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Interplay between parity-time symmetry, supersymmetry, and nonlinearity: An analytically
tractable case example
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In the present work, we combine the notion of parity-time (P7") symmetry with that of supersymmetry (SUSY)
for a prototypical case example with a complex potential that is related by SUSY to the so-called Poschl-Teller
potential which is real. Not only are we able to identify and numerically confirm the eigenvalues of the relevant
problem, but we also show that the corresponding nonlinear problem, in the presence of an arbitrary power-law
nonlinearity, has an exact bright soliton solution that can be analytically identified and has intriguing stability
properties, such as an oscillatory instability, which is absent for the corresponding solution of the regular nonlinear
Schrodinger equation with arbitrary power-law nonlinearity. The spectral properties and dynamical implications
of this instability are examined. We believe that these findings may pave the way toward initiating a fruitful
interplay between the notions of P7 symmetry, supersymmetric partner potentials, and nonlinear interactions.
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I. INTRODUCTION

In the past 15 years, there has been tremendous growth
in the number of studies of open systems bearing both
gains and losses, motivated to a considerable degree by the
study of the specially balanced parity-time (P7)-symmetric
dynamical models [1-3]. The original proposal of Bender
and collaborators toward the study of such systems was
made as an alternative to the postulate of Hermiticity in
quantum mechanics. Yet, in the next decade, proposals aimed
at the experimental realization of such P7 -symmetric systems
found a natural “home” in the realm of optics [4,5]. Within
the latter, the above theoretical proposal (due to the formal
similarity of the Maxwell equations in the paraxial approxi-
mation and the Schrodinger equation) quickly led to a series of
experiments [6]. In turn, these efforts motivated experiments
in numerous other areas, which span, among others, the exam-
ination of P7 -symmetric electronic circuits [7,8], mechanical
systems [9], and whispering-gallery microcavities [10].

In the same spirit, another important idea that was originally
proposed in a different setting (namely that of high-energy

“kevrekid @math.umass.edu

1539-3755/2015/92(4)/042901(7)

042901-1

PACS number(s): 05.45.Yv

physics [11]) but has recently found intriguing applications
in the context of wave guiding and manipulation in the realm
of optics is that of supersymmetry (SUSY) [12]. The main
idea is that from a potential with desired properties, one can
obtain a SUSY partner potential that will be isospectral to
(i.e., possess the same spectrum as) the original one, with
the possible exception of one eigenvalue. In fact, taking the
idea one step further, starting from a desired ground-state
eigenfunction, one can design the relevant supersymmetric
partner potentials in a systematic fashion, as discussed, e.g.,
in [12], both for continuum and even for discrete problems.
In fact, more recently, the two ideas (of P7 symmetry, or
anyway non-Hermiticity, and SUSY) have been combined to
construct SUSY-partner complex optical potentials designed
to have real spectra [13]. An expected application of these
ideas that is now being explored (extending the spirit of
corresponding studies in the P7 -symmetric setting [14]) is
in using SUSY transformations to achieve transparent and
one-way reflectionless complex optical potentials [15].

The above works have essentially constrained the interplay
of P7 symmetry and SUSY at the level of linear potentials.
Naturally, however, except for very low optical intensity, the
crystals considered in the relevant applications bear nonlinear
features, e.g., due to the Kerr effect. Hence, our focus in
the present work will be to extend these linear ideas of
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PT symmetry and SUSY to a nonlinear case example.
Moreover, we will select an example that blends two additional
characteristics. On the one hand, one of our supersymmetric
partners will constitute a famous and well-known solvable
model in quantum mechanics, namely, the celebrated Poschl-
Teller potential [16,17]. On the other hand, it will turn out to be
the case that not only the linear but also the nonlinear variant of
the problem will be analytically solvable, in fact for arbitrary
powers of the nonlinearity, in a special limit and will naturally
connect with the linear solutions of the potential. In what
follows, in Sec. II we will first present the general theory of
linear P7 -supersymmetric potentials. Then, in Sec. III we will
consider the special nonlinear solutions and their asymptotic
linear limit reduction. Numerical results will corroborate the
above analytical findings and we will also explore the spectral
and dynamical stability of the nonlinear waveforms. Finally,
in Sec. IV, we will summarize our findings and present our
conclusions.

As a clarification, it should be noted here that our aim is to
explore the supersymmetric analog of a P7 -symmetric linear
problem and then to consider the nonlinear extension of such
a model, incorporating the cubic nonlinearity stemming from
the Kerr effect; i.e., the supersymmetric partnership is only
available in the linear case. One of the main benefits of such a
consideration is that the supersymmetric partner of the linear
problem (here, being the Poschl-Teller potential) gives us the
proper starting point for the emergence (the “bifurcation”)
of nonlinear states out of linear ones, since as the norm of the
former tends to zero, the nonlinear problem solution converges
to the linear problem solution.

II. LINEAR NON-HERMITIAN
SUPERSYMMETRIC MODEL

As is done generally in the theory of SUSY, we consider an
operator A such that

d
A—E—i-W (1)

where W is the superpotential and an operator 5 of the form

B = —i + W. 2)
dx

It is important to accentuate here (see also [13]) that in the
case of a complex superpotential W, contrary to the Hermitian
case of a real W, B is not a Hermitian adjoint operator of
A (hence the different symbol). Then, defining the potentials
VE = W2E W + E,withV® = VO — 2W’, we have that
the operators

d?

(€
HY = Ix2

+ V& 3)
are isospectral, with the exception of the fundamental mode
in the potential V") which lacks a counterpart in V). More
specifically, the eigenvalues satisfy E(P = ES7, for n > 1
(see also [13]). We note in passing that the e1genvect0rs of

the two cases are also related, i.e., u” = AM(H )

and u, | =
Bu{~.
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Now, assuming that W = f +ig, V) = V(+) +1V(+)

and VO = V;‘, )i VI( ). we find that (see [18]) the potentials
have to satisfy the following conditions:

Vil = - - f, &
ViV =2fg—¢, )
Vil = -+ 1, (6)
Vi) =2fs+g. (7

The remarkable finding of the linear spectral analysis of [18]
was that those authors, motivated by the sl(2,C) potential
algebra were able to derive a number of special case examples
of simple functional forms of complex W’s which give rise
to complex SUSY potentials. Arguably, one of the most
remarkable of their examples concerns the superpotential

W(x) = (m — %) tanh(x — ¢) — ib; sech(x —¢),  (8)
which gives rise (assuming hereafter without loss of generality
that ¢ = 0) to the supersymmetric partners of the form

V® = (=b] — m* + 1)sech®(x)
— 2imby sech(x) tanh(x), ©)]
VO = (=b] — (m — 1)* + {)sech’(x)
—2i(m — 1)b; sech(x) tanh(x). (10)

We chiefly focus hereafter on the remarkable special case
of m = 1, previously considered, e.g., in [19]. The exceptional
characteristic of this case is that it stems from a real potential
V) which is well known to be exactly solvable in the
realm of elementary quantum mechanics, namely, the Poschl-
Teller potential [16,17]. While its eigenfunctions can also be
written down in an explicit form by means of hypergeometric
functions, here we will restrict our considerations to the
relevant (bound state) eigenvalues which in the context of the
above example assume an extremely simple form as

E{7) = —1[2b; —2n —11%. (11)

Such bound-state eigenvalues only exist when n < b; — 1/2.
This, in turn, suggests that for the + superscript potential, it
will be E(P) = E(l )1, i.e., all the relevant bound-state eigen-
values should also emerge in the P7 -symmetric spectrum of
the potential V), just as they appear in the Hermitian (real)
spectrum of the potential V(). The only eigenvalue that will
not be captured by this relation is E = —1/4; see the relevant
details on the spectrum of V™) below. Furthermore, we expect
that when varying b;, bound-state eigenvalues will emerge as
by crosses 0.5, 1.5,2.5, ... in both the spectra of V&),

All of these conclusions are fully corroborated by the results
of Fig. 1. The spectrum of H™" considered therein turns out
to be real, as may be anticipated by the P7 symmetry of
the model, but more importantly, it turns out to be identical
to that of its supersymmetric Poschl-Teller partner, as can be
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FIG. 1. (Color online) The blue circles represent the numerically
computed eigenvalues EP of the operator H" of Eq. (3), under
the P7 -symmetric potential of Eq. (9). The solid lines represent
the analytical predictions based on the potential’s supersymmetric
partner V) corresponding to an analytically tractable Poschl-Teller
potential.

seen from the theoretical lines confirming the bifurcation of
the point spectrum eigenvalues at the locations theoretically
predicted. Finally, indeed, the only eigenvalue that is not
captured is E = —1/4 which turns out to be invariant, under
variations of b;. We point out that generalizations of this
potential with arbitrary coefficients in both the real and the
imaginary parts were considered in [20] and the relevant P7 -
symmetric transition threshold was identified as an inequality
associating the real and the imaginary part prefactors. The
pertinent inequality here assumes the form (b; — 1)> > 0 and
is generically satisfied (i.e., V b;), as can be expected by the
supersymmetric partnership of the potential with a Hermitian
one bearing real eigenvalues for all b;. It is also worthwhile
to point out that the potential with functional dependences of
the real and imaginary parts such as those of V) of Eq. (9) is
also referred to as Scarff II potential [21-23].

As a side remark, we observe that V™ is invariant under an
exchange of b; and m. Interestingly, as shown in [24], when
b; —m is not an integer, the eigenvalue spectrum has two
branches:

EV=—m—-n—1/2%, n=0,12,...nmx  (12)
where m — 3/2 < npax < m — 1/2, and
E® = —(b;—n—1/2%, n=0,12,...nman, (13)

where by — 3/2 < nyax < by — 1/2.

From this, we infer that when m = 1 and b; is not an
integer, H has two nodeless states (i.e., n = 0) with energy
eigenvalues and eigenfunctions

N
(()1) — /sech(x)eZ’b’t“‘“ (tdnhx/2)’

2 _ sechb’_l/z(x) eZi tan~! (tanh x /2)
[ — s

15)

E" = —1/4, (14)

EP = —(b; — 1/2)%,
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although the latter (as per our spectral results of Fig. 1) will
only be present for b; > 1/2. Interestingly, while for 1/2 <
by < 1,Ey = —1/4isthe ground state, for 1 < b; < 3/2,Ey =
—(b; — 1/2)? corresponds to the ground state.

III. NONLINEAR GENERALIZATION OF THE MODEL

We now turn to the corresponding nonlinear model which
is the basis for the present analysis. Examining the case of the
focusing nonlinearity, the operator H* is augmented into the
nonlinear problem:

iu, = HPu — u)*u. (16)

The most physically relevant case is that of the cubic
nonlinearity x = 1, corresponding to the Kerr effect, although
in recent years, examples of higher order nonlinearities (like
k =2 and « = 3) have been experimentally realized; for a
recent example, see [25]. The relevant nonlinear problem
has been partially considered for x = 1 in a two-parameter
generalization of the potential associated with V") [21]; see
also the more recent discussions of [22,23]. While all of these
works were restricted to the cubic case, below we will obtain
exact solutions for arbitrary nonlinearity powers. Moreover,
we will explain through our P7-SUSY framework the
existence of nonlinear dipole (and, by extension, tripole, etc.)
solutions identified in [23], emerging from the higher excited
states of the underlying linear problem. It can be directly found
that the relevant nonlinear single-hump (nodeless) solution for
arbitrary « is of the form

u(x,r) = e "F' A sech'/* (x)e'?™, (17)
where
4k [ (k +2)? (k +2)?
A¥ = — 1| === -, a8
(K+2)2[ 442 M 442 ’} (18)
_ 4k by _1 X
$(r) = % tan [tanh (5)] (19)
and
1
E=——. (20)
K

Note when m =0 and b; = 1/2, V) - 0 and our solu-
tion reduces to the well-known solution of the nonlinear
Schrodinger (NLS) equation with A% = (1 4 «)/k2. Also
note that when k = 2, A% — 0 Vb;,.

For b; — by, with b7 , = (K;; 2’ the amplitude A tends
to zero and the solution (17) becomes the solution of the
corresponding linear limit (15) by virtue of condition (20).
The solution (17) exists for b; < b;. when x < 2 and for
by > by, if k > 2. Our analytical expression only yields the
trivial solution for x = 2 as mentioned earlier. Notice also
that when b; is fixed and « varied, the solution tends to
Eq. (14) when approaching the x = 2 limit. Figure 2 shows
the dependence of the norm with respect to b; and k¥ when
condition (20) for solution (17) is applied. The value of the

norm is
o0 ’ s 11
N = lu(x,t)|"dx = A“B| =,— |,
oo 2k

21
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FIG. 2. (Color online) Norm of the solutions of Eq. (17) as a
function of b; and xk whenm = 1.

where it has been taken into account that A € R and B(x,y)
is Euler’s beta function.

Horizontal “cuts” along the graph of Fig. 2 are shown in
Figs. 3 and 4 where the continuum tendency to the linear limit
(dark) is shown as a variation over b; for x =1 and k¥ = 3,
respectively. Apart from the analytical solution (17) which
bifurcates from the nodeless solution of the linear Schrodinger
equation, we have been able to find numerically the branch
that bifurcates from the linear solution with a node [n = 1 in
Eqgs. (12) and (13)]. These solutions are the generalizations
(for arbitrary «) of the “dipoles” of [23]. In those cases,
solutions exist as long as b; < by . + 1 and their monotonicity
for ¥k > 2 is opposite to that of the fundamental solutions
analytically identified above (hence, the above-mentioned

o]

FIG. 3. (Color online) Panel (a): Norm of the solutions with ¥k =
1 as a function of b;. The blue (full) line corresponds to the nodeless
solution whereas the red (dashed) line corresponds to the “dipole”
branch (see [23]) possessing a node. Panel (b) [(c)] showcases the
modulus of the nodeless solution [solution with a node] as a function
of x for different values of b;. It can clearly be seen that the amplitude
of the solution goes to 0 as b; — 3/2 [b; — 5/2].
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FIG. 4. (Color online) Panel (a): Norm of the solutions with x =
3 as a function of b;. The blue (full) line corresponds to the nodeless
solution whereas the red (dashed) line corresponds to the solution with
a node (i.e., the “dipole”). Panel (b) [(c)] showcases the modulus of
the nodeless solution [solution with a node, although the node itself
disappears as b; increases] as a function of x for different values of
b;. It can clearly be seen that the amplitude of the solution goes to 0

as by — 5/6 [b; — 11/6], i.e., the corresponding linear limit value
for E =—1/9.

collision). Interestingly, it is worth mentioning that the latter
dipole branch is present even for x = 2. In the same spirit,
higher order generalizations (e.g., tripoles, quadrupoles, etc.)
can also be expected in the spirit of [23], degenerating to
the linear limit, respectively, for b; — b;.+2 and b; —
by + 3, etc.

We now turn to the detailed stability analysis of the relevant
soliton solutions (which was not explored systematically
in [21,22], but was touched upon in [23] for « = 1). In fact,
in [21] a particular case example of an evolution (see Fig. 2
therein), as well as the positivity of the Poynting vector flux,
led those authors to conclude that the relevant solutions were
nonlinearly stable. However, our systematic spectral stability
analysis, illustrated in Figs. 5 and 7, indicates otherwise. In
particular, we use a linearization ansatz of the form

u(x,1) = e [ug(x) + (a@)e” +b*(x)e" N, (22)

where u(x) is the spatial profile of the standing wave solution
of Eq. (17), while {a(x),b(x)} and XA correspond, respectively,
to the eigenvector and eigenvalue of the linearization around
the solution. The existence of eigenvalues with Re(}) > 0
would in this (P7 -symmetric and hence still ensuring the
quartet symmetry of the relevant eigenvalues) context signals
the presence of an instability.

We can see in Fig. 5 that indeed such an instability is
present in the interval 0.56 < b; < 1.37 for the nodeless
solutions of « = 1. Further examination of the relevant
phenomenology in Fig. 6 reveals the origin of the instability
and its stark contrast with the corresponding phenomenology
in the standard nonlinear Schrodinger (NLS) equation model.
In particular, the breaking of translational invariance (due to
the presence of the potential) leads the corresponding neutral
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FIG. 5. (Color online) Imaginary part [panels (a) and (c)] and
real part [panels (b) and (d)] of the eigenvalues associated with the
linearization around the solution of the nodeless [(a) and (b)] and
the single-node (i.e., dipole) solution branches [panels (c) and (d)]
for k = 1. It can be observed that the nodeless solutions become
unstable in the interval 0.56 < b; < 1.37, whereas the solutions with
a single node are unstable for all b; except for a very small interval
2.43 < b; < 2.5 close to the upper existence limit; in addition, for
b; < 0.48 the latter waveform is also exponentially unstable.

mode to exit along the imaginary axis of the spectral plane
(A, X;) of the eigenvalues A = A, + i};. However, it is well
known [26] that in the standard Hamiltonian case, the relevant
“internal mode” of the solitary wave associated with translation
has a positive energy or signature and hence its collisions
with other modes, including ones of the continuous spectrum,
do not lead to instability. Here, however, as illustrated in
Fig. 6 exactly the opposite occurs. As the parameter b; is
varied, the relevant eigenvalue moves toward the continuous
spectrum (whose lower limitis A = ==i) and the collision with
it leads to a complex eigenvalue quartet, a feature that would
never be possible for a single soliton of the regular NLS,
under a translation-symmetry-breaking perturbation. This is a

4 4
S @ S ()
2 2 g
e} [ ]
<" 0 o < 0 o
(o] o
-2 -2 g
o (e}
o (e}
4 —4
-0.1 -0.05 0 0.05 0.1 -0.1 -0.05 0 0.05 0.1
) A

.,

FIG. 6. (Color online) Two case examples of the spectral plane
(A, ;) of eigenvalues A = A, + i}; of the solution for (a) b; = 0 and
(b) b; = 1. The eigenvalue which is spectrally stable in the left panel
but whose collision with the band edge of the continuous spectrum
is responsible for the instability in the right panel is denoted by a red
mark.
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remarkable feature of the P7 -symmetric NLS model that is
worthy of further exploration, possibly utilizing the notion
(recently discussed for P7 -symmetric models in [27]) of
Krein signature. Notice that the work of [27] considered a
case in the vicinity of the P7 phase transition, whereas in our
setting, such a phase transition is impossible, given the real
nature of the superpartner Poschl-Teller potential, as discussed
above.

Figure 5 shows that dipolar solutions with a single node
are unstable for almost all of their existence interval except
when 2.43 < b; < 2.5, i.e., in the immediate vicinity of the
linear limit. There are three different instability intervals: (1)
for b; < 0.48 there are two instabilities, one of exponential
nature and an oscillatory one; (2) for 0.48 < b; < 1.31 the
oscillatory instability is the only one that persists, while the
formerly real eigenmode crosses the spectral plane origin and
becomes imaginary for larger b;; and (3) for 1.31 < b; <
2.43, there are two oscillatory instabilities, the previously
mentioned one, and another one caused (in a way similar to
the nodeless case) by its climbing up the imaginary axis of the
eigenmode formerly unstable as a real pair, and its eventual
collision with an eigenvalue bifurcating from the continuous
spectrum.

For nodeless solutions with ¥ = 3, we can observe in
Figs. 7(a) and 7(b) that the solution is unstable throughout
its range of existence because of an eigenmode entering the
phonon band and causing oscillatory instabilities; a second
localized mode enters at b; = 1.33 and, finally, for b; = 1.89,
the soliton becomes exponentially unstable. Analogously, the
solutions with a node are unstable for all b;, incurring, in fact,
typically multiple instabilities for each value of the parameter,
which can be summarized as follows [see Figs. 7(c) and 7(d)]:
an oscillatory instability is present for almost every value of

@) (b)
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— e 0.4
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FIG. 7. (Color online) Imaginary part [(a) and (c)] and real part
[(b) and (d)] of the eigenvalues associated with the linearization
around the solution of the nodeless [(a) and (b)] and the single-node
(i.e., dipole) solutions branches [(c) and (d)] for « = 3. It can be
observed that all the solutions (for different values of b;) are unstable;
see the text for a detailed description of the eigenvalue variation over
b -
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FIG. 8. (Color online) Panel (a): Space-time contour plot of the
evolution of the squared modulus (density) of the solution during
its unstable dynamics for b, = 0.65 and « = 1; the inset shows the
evolution of the (maximal) density of the solution occurring at x = 0.
Panel (b) [(c)] shows the evolution of the density for b; = 1 and
k = 1[x = 3]; the inset shows the evolution of the norm and displays
its eventual indefinite growth. Panel (d) considers the evolution of
the unstable soliton with a node for »; = 0.2 and « = 1, leading
eventually to a split of the two humps into a stationary (at x = 0) and
a traveling one (at x < 0).

by (b; < 1.82); apart from this we observe, for low values of
by, two pairs of real eigenvalues which coalesce into a quartet
at by ~ 0.525; this quartet leads to two imaginary pairs when
by =~ 1.14; one of them moves down along the imaginary axis
and finally, at b; &~ 1.27, an additional instability due to a real
pair emerges.

It is relevant to note in passing another interesting result
which relates to the k < 1 case: we have found that for x <
2/3, the nodeless soliton is stable for every b;. This observation
and the results above indicate the strong dependence of the
stability properties on the precise strength of the nonlinearity
parameter.

Finally, we consider the dynamics of these unstable wave-
forms for several prototypical cases in Fig. 8. For b; = 0.65
andx = 1 we observe that whent = 200, the oscillatory nature
(as predicted by our eigenvalue computations) of the instability
gradually kicks in and eventually renders the solitary wave
more highly localized (i.e., narrower) at x = 0 and with a
larger amplitude (i.e., taller). Subsequently, the amplitude of
the pulse is subject to breathing, but it remains fairly robust,
even after multiple collisions with small amplitude radiative
wave packets scattering back and forth from the boundaries
(not visible at the scale of the plot). For by =1 and « =1,
the growth rate is larger and the instability effects stronger;
it manifests in an oscillatory growth of the soliton (given the
oscillatory nature of the instability), as well as a “swinging”
of the solution between the gain (x < 0) and loss (x > 0)
regions, according to the terminology of [22]. This eventually
leads to rapid growth (beyond the resolution of the numerical
scheme). We do not follow the solution past these large values
of its amplitude. This behavior is generic for the oscillatory
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instabilities as long as the growth rate is above a threshold,
as shown also in the example for b; =1 and « = 3, and
for the nodeless and single-node solitons. Finally, we have
considered the effect of the exponential instabilities in solitons
with a node and k = 1. Those solitons are both exponentially
and oscillatorily unstable for b; < 0.48. In that interval, the
soliton is double humped (see Fig. 3). In the particular example
of Fig. 8, we have taken b; = 0.2 where the exponential
instability dominates the oscillatory one. The dynamics here
can be described as follows: the hump originally located at
the loss (x > 0) side shifts and remains pinned with regular
oscillations of the amplitude at x = 0. On the other hand, the
hump initially at the gain (x < 0) side is “ejected,” as a result
of the instability, along the (exponentially localized around
x = 0) gain side of x < 0.

IV. CONCLUSIONS AND FUTURE CHALLENGES

In the present work, we revisited a potential that has
been explored previously in a number of studies relating
to P7-symmetric models. We discussed how for a special
monoparametric family within this model, it is not only
‘PT -symmetric but also supersymmetric with a partner which
is the Poschl-Teller potential, a feature which enabled us to
identify its purely real spectrum (and the bifurcations of bound
states within it) and to corroborate the corresponding results
numerically. As a byproduct of its supersymmetric origin,
this family of potentials was found to be devoid of a P7T
phase transition. We then turned to a nonlinear variant of the
model for arbitrary powers of the nonlinearity and illustrated
that exact nonlinear solitonic solutions degenerated in the
appropriate limit to the linear states identified previously.
While there was no P7 phase transition in this model,
we found that the nonlinear solutions were still subject to
instabilities, such as the one stemming from a collision of
an internal mode with the continuous spectrum (band edge),
leading to a quartet of eigenvalues. The ensuing oscillatory
instability led to an oscillating, progressively larger amplitude
soliton in the cases examined. Additional families of solutions
were discussed, including, e.g., the one-node branch (dipolar
solution), and their reduced stability (in comparison to the
nodeless branch) was illustrated.

While this work, to the best of our understanding, is
only a first step in connecting all three notions of P7T
symmetry, supersymmetric potentials, and nonlinear phe-
nomenology (including instabilities), naturally this is a theme
that is worthy of considerable further studies. For one
thing, numerous additional supersymmetric potentials with
real spectra can be devised and are worth examining. For
instance, the sl(2,C) considerations of [18] already suggest
some such options including the superpotentials W(x) =
(m — 1/2)cothx — ib; cosech(x) or W(x) =£(m —1/2) —
iby exp(Fx). Additionally, there have already been propos-
als for P7-symmetric square well potentials considered in
the SUSY framework [28], and for non-Hermitian SUSY
hydrogenlike Hamiltonians with real spectra [29]. Especially
in the latter higher dimensional context, understanding the
delicate interplay of P7 symmetry, supersymmetric models
with their bound states, and collapse induced by nonlinearity
could be an especially interesting topic. Finally, there are some
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potentially intriguing deeper connections. SUSY partners are
based on commutation formulas as are integrable nonlinear
equations. Perhaps the latter is intrinsically responsible for
the similarity of the structure of the SUSY partner potentials
with the well-known Miura transformation responsible for
converting the modified Korteweg—de Vries equation to the
Korteweg—de Vries equation [30]. Although some such con-
nections have already been pointed out [31], exploring these
further would constitute an important direction for further
studies and efforts along this vein are already underway [32].
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