/ε = |z|τ1 (b), evaluated after a transient.

corresponding normal form displays defects turbulence, as
shown in Fig. 7(b). In the delayed system, for τ1 � 15, time
series similar to those of the CGL and defects appear. For
smaller values of τ1, the solutions converge to periodic or
bounded nonzero oscillations after a transient.

This behavior is better evidenced in the right part of Fig. 9,
where we plot the maximum and minimum of the amplitude
(evaluated on a long interval after a transient) (a) and their
rescaled values (b) as a function of τ1. A transition between
two regimes is clearly visible at τ1 � 10(ε � 0.1), above which
a stationary defects turbulence behavior can be observed.

A more quantitative investigation is presented in Fig. 10,
where we plot the contour lines of the normalized autocor-
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R

FIG. 10. Autocorrelation function R for |z(t)|. Dependence of the
autocorrelation on the delay τ .

relation R function of the signal |z(t)| as a function of τ1.
The shift variable s is rescaled to τ2. As shown in the figure,
the autocorrelation converges to a well-defined structure for
high values of τ1 (larger than 15), characterized by main peaks
at (almost) integer values, with satellite peaks separated by
1/τ1. Such structure changes for small values of τ1, where the
satellite peaks are modulated or disappear, indicating that the
dynamical regime there is drastically different.

As a further criterium, a statistical description has been
introduced in Ref. [29]. In that work, the characterization of
the regimes is based on the analysis of the scaling of the
amplitude distribution.

From the above analysis, it is evident that finite-size (delays)
effects in our system are increasingly important, leading to
significant differences with the asymptotical results for ε �
0.1. While this result is specific to the case considered, we
expect that a similar result can be obtained for different models
in the very same way it holds for spatially extended systems.

V. HIGHER NUMBER OF DELAYS

The above considerations can be applied to an arbitrary
number of delays. In the general case, we consider a dynamical
system characterized by a natural time scale t0 in the absence
of feedback, with N feedback loops each with a delay τk (k =
1, . . . ,N). We assume a hierarchy of magnitudes, introducing
a smallness parameter ε = t0/τ1 � 1 and considering τk =
t0ε

−k . The multiple scales are then defined as Tl = εlt , l being
a natural number.

In this case, we expect that {Tl, l = 1, . . . ,N} are the
“spatial” scales. The TN+1 is the scale of the “drift”; it can be
measured by means, e.g., of the comoving Lyapunov exponent
(on the microscopic amplitude scales) or the autocorrelation
(on the macroscopic scale) method [42]. Finally, the scale for
the equivalent CGL dynamics is TN+2.

In the general case, we consider the STR [Eq. (3)], where
the variables σ0, {n}, and � are defined by

[t/τN ] = �,

[(t − �τN )/τN−1] = nN−1,

[(t − �τN − nN−1τN−1)/τN−2] = nN−2,

· · ·
[(t − �τN − nN−1τN−1 − · · · − n2τ2)/τ1] = n1,

t − �τN − nN−1τN−1 − · · · − n1τ1 = σ0.

It is apparent that σ0 ∈ [0,τ1]. Since the pseudospatial variables
nk can be large and are bounded by [τk+1/τk], we define
the rescaled pseudospatial variables S0 = σ0/(τ1/t0) and Sk =
nk/(τk+1/τk), k = 1, . . . ,N − 1, which are confined to the in-
terval [0,1], and the pseudotemporal variable T = �/(t/τN ).
Then we have

σ0/t0 = σ0/τ1τ1/t0 = S0ε
−1,

n1τ1/t0 = n1/(τ2/τ1)(τ2/τ1)(τ1/t0) = S1ε
−2,

· · ·
nN−1τN−1/t0 = nN−1/(τN/τN−1) · · · (τ1/t0) = SN−1ε

−N,

�τN/t0 = �/(t/τN )(t/t0) = T ε−(N+1).
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The STR hence is rewritten as

t̄ = t/t0 = S0ε
−1 + S1ε

−2 + · · · + SN−1ε
−N + T ε−(N+1).

(44)
The STR can now be related to the multiscale analysis: the
dynamics on the time scale Tl = εlt is visible on the coordinate
l only, since the scales k < l are too fast and the k > l too slow.

The drift (over the scale TN+1) and the effective CGL
dynamics (in the comoving reference frame, with scales equal
to or longer than TN+2) can be visualized in the STR using a
time interval t/τN � ε−1 and t/τN � ε−2, respectively.

The above definitions set the formal framework for a
discussion in a general case and provide an interpretation of
the STR; however, the rigorous derivation of the normal forms
or even the interpretation of the interplay between the different
time scales will have to be discussed case by case.

VI. CONCLUSIONS

We have presented a class of dynamical systems, namely
multiple, hierarchically long-delayed systems. In the case of
two delays, we have shown that the complex time series
obtained via the numerical integration of a Stuart-Landau
oscillator with two feedbacks are encoding, in a suitable rep-
resentation, the evolution of two-dimensional spatial patterns.
The equivalent space and temporal coordinates are related
to specific time scales of the system, thus suggesting the

possibility of a multiscale approach. Accordingly, we derived
a Ginzburg-Landau normal form close to the bifurcation point:
such a model, in the limit of infinite size (long delays),
reproduces the observed behaviors of the delay system. The
approach allows for a clear definition of the spacelike and
timelike variables in terms of the time scales of the original
system. The definition of a drift and the identification of
the (pseudo) time scale where it can be observed and its
properties in terms of the maximum comoving Lyapunov
exponent are also given. Moreover, we discussed the limit
of the correspondence set by finite-size effects by evaluating
different qualitative and quantitative indicators. Finally, a
formal framework in the general case of n delays has been
introduced and suggested as the starting point for the analysis
of different models and/or experimental setups.
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