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Kinetics of self-assembly via facilitated diffusion: Formation of the transcription complex
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We present an analytically solvable model for self-assembly of a molecular complex on a filament. The process
is driven by a seed molecule that undergoes facilitated diffusion, which is a search strategy that combines diffusion
in three dimensions and one dimension. Our study is motivated by single-molecule-level observations revealing
the dynamics of transcription factors that bind to the deoxyribonucleic acid at early stages of transcription. We
calculate the probability that a complex made up of a given number of molecules is completely formed, as well
as the distribution of completion times, upon the binding of a seed molecule at a target site on the filament
(without explicitly modeling the three-dimensional diffusion that precedes binding). We compare two different
mechanisms of assembly where molecules bind in sequential and random order. Our results indicate that while
the probability of completion is greater for random binding, the completion time scales exponentially with
the size of the complex; in contrast, it scales as a power law or slower for sequential binding, asymptotically.
Furthermore, we provide model predictions for the dissociation and residence times of the seed molecule, which
are observables accessible in single-molecule tracking experiments.
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I. INTRODUCTION

Many biochemical processes involve formation of meso-
scopic molecular structures that perform complex tasks. One
well-known example is the transcription complex which plays
the key role in accessing the information coded in the deoxyri-
bonucleic acid (DNA) [1]. During the process of transcription,
a complex consisting of ribonucleic acid (RNA) polymerase
and transcription factors is assembled on the DNA in order
to read the genetic information and produce RNA molecules.
Thanks to powerful methods of molecular biology, it has been
possible to study the number and types of molecules involved
in the formation of the transcription complex; nevertheless,
kinetics of the formation of transcription complex is much less
known and is now an active area of biophysics [2–4]. A key
experimental finding [5] regarding the kinetics of transcription
factors is that at least some of the molecules that bind to
sites on DNA undergo facilitated diffusion [6,7], during which
molecules diffusing in three dimensions (3D) can temporarily
bind to the DNA, diffusing along the filament and densely
exploring it, which is thought to be an efficient search strategy
[5]. Other aspects of faciliated diffusion, such as how it would
affect the noise in transcriptional regulation, have also been
explored in previous theoretical work [8,9].

We consider the kinetics of a self-assembly process in which
a seed molecule diffuses in 3D and gets temporarily attached to
a filament that carries a target site (see Fig. 1 for an illustration
of the process and of facilitated diffusion). In this work, we do
not explicitly model diffusion in 3D, which has been studied
earlier [6], and focus on the dynamics of a nucleation process
initiated by the seed, as described below. While it is associated
with the filament, the seed molecule undergoes 1D diffusion
and when it occupies the target site, it becomes bound at
a constant rate, triggering the subsequent binding of other
molecules that bind and unbind at constant rates. When w

molecules are assembled, the process is complete. We consider
the case where the seed molecule is initially bound at the
target site and focus on the kinetics of the rest of the process.
Behavior of the seed molecule is motivated by the observation

of facilitated diffusion of transcription factors in bacterial cells,
as mentioned above. We envisage that the seed is an essential
molecule for transcription initiation which possesses binding
sites for other molecules or induces the binding of additional
transcription factors, such as the RNA polymerase [1–4]. In
eucaryotic cells, RNA polymerase II (RNAp2) transcribes the
majority of genes. Although the binding order of molecules
that form the transcription initiation complex is not clear,
experiments suggest that a number of transcription factors
need to bind both before and after the binding of RNAp2
[4]. Therefore, if one were to think of RNAp2 as the seed
molecule, then the model presented here would be applicable
to the latter part of the assembly process, starting with the
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FIG. 1. (Color online) Illustration of the process of self-assembly
via facilitated diffusion. In (a), facilitated diffusion of the seed
molecule is shown, where it performs Brownian motion in 3D (not
explicitly modeled in this work) and temporarily binds to filaments,
diffusing in 1D (at a rate ∝f ). When the seed arrives at the target site,
it binds at rate b1, and, if it is already bound, becomes unbound at
rate u1. In (b), assembly process is shown for w = 4. After the seed
is bound, additional molecules are recruited via reversible binding.
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binding of RNAp2. Alternatively, the seed can represent a
molecule that binds during the initial stages of assembly. A
candidate for such a molecule is TFIID, which significantly
changes the local conformation of the DNA, paving the way
for subsequent molecules to bind [1].

Our main results consist of an exact expression for
the probability that the assembly completely forms upon
the binding of a seed molecule and the distribution
of the completion time. In addition to these quantities
that describe the kinetics of assembly, and to link model
predictions with quantities that can be accessed in single-
molecule observations, distributions of the time at which
the seed dissociates from the filament, as well as the resi-
dence time in an interval containing the target site are also
presented.

In what follows, we first describe a mathematical model
corresponding to the process described above and illustrated
in Fig. 1. We then present results of analytic calculations for the
quantities mentioned above. Last, we discuss the applicability
of the model as well as previous findings on the same problem
and state our conclusions. We also provide a comparison of
analytical results with simulations of the process, presented in
Appendix E.

II. AN ANALYTICALLY SOLVABLE
MODEL OF ASSEMBLY

A. Model description and assumptions

We consider the formation of a molecular complex consist-
ing of w elements that are assembled sequentially or in random
order. Formation of the complex is initiated by a seed molecule,
which we will just refer to as the seed. The seed is envisaged to
diffuse in 3D (not explicitly modeled) and temporarily attaches
to filaments along which it undergoes 1D diffusion. When the
seed occupies the target site on the filament, it can become
bound at rate b1.

After the seed is bound, a total number of w − 1 molecules
start to assemble, which are, so to speak, recruited by the seed.
If the seed is the only molecule in the complex, then it becomes
unbound at rate u1, returning to diffusion along the filament.
When two or more molecules (including the seed) are bound at
the same time, the seed cannot become unbound. Note that this
assumption may not be applicable in general, and the model
considered in this work is appropriate for the case where the
binding of subsequent molecules stabilizes the complex. While
the seed is unbound and diffusing on a filament, it dissociates
at a constant rate γ . When w molecules are assembled, the
process is complete.

In this work, we do not explicitly model the motion of
the seed in 3D and focus on the dynamics when the seed
molecule is initially bound at the target site. This approach
allows us to study the kinetics of the assembly process in the
presence of a low concentration of seed molecules, which is
often a good assumption in cell biology [10], accounting for the
effect of facilitated diffusion. For a treatment of the problem
of searching for a target site in a filament via 3D diffusion
interrupted by periods of 1D exploration, we refer the readers
to existing literature [7–9,11,12].

For random binding with
uniform rates, the choice is

bi>1 = (w − i + 1)b∗
ui>1 = (i − 1)u∗
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FIG. 2. (Color online) Illustration of the assembly model as a
Markov chain. Circles and squares correspond to different states of
the system, and arrows show state transitions with corresponding
rates. Circles denote different positions on the filament, indexed by
m, modeled as a lattice, where the seed molecule performs a random
walk between adjacent sites, with a hopping rate f . As shown in
the lower right, the random walker disappears from the system at a
constant rate γ only while it is diffusing along the filament (states
indicated by circles). Squares correspond to the bound states indexed
by i. For sequential and random binding models, the rates bi>1 and
ui>1 are interpreted in a different fashion (see text for explanation).

While a cell can contain a large number of transcription
factors as well as corresponding target sites, we consider a
regime where the concentration of seed molecules is low such
that the competition for the target site is negligible, and the
dynamics of the system is well characterized by a single seed
and a target site. Nevertheless, we do provide a generalization
for multiple molecules under the assumption of negligible
competition (see Sec. III D).

B. Mathematical details and predicted quantities

Based on the biologically inspired model illustrated in
Fig. 1, we consider a model for diffusion and assembly that can
be analytically solved by standard tools of statistical mechanics
[13]. See Fig. 2 for an illustration of the corresponding
mathematical model.

Diffusion along the filament is modeled as a continuous
time random walk in a 1D lattice, where the random walker,
that is, the seed, hops between adjacent lattice sites at a
(symmetric) rate f (see Fig. 2). For a DNA filament, it is
natural to think that the lattice sites correspond to base pairs
that are separated by ≈0.34 nm [1]. The lattice site with
index m = 0 is where the target is located. When the seed
is occupying site m = 0, it can become bound at rate b1, upon
which the system would transition to the first bound state
i = 1. Being in the first bound state, the system can either
go back to the state where the seed is diffusing, at rate u1,
or transition to the next bound state, i = 2, if an auxiliary
molecule becomes bound. Note that while the meaning of
the index m is straightforward (the position of the seed), the
physical picture ascribed to the i th bound state depends on
the details of how molecules are assembled. We consider two
different models of assembly: sequential and random.

In sequential assembly, w − 1 auxiliary molecules can
reversibly bind in order, once the seed becomes bound.
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When the i th auxiliary molecule binds or unbinds, the system
transitions to the i + 1st or i th bound state, respectively. The
binding and unbinding rates for the i th auxiliary molecule is
equal to bi+1 and ui+1, respectively.

If auxiliary molecules assemble in random order, equally
likely in any of the (w − 1)! possible ways, then the model
illustrated in Fig. 2 can still be used, provided that the binding
and unbinding rates of different auxiliary molecules are
sufficiently similar. We suppose that each molecule binds and
unbinds at the uniform rates b∗ and u∗, respectively. Provided
that this is the kinetics at the level of individual molecules,
the transition rates for the whole system would become
bi>1 = (w − i + 1)b∗ and ui>1 = (i − 1)u∗, which was also
employed in a previous study [14]. This is a consequence of
treating the reactions involving auxiliary molecules as Poisson
processes with exponential waiting times. When j of the
auxiliary molecules are bound, such that the system is in
state i = j + 1, binding of any of the remaining w − 1 − j

molecules would take the system to the j + 2nd state, or
unbinding of any of the j molecules would take the system to
the j th state. The former takes place at rate (w − j )b∗, whereas
the latter at ju∗, since the minimum of a set of independent
exponential random variables is also distributed exponentially,
with a parameter that equals the sum of all individual random
variables’ parameters.

In addition to studying the kinetics of the assembly, we are
also interested in making predictions for observables relevant
in single-molecule tracking experiments. Supposing that the
seed is labeled (via fluorescent dyes, quantum dots, etc.) and
its position can be tracked, one may be able to observe the time
it takes for the seed to dissociate from the filament, or the time
it takes for it to exit from an interval of length 2r centered at the
target site, given the seed was observed to be bound at t = 0.
To be able to calculate the statistics of these two times from
the model, we introduce, for solely mathematical convenience,
two leaky sites at m = −r and r , where the seed disappears
from the system at rate κ . In the next section, we consider the
limits κ → 0 and κ → ∞ depending on which calculation is
of concern.

Based on the model illustrated in Fig. 2, we write a
set of master equations for the probability of finding the
seed (unbound) at lattice site m, denoted by Pm(t), and the
probability of finding the system in the i th bound state, denoted
by Qi(t), at time t . Note that Qw(t) is the probability of having
a fully assembled complex at time t , from which we will derive
the probability of completion as well as the first completion
time, in the next section. The master equation as well as its
analytical solution is given in Appendix A. In the next section,
we present results derived from the probabilities Pm and Qi ,
assuming that they are known, and always refer to Appendices
for calculation details.

III. RESULTS

In this section we present results for the kinetics of the
assembly process obtained by solving the model illustrated
in Fig. 2. Results are displayed in a way that highlights the
difference between the kinetics for sequential and random
binding models. For convenience, and to be able to treat the
case of random binding as described in the previous section, we

FIG. 3. (Color online) Contour plot of the probability of comple-
tion as a function of λ and β.

consider uniform rates b∗ and u∗ as the binding and unbinding
rates of each auxiliary molecule, regardless of order.

All rates and times are measured in units of f and 1/f ,
respectively, where f is the hop rate between adjacent sites in
the lattice, proportional to the 1D diffusion coefficient.

A. Probability of completion

A key quantity that characterizes the efficiency of the
assembly process is the probability that the molecular complex
completely forms before the seed dissociates from the filament,
given the seed was initially bound [that is, Q1(0) = 1,
Qi �=1(0) = 0, and Pm(0) = 0]. We refer to this quantity as the
probability of completion and denote it by Pcomp. We note that
Pcomp is the probability of arriving at the bound state w at any
time as t → ∞, which is also the fraction of system trajectories
that end at w. Therefore, we have Pcomp = limt→∞ Qw(t),
under the condition uw = 0, ensuring that trajectories that
reach the last bound state are terminated. Performing the
calculation, we obtain (see Appendix B 2)

Pcomp = 1

1 + λ(w)

1 + β

, (1)

where β = b1/
√

γ (γ + 4f ) and λ(w) is a constant formed by
the combination of all the rates bi and ui except b1, explicitly
given in (B11). If the complex is made up of just a pair of
molecules, then λ(w) has a particularly simple form, given by
λ(2) = u1. Note that β quantifies the ratio of the affinity to the
binding site (i.e., nucleation rate given the particle occupies
the binding site) to the rate at which the seed is carried away
from the binding site, either via dissociation or diffusion.
When f/γ 	 1, meaning dissociation is much more rapid
than diffusion along the filament, we have β ∝ b1/γ , and when
f/γ 
 1, meaning diffusion is much faster than dissociation,
β ∝ b1/

√
f γ .

Since λ and β do not share any parameters, they constitute a
good pair of knobs that can be used to investigate the behavior
of Pcomp. In Fig. 3, a contour plot of Pcomp is displayed as a
function of λ and β. We note that it becomes less and less
probable for the complex to be completed as λ increases or
β decreases. This is in line with what one may expect intu-
itionally, since larger λ values correspond to relatively larger
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FIG. 4. Pcomp as a function of the total number of molecules in the
complex for different values of the ratio b∗/u∗ (obtained by varying
u∗). Solid and dashed curves correspond to sequential and random
binding, respectively. Parameter values are γ = 0.1, b1 = 2, b∗ =
0.25, and u1 = 1, measured in units of f , the hopping rate along the
filament.

unbinding rates ui>1, and smaller β values imply that the seed
is diffusing fast and/or it dissociates from the filament quickly.

As λ and β are combinations of many parameters, it is
informative to explore the behavior of Pcomp as a function of
parameters whose physical meaning is more direct. In this
respect, next we display how Pcomp changes with the total
number of molecules in the complex and the ratio of the
binding and unbinding rates b∗/u∗.

In Fig. 4, Pcomp is plotted as a function of w, for five different
values of b∗/u∗, indicated by curves with different shades of
gray. In this figure and throughout the article, dashed and solid
curves correspond to random and sequential binding models,
respectively, unless otherwise noted. We see that Pcomp has
greater values for random binding compared to sequential
binding for the same set of parameter values. In random
binding, Pcomp can be nonmonotonic in the number of bound
states, depending on the value of the ratio b∗/u∗.

The behavior of Pcomp as a function of w can be intuitively
understood, to a certain extent, by ignoring the diffusion states
and associating m = 0 with dissociation (see Fig. 2). Then the
problem can be viewed as (biased) random walk in a 1D lattice
with w + 1 sites, i = 0, 1, . . . ,w, where arriving at the top (site
0) means dissociation and arriving at the bottom (site w) means
completion, and the random walker starts at site i = 1. We take
b1 = b∗ for simplicity. In the next three paragraphs, we provide
an intuitive explanation for the behavior observed in Fig. 4.

In sequential binding, the rate of acquiring and losing
an auxiliary molecule does not depend on the number of
already bound molecules. When b∗/u∗ > 1, the random walk
is biased downward, leading to the completion of the process
with a probability that increases with b∗/u∗ (see Fig. 4). On
the contrary, for b∗/u∗ < 1, the bias is against any motion
towards completion. Therefore, the only way for the random
walker to end up at the bottom first is via a highly improbable
sequence of downward steps, whose probability is expected
to dramatically diminish with increasing w, leading Pcomp to
zero as a function of w.

In random binding, when n molecules are bound, the rate
at which the complex grows is given by (w − n)b∗, and

the rate at which it shrinks is nu∗. Therefore, there is a
state with n∗ = b∗w/(u∗ + b∗) bound molecules, which is
more stable than others in the sense that the growth and
shrinking rates are approximately balanced. Note that we have
b∗/u∗ ≈ n∗/(w − n∗), implying that for b∗/u∗ > 1 we expect
to have, on average, more bound molecules than missing ones.
On the other hand, for b∗/u∗ < 1, we expect to have more
missing molecules. When b∗/u∗ > 1, the stable state is in
the lower half of the simplified lattice, and fluctuations are
more likely to drive the system to the bottom, i.e., completion.
In the other case, b∗/u∗ < 1, the stable state is in the upper
half, and fluctuations are more likely to take the system to the
top, i.e., dissociation. This intuitive picture is in line with
the results shown in Fig. 4. Note that the the curve that
corresponds to b∗/u∗ = 0.833 indicates that the stable state
in this case moves from the lower half to the upper half at
around w ≈ 15.

In the random binding model, when b∗/u∗ < 1, we observe
a transient increase in Pcomp, although it eventually decays to
zero with increasing w. To understand this, we note that the
completion probability can be expressed by (1 − p)q, where
p is the probability of dissociation during the first transition,
and q is the probability of completion starting from site 2 (as
the random walker of the simplified problem would end up in
state 2 if it did not dissociate after the first step). Note that p =
1/[1 + (w − 1)b∗/u∗], the probability of taking the first step
upward, decreases with w (the number of auxiliary molecules).
Therefore, one would expect an initial increase in Pcomp due to
the increasing factor (1 − p). Nevertheless, for b∗/u∗ < 1, this
increase is balanced by a decrease in q, as completion before
dissociation gets more and more improbable as the number
of steps required to arrive at w increases, as discussed in the
previous paragraph.

On the whole, we find that there is a qualitative difference
in the behavior of Pcomp for random and sequential binding
and that there can be an optimal value of w that maximizes
Pcomp in random binding, depending on the relative strength
of binding and unbinding rates of the auxiliary molecules.

Next we consider how the probability of completion
depends on the ratio b∗/u∗ for different values of the
total number of molecules. Figure 5(a) shows Pcomp as
a function of b∗/u∗ for 3 � w � 7. We note that Pcomp

monotonically increases with b∗/u∗ for both random and
sequential binding models. In sequential binding, Pcomp does
not depend on w for b∗/u∗ 
 1. In contrast, the values
of Pcomp at b∗/u∗ 
 1 increase with w by as much as
≈25% in the random binding model. In Fig. 5(b), the ratio
P

seq
comp/P

ran
comp, where the superscripts denote the binding order

of auxiliary molecules, is plotted as a function of b∗/u∗. We
observe that Pcomp is greater for the random binding model,
especially for b∗/u∗ > 1, and that there is a large drop in the
ratio around b∗/u∗ = 1.

Last, we present results quantifying the effect of facilitated
diffusion on how likely the process is going to be completed.
Given the seed is initially bound with no other bound
molecules, setting b1 = 0 would prevent the possibility of
rebinding since the seed cannot become bound again if it
ever transits to the diffusive state. Therefore, the ratio ρ =
Pcomp/Pcomp(b1 = 0) would give us the relative enhancement
of completion probability due to facilitated diffusion. Note that

042716-4



KINETICS OF SELF-ASSEMBLY VIA FACILITATED . . . PHYSICAL REVIEW E 92, 042716 (2015)

(a)

(b)

FIG. 5. Probability of completion as a function of the ratio b∗/u∗.
In (a), Pcomp is plotted for different values of the total number of
molecules in the complex. Solid and dashed curves correspond to
sequential and random binding, respectively. In (b), the ratio of
Pcomp for sequential binding to that for random binding is displayed.
Parameter values for both graphs are γ = 0.1, b1 = 1, b∗ = 0.25, and
u1 = 1, measured in units of f , the hopping rate along the filament.

setting f = 0 maximizes the enhancement due to rebinding,
as in this case a seed that becomes unbound does not leave
the binding site (m = 0) via 1D diffusion, such that rebinding
occurs at the maximal rate b1.

The relative enhancement ratio ρ is explicitly given by

ρ = 1 + λ

1 + λ

1 + β

. (2)

Expanding (2) around β = 0, we get

ρ = 1 + λ

1 + λ
β + O(β2),

which clearly shows that there is no enhancement when the
affinity to binding site is zero, β = 0, or when dissociation or
diffusion rates diverge, that is, γ → ∞ or f → ∞, implying
β → 0. Note that the enhancement initially increases linearly
with the ratio β [defined below (1)].

To demonstrate the behavior of the enhancement factor, a
contour plot of ρ is displayed in Fig. 6 as a function of λ and
β, plotted in the same domain as Pcomp in Fig. 3. We see that
facilitated diffusion enhances the probability of completion as
λ and β increase. Greater β values correspond to a situation
where the seed spends greater amount of time bound to the
filament, in the vicinity of a lattice site, and hence explains the
increase in ρ. While the parameter λ depends on many model
parameters, it is roughly proportional to u∗/b∗. Therefore,
greater λ values correspond to relatively larger unbinding rates,
which hinders the completion of the process both with and

FIG. 6. (Color online) Contour plot of the enhancement ratio due
to facilitated diffusion. Sequential and random binding models are
indicated by circles and squares, respectively, and symbols with
the same number have identical binding and unbinding rates per
molecule: u∗ = 0.25 for 1 and 3; 0.4 for 2, 4 and 5; 0.5 for 6. Points
on the same curve correspond to the same enhancement factor for
different values of u∗, where other parameters are fixed as w = 5,
γ = 0.1, b1 = 2, b∗ = 0.25, and u1 = 1, where rates are measured
in units of f . Data points are color coded in grayscale according to
their Pcomp values and the corresponding color bar is indicated below
the graph.

without diffusion. Higher ρ values for increasing λ suggest
that facilitated diffusion can counter this hindrance effect to a
limited extent.

In Fig. 6, we also include a number of data points to compare
the effect of facilitated diffusion in random and sequential
binding. Sequential and random binding models are indicated
with circles and squares, respectively. Data points with the
same index correspond to the same value of b∗ and u∗, and
hence the same per molecule binding-unbinding rates for auxil-
iary molecules, while the rest of the parameters are determined
by imposing the condition that ρ is fixed. Each data point is
colored in grayscale according to its Pcomp value, and the color
bar is shown at the bottom of the graph. Comparing the relative
positions of the data points with the same index and consider-
ing the corresponding Pcomp values, we conclude that with the
same kinetic constants per reaction (b∗ and u∗), random bind-
ing has larger probability of completion; however, achieving
the same enhancement factor with random binding requires
stronger association with the filament as compared to sequen-
tial binding (compare symbols located on the same line).

B. Completion time

In the previous section we demonstrated the behavior of
the completion probability as a function of a subset of the
model parameters and found that the order in which auxiliary
molecules bind has a significant effect on the chance of
completion, random binding being more efficient. Next we
present model predictions regarding the time dependence
of the process, providing the complementary information to
answer the question: Given the process completes, how long
does it take?

We define Tcomp as the completion time, the time at which
all w molecules are assembled for the first time, given the
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seed is the only molecule initially bound. Let fcomp(t) be
the probability density function of the random variable Tcomp,
conditioned on the completion of the process. In terms of Qi(t),
the conditional distribution fcomp(t) can be expressed as

fcomp(t) = 1

Pcomp

{
− d

dt
[1 − Qw(t ; uw = 0)]

}
,

= 1

Pcomp

dQw

dt

∣∣∣∣
uw=0

,

where the quantity in square brackets in the first line is the
survival probability, that is, the probability of not having
visited the wth bound state until time t , and we need the
normalization constant Pcomp, as fcomp is conditioned on
the completion of the process. In Appendix B 2, we show that
the Laplace transform of fcomp(t) is given by

f̃comp(ε)

=
(

(−1)w−1

Pcomp

[ w∏
i=2

Ki(w)

]

×
{

ε

ε + b2 + u1α(ε)/[α(ε) + b1] + u2K2(w)

})∣∣∣∣
uw=0

,

(3)

where α(ε) = √
(γ + ε)(γ + 4f + ε), Ki(w) is a continued

fraction involving the rate constants [see (A8)], and the
Laplace transform is defined as

f̃ (ε) =
∫ ∞

0
dt e−εtf (t). (4)

Throughout the text, we will use tildes to distinguish
Laplace-transformed quantities.

In the following, we first discuss how the mean and variance
of Tcomp depend on the binding order and model parameters and
then demonstrate the behavior of the full distribution fcomp(t).

1. Mean and variance of the completion time

The mth moment of Tcomp can be calculated from the
Laplace transform of fcomp(t) as

〈(Tcomp)m〉 = (−1)m lim
ε→0

dmf̃comp

dεm
, (5)

which follows from (4). We define μcomp = 〈Tcomp〉 and
CV(Tcomp) = [〈(Tcomp)2〉 − μ2

comp]/μ2
comp as the mean and

coefficient of variance of the completion time.
Figure 7 shows μcomp as a function of w for a set of b∗/u∗

values. Plots in Figs. 7(a) and 7(b) correspond to identical
parameter values, but the axes are scaled differently. Looking
at Fig. 7(a), where the y axis is scaled logarithmically, we first
note that μcomp increases exponentially with w for the case of
random binding (dashed curves). The exponent increases as
b∗/u∗ decreases to approach the value 1 from above, which
is simple to grasp intuitionally, as higher relative unbinding
rates would lead to longer completion times. When the ratio
b∗/u∗ is below 1, results show the opposite trend, where the
exponent decreases with decreasing b∗/u∗. This reflects the
conditional nature of the completion time. In the previous
section, we showed that Pcomp approaches 0 for b∗/u∗ < 1 as

(a)

(b)

FIG. 7. Mean completion time as a function of the total number
of molecules in the complex. In all plots, solid and dashed curves
correspond to sequential and random binding, respectively. In (a),
μcomp is plotted on semilogarithmic axes (y) and indicates that
the mean completion time asymptotically grows exponentially for
random binding. In (b), μcomp is plotted on log-log axes and suggests
that the mean completion time asymptotically grows as a power law,
or slower, for sequential binding. Parameter values for all graphs are
γ = 0.1, b1 = 2, b∗ = 0.25, and u1 = 1, measured in units of f , the
hopping rate along the filament.

w increases, meaning that the fraction of trajectories that lead
to the completion of the process becomes negligible. Results in
Fig. 7(a) suggest that while it is quite unlikely for the process
to complete when b∗/u∗ < 1, the trajectories that do lead to
completion take shorter and shorter times as u∗ increases (this
point will be discussed further below). Note that μcomp clearly
increases slower than exponentially for sequential binding
(solid curves).

In Fig. 7(b), the same data is plotted on logarithmic axes.
The most prominent feature here is that μcomp for sequential
binding (solid curves) increases as a power law for b∗/u∗ = 1
and slower than a power law for b∗/u∗ �= 1. The rate of increase
as a function of b∗/u∗ follows a trend akin to that for random
binding in Fig. 7(a).

Results above show that the behavior of the average
completion time qualitatively differs for random and sequential
binding models as the number of molecules in the complex
increases. Since completion of the assembly is a stochastic
process with many steps, one may expect significant variance
in the values of Tcomp such that a typical value may lie far away
from μcomp. To investigate this, we calculate the coefficient
of variance (CV) of Tcomp, defined just below (5). Figure 8
shows CV(Tcomp) as a function of w for the same set of b∗/u∗
values in Fig. 7. As seen in Fig. 8(a), we find that random
and sequential binding models display approximately the same
level of variability in Tcomp for the first few w values. However,
for w 
 2, the coefficient of variance can be significantly
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(a)

(b)

FIG. 8. Coefficient of variance of the completion time for sequen-
tial and random binding models. Solid and dashed lines correspond
to sequential and random binding, respectively, for various values of
the ratio b∗/u∗. Parameter values are γ = 0.1, b1 = 1, b∗ = 0.25, and
u1 = 1, measured in units of f , the hopping rate along the filament.

smaller for sequential binding compared with random binding.
In random binding (dashed curves), CV transiently dips below
1 for a range of w values depending on b∗/u∗, but eventually
approaches the value 1. In sequential binding, however, the
asymptotic behavior of CV depends on the value of b∗/u∗, as
shown in the log-log plot in Fig. 8(b).

When b∗/u∗ = 1, random and sequential binding models
both give rise to a CV that attains a constant value as w

increases, that is, the standard deviation of Tcomp increases
at the same rate as its mean. This implies that the distribution
of completion times remain well dispersed no matter how large
the number of auxiliary molecules gets.

In the case of sequential binding, for b∗/u∗ �= 1, we
observe that the CV decays to zero with w. While it is
not straightforward to provide a simple explanation for this
behavior for all values of b∗/u∗, we can gain some insight into
it by considering the extreme cases b∗/u∗ 
 1 and b∗/u∗ 	 1,
as discussed below.

When b∗/u∗ 
 1, almost all transitions are towards com-
pletion, meaning that we have mean(Tcomp) ≈ wb−1

∗ , that is,
the number of transitions to completion multiplied by the
average duration of a transition. Since the variance of the
duration between transitions (towards completion) is given by
b−2

∗ , variance of the completion time would be var(Tcomp) ≈
wb−2

∗ . Therefore, we expect the CV to decay as w−1 in the limit
b∗/u∗ 
 1, which is consistent with the power-law behavior
observed in Fig. 8(b).

When b∗/u∗ 	 1, we expect the process to reach com-
pletion very rarely, as the complex is much more likely to
shrink than grow at any state. Nevertheless, when the complex
does form, the maximally likely system trajectory would

consist of w consecutive transitions towards completion, since
any transition towards the unbound state would introduce an
additional multiplicative factor of b∗/u∗ in the likelihood of
a trajectory that reaches completion. Therefore, we expect
CV to decay in the same way as it does for b∗/u∗ 
 1, as
explained in the paragraph above; the only difference is that
completion only rarely occurs for b∗/u∗ 	 1, while it is the
typical outcome for b∗/u∗ 
 1.

We note that a previous study by D’Orsogna and Chou
[14] employed a similar model, although in a different context
(ligand-receptor binding) and without spatial extent, and found
that random binding results in faster mean completion times
compared with sequential binding, except when b∗/u∗ ≈ 1, in
the absence of any cooperativity. Our findings are consistent
with this result up to a certain value of w, say, wc. As seen in
Fig. 7(b), the crossover value wc above which random binding
leads to longer completion time increases with b∗/u∗. We also
would like to point out that the presence of diffusive states and
the possibility of dissociation significantly affects the behavior
of Pcomp.

Overall, we find that sequential binding model results in
more precise timings compared to the random binding model.
In addition, as clearly seen in Fig. 7, sequential binding is
orders of magnitude faster than random binding for w � 10.
Note that the predictions of an assembly model is only feasible
if the completion time is less than the longest time scale in a
cell, i.e., duration of the cell cycle.

2. Distribution of the completion time

Here we demonstrate the full distribution of Tcomp, which
is obtained by taking the inverse Laplace transform of the
expression in (3) (see Appendices B 2 and D).

Figures 9(a)–9(c) show fcomp(t) for sequential and random
binding models, indicated by the superscripts “seq” and “ran.”
All graphs display fcomp(t) as a function of t , for w = 4, 8, 16
and b∗/u∗ = 2.5, 1, 0.625, where different b∗/u∗ values are
color coded. Note that time axes are logarithmically scaled and
cover a broad range containing four to six decades. Looking at
Fig. 7(a), we see that f

seq
comp(t) has a bell-shaped form, whose

peak increases with w as one would expect. We observe that
the distribution is most widely spread around its peak when
b∗/u∗ = 1. This is consistent with the CV shown in Fig. 8, for
w 
 2, where CV for sequential binding attains its maximum
at b∗/u∗ = 1 and decreases for other values, implying a
narrower distribution. In Fig. 8(b), identical parameter values
are used to plot f ran

comp(t). This time, we note that the distribution
gets spread over a wide range of t much quicker with increasing
w. To better visualize this case, we display the same data on
logarithmically scaled axes in (c). We immediately note that
the curves for w = 16 are now clearly visible and that the
distribution becomes significantly uniform over a broad range
of t values as w increases [for instance, f ran

comp(t) for w = 16
attains the value ≈10−4 over a range ≈104, implying that
almost all of the probability is contained in the plateau]. This
behavior is also in agreement with the results obtained in Fig. 8,
where CV for random binding approaches 1 with increasing
w, indicating that the distribution remains well spread over a
range of t that grows with μcomp.
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(a)

(b)

(c)

FIG. 9. Distribution of the completion time for different values of
the total number of molecules and the ratio b∗/u∗. Parameter values
are γ = 0.1, b1 = 2, b∗ = 0.25, and u1 = 1, measured in units of f ,
the hopping rate along the filament.

C. Residence time in an interval

Using techniques of single molecule microscopy, it is pos-
sible to directly observe trajectories of individual molecules,
especially in one and two dimensions. Analyzing trajectories
that exhibit binding and unbinding events, one can extract
useful information about reaction kinetics at the molecular
level [15,16]. Nevertheless, this almost always requires fitting
a model to the data.

If a labeling method can be developed to directly observe
the completion time of a molecular complex, then model
predictions presented so far can be used to fit experimental
data and extract kinetic parameters. Nevertheless, this would
be a challenging task. More often than not, there is uncertainty
in the number of molecules in the complex as well as in
determining which molecule(s) would best characterize the
completion of the complex.

In this section, we present model predictions for the amount
of time the seed spends in an interval of length 2r centered
around the target site, given it was initially bound and did not
dissociate until the time of measurement. We refer to this time
as the residence time, which is also the first-passage time of
the seed at a distance r from the target site, given dissociation
is prevented by setting γ = 0. The choice γ = 0 is justified,
as a particle cannot be tracked anymore after it dissociates.

(a)

(b)

FIG. 10. Distribution of the residence time for sequential and
random binding models. Each graph shows groups of three curves,
characterized by the same w value, corresponding to three different
values of the interval length 2r , measured in units of lattice spacing.
Panels (a) and (b) show fres(t) as a function of t for sequential and
random binding, respectively. Parameter values are γ = 0.1, b1 = 2,
b∗ = 0.25, and u1 = 1, measured in units of f , the hopping rate along
the filament.

Therefore, all measurements of Tres thus defined corresponds
to a model where γ = 0. Although the information contained
in the residence time is more indirect compared with the
information that would be contained in the completion time,
the residence time is probably easier to measure in practice.

To calculate the distribution of the residence time, denoted
by fres(t), we consider the limit κ → ∞ in the model illustrated
in Fig. 2, which amounts to placing perfectly absorbing
boundaries at m = −r and r . Supposing that the seed molecule
does not dissociate, we can calculate the first-passage time at
site −r or r from the knowledge of Pm(t) and Qi(t). Details of
the calculation are presented in Appendix C. Formulas for the
mean and variance of fres(t) for the first few w are also given
in Appendix C.

Figure 10 shows fres(t) as a function of t for sequential
(a) and random (b) binding models for the first few values
of w. We observe that the profile of fres(t) contains useful
information about the binding model at smaller values of r .
As r gets larger, distributions with different parameter values
start to look similar. In the presence of measurement errors,
this would make it difficult to infer the molecular details about
the assembly process via measurement of Tres.

One possible way of directly observing the residence time
could be achieved by employing nanomaterials such as DNA

042716-8



KINETICS OF SELF-ASSEMBLY VIA FACILITATED . . . PHYSICAL REVIEW E 92, 042716 (2015)

origami frames. Two-dimensional frames made up of DNA
that contain a stretched filament can be observed with atomic
force microscopy as well as light microscopy [17]. This allows
making measurements in a virtually 2D space such that the
seed molecule would not go out of focus while it is bound to
the filament.

D. When multiple seed molecules are present

We expect the medium to contain multiple seed molecules
undergoing facilitated diffusion such that the overall rate of
completion depends on how frequently a new seed molecule
binds to the target site. By a new molecule, we mean any
molecule except the one that has not dissociated from the
filament after becoming unbound at the target site (following
an incomplete assembly). When the concentration of the seed
molecules is low, competition among different molecules for
the target site is approximately negligible. In this case, arrival
of new molecules at the first bound state can be approximated
by a Poisson process, where the time until arrival is distributed
exponentially. In other words, the system attempts to complete
the assembly process at constant rate. We would like to remark
that this approximation was considered in similar contexts in
Refs. [12] and [9], where the low concentration assumption is
also discussed in the light of biologically relevant values of
molecular concentrations.

Let Tdis denote the time at which a seed that started in
the first bound state dissociates, regardless of whether the
process completes. Distribution of Tdis, denoted by fdis, is
given in Appendix B 1. Next we define farr(t) and f ′

dis(t) to be
distributions of the first arrival time, Tarr, of a new seed at the
first bound state and the first dissociation time, T ′

dis, of a seed
that was initially bound and assuming that the process is not
allowed to complete, that is, bw → 0. Note that the time T ′

dis
is introduced for convenience, and its role in calculating the
completion time will become clear in what follows.

Suppose that initially there are no molecules in the vicinity
of the target site. After a time Tarr, we expect a molecule
to become bound, which would lead to completion with
probability Pcomp after a time Tcomp, or to dissociation without
completion with probability 1 − Pcomp, after time T ′

dis. If we
call this an attempt, then we can formulate the distribution of
the first completion time in terms of the number of attempts that
lead to the completion of the process. Note that this requires
〈T ′

dis〉 	 〈Tarr〉, implying that binding of a new molecule while
another has not yet dissociated from the filament is unlikely.

Let gcomp(t) be the distribution of the completion time when
the assumption above holds. We can express gcomp(t) as

gcomp(t) = Pcomp[farr ∗ fcomp]

+ (1 − Pcomp)Pcomp[farr ∗ f ′
dis ∗ farr ∗ fcomp]

+ (1 − Pcomp)(1 − Pcomp)Pcomp

× [farr ∗ f ′
dis ∗ farr ∗ f ′

dis ∗ farr ∗ fcomp]

+ · · · , (6)

where ∗ denotes convolution, that is, f ∗ g = ∫ t

0 dsf (t −
s)g(s). In (6), the first, second, and third terms correspond
to the probability that the process is completed after the first,
second, and third attempts, multiplied by the distribution of

the time each route takes. Taking the Laplace transform of (6),
thereby converting convolutions into products, we obtain

g̃comp(ε) = Pcompf̃comp(ε)

(1 − Pcomp)f̃ ′
dis(ε)

×
∞∑

n=1

[(1 − Pcomp)f̃arr(ε)f̃ ′
dis(ε)]n

= Pcompf̃arr(ε)f̃comp(ε)

1 − (1 − Pcomp)f̃arr(ε)f̃ ′
dis(ε)

, (7)

where we assumed the convergence of the geometric sum,
which certainly holds as ε → 0, since 0 � Pcomp � 1 and
then f̃arr(ε) and f̃ ′

dis(ε) are Laplace transforms of normalized
probability distributions.

Since we assume that the arrival of a new seed is a
Poisson process, we have farr(t) = αe−αt , where α is a function
of the 3D diffusion coefficient as well as the unspecific
binding-unbinding rates between the seed and the filaments.
The distribution f ′

dis(t) can be calculated as described in
Appendix B 1.

We can then calculate the mean completion time, starting
from the state where no seed is bound, as

〈Tcomp〉 = − lim
ε→0

dg̃comp

dε
,

which follows from (5). Substituting (7) into the equation
above and performing the limit, we get

〈Tcomp〉 = μarr + μcomp +
(

1 − Pcomp

Pcomp

)
(μarr + μdis′ ),

where μarr = 〈Tarr〉 = α−1 and μdis′ = 〈Tdis′ 〉, where the angu-
lar brackets imply expected values, as in (5). If the complex
disappears from the system, then we can estimate the rate of
formation as

kcomp = 1

〈Tcomp〉 .

We note that the theory developed by Berg et al. [6], or
possibly an extension of the widely applicable mean first-
passage time calculations given by Bénichou et al. [18], can
be used to approximate the association rate α as a function of
parameters characterizing the whole system, including the 3D
diffusion coefficient and the ratio of the average inter-filament
distance to filament radius.

IV. DISCUSSION AND CONCLUSIONS

In this work, we presented a model and its analytic solution
for the formation of a complex of molecules on a filament,
applicable to the assembly of the transcription complex. The
process is driven by seed molecules that undergo facilitated
diffusion, which consists of 3D diffusion interrupted by
episodes where a molecule associates with a filament and
undergoes 1D diffusion in search of a target site. In this
work, we did not explicitly model the 3D diffusion of a
seed molecule, which was studied earlier [6]. Once the seed
molecule becomes bound to the target site, a number of
auxiliary molecules can reversibly bind, forcing the seed to
stay bound, until an assembly of a given size forms. We believe
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that including spatial degrees of freedom and accounting for
the effect of facilitated diffusion is the major contribution of
this study to the existing body of work on the kinetics of
aggregation.

Two quantities were used to characterize the process: (1)
the probability that the assembly completely forms and (2)
the time it takes for the process to complete, conditioned on
completion; once a seed molecule becomes bound. Mathemat-
ical expressions for these quantities are given in (1) and (3),
respectively. In Appendix E, we also provide a comparison of
analytical expressions with simulations, verifying the validity
of the results.

Similarly to previous studies (see, for instance, Refs. [14]
and [19], where the latter has an experimental component), we
found that the order in which auxiliary molecules bind would
matter and compared two different models where auxiliary
molecules bind in a strictly sequential order and in completely
random order.

The findings indicate that the probability of completion is
greater for random binding than it is for sequential binding
(see Figs. 4 and 5). Interestingly, in random binding, when the
unbinding rates of auxiliary molecules are relatively larger than
their binding rates, there can be an optimal size for the complex
for which the chance of completion is maximal (see Fig. 4).
While the probability of completion is larger for the random
binding model, it can take a long time to reach completion,
especially when the complex contains much more than a few
molecules. Calculating the completion time distribution for the
two models, we found that the mean completion time grows
exponentially with the size of the complex for the random
binding model, while it grows as a power law or slower for the
sequential binding model (see Fig. 7). In addition, completion
time is much more broadly distributed for random binding
compared to that in sequential binding (see Figs. 8 and 9).

Therefore, there is a trade-off between the probability of
completion and the completion time, and an optimal strategy
may consist of a hybrid model, where the first few molecules
bind in random order to stabilize the forming complex, and
the rest of the molecules bind sequentially to reduce the
completion time, ensuring that it does not scale exponentially
with the number of molecules in the complex.

Facilitated diffusion enhances the probability of completion
by increasing the chances for the seed molecule to quickly
rebind to the target site even if it becomes unbound before the
process completes (this so-called rebinding effect was also
discussed by other authors, for instance, in the context of
enzymatic reactions [20] and in gene expression [11]). We
quantified the amount of enhancement by deriving a formula
for it as a function of all model parameters [see (2)]. Inside the
parameter range considered here, facilitated diffusion is found
to enhance the completion probability more strongly for the
sequential binding model compared with the random binding
model (see Fig. 6).

Note that the current model can be generalized to also let
auxiliary molecules undergo facilitated diffusion. One possible
way of achieving this is generalizing the previously studied
island growth model [21,22], where monomers adsorb to a
surface and undergo diffusion limited aggregation to form
immobile islands to allow for dissociation and readsorption
of monomers.

Our results are relevant for the case where the concentration
of seed molecules is sufficiently low so the competition for the
target site is negligible (also see Refs. [12] and [9]). Under
this assumption, we also provided an approximate analytic
expression for the Laplace transform of the completion time
distribution for multiple seed molecules, from which we
obtained the average completion time.

While the model we consider here is appealing for artificial
systems where, for instance, stretched-out DNA filaments are
placed in nanoengineered structures [17,23], applicability of
the model to the formation of the transcription complex in
vivo depends on the validity of two key assumptions. First, the
DNA is assumed to be a 1D filament in the vicinity of a target
site (a regulatory sequence of a gene). If the dissociation rate
γ is much larger than the hop rate f , then this assumption is
more likely to hold, since the seed would not be able to explore
a large section of the filament at a time. We should note that
DNA can be packed inside cells in a highly organized manner;
it could be condensed by proteins in bacteria and is organized
in chromosomes in eukaryotic cells [1]. In eukaryotic cells,
before transcription of a gene begins, the structure of the
DNA around the regulatory region of the gene loosens up
such that transcription factors can directly bind to the base
pairs. How well this loosened-up section of the chromatin
can be approximated by a filament should eventually be
verified by experiments in vivo. Second, we assume that the
hopping rate along the DNA is uniform. Nevertheless, recent
studies showed that DNA-binding molecules can act like “road
blocks” that can hinder the 1D diffusion of transcription
factors [24]. In the presence of molecules that act as road
blocks as well as nonuniformity in the rate of diffusion along
different sections of the DNA due to other reasons, the model
considered here may underestimate, for instance, the variance
and higher moments of the completion time distribution. To
improve on this point, one can use a more involved model
of diffusion in 1D, allowing for random transition rates,
permeable barriers [25–28], and results derived for transport
in random environments [29,30].

In this work, we did not investigate the presence of
cooperativity in binding rates and assumed that the mo-
tion of molecules can be described by Brownian diffusion
(continuous-time random walk with exponential waiting
times). Inclusion of cooperative binding-unbinding of auxil-
iary molecules and considering anomalous diffusion can affect
the stability of the complex being formed [14] and lead to
correlated bursts in gene expression [11].

A key factor that determines the efficiency of search for
target sites via facilitated diffusion is the relative affinity of
the seed to unspecific sites on the DNA compared with that to
the target site. It is worthwhile to note that this point becomes
even more significant when one accounts for the degradation
of DNA-binding molecules [31]. In our model, the seed hops
between all adjacent sites, including the target site, at the
rate f , and in all of the plots we choose b1 = 2f , implying
that binding to the target site happens at only twice the rate
at which the seed hops between any two sites. Therefore,
results illustrated here correspond to the case where the target
site is not strongly “sticky.” Note that this is consistent with
experimental findings showing that the probability of binding
at the first encounter is not necessarily close to 1 [5].
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In Sec. III C we presented the model prediction for the time
it takes for a seed to escape from an interval around the target
site, provided that it does not dissociate from the filament
until it is observed to escape. Single molecule observations
can be performed by tagging multiple molecules and can
be sophisticated enough to provide direct information about
molecular interactions (for a review on multiple experimental
methods, see, for instance, Ref. [3]). Nevertheless, in the most
basic setting, assuming that the seed molecule can be tracked,
the dissociation time and the residence time for the seed can
be directly accessed, providing evidence for performing model
selection. However, we remark that the applicability of an
analysis using the residence time defined above would often
be limited to observations in the vicinity of the binding site and
may require high position precision. This is because the in vivo
unspecific binding strength of molecules to the DNA filament
is not necessarily high enough for the molecule to cover a large
distance on the DNA without being dissociated. To provide
a quick estimate, we expect the diffusive displacement of a
molecule to go as d =

√
〈m2〉 ∼ √

f τ , where τ is the typical
time a molecule spends attached, which can be estimated as
τ ∼ 1/γ . Therefore, the distance a molecule covers typically
goes as d ∼ √

f/γ . Nevertheless, several single molecule
observations of RNA polymerase in vitro suggest that the
dissociation times can be long to allow significant motion of
the particle along the DNA (see, for instance, Refs. [32] and
[23]). Finally, as also noted in Sec. III C, we remark that the
discriminative power of this analysis diminishes as the length
of the interval increases (see Fig. 10).

Recent experimental studies on the kinetics of formation
of the transcription initiation complex aim to test competing
hypotheses of sequential and random binding. In this respect,
we believe that model predictions, in conjunction with cutting-
edge experimental methods, would be useful for revealing the
dynamics of such mesoscopic systems.
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APPENDIX A: MASTER EQUATION AND ITS SOLUTION

In this section we present the mathematical formulation
of the model illustrated in Fig. 2 in terms of a set of master
equations, and its solution.

We model the seed molecule as a random walker hopping
between nearest-neighboring sites in a 1D lattice (see Fig. 2).
When the random walker occupies the site m = 0, it can
transition to a bound state at rate b1. We consider a total number
of w bound states, each of which is accessible in a sequential
manner, e.g., a stack of bound states. Among the bound states,
the rate of transition from state i to i + 1 is denoted by bi+1,
and the rate of transition from i to i − 1 is denoted by ui . When
the random walker occupies the first bound state, it becomes
unbound at rate u1 and returns to the lattice. Note that bi and

ui characterize the rate of going deeper and shallower in the
stack of bound states, respectively.

Let Pm(t) denote the probability of finding the random
walker unbound at site m and Qi(t) be the probability that it is
in the i th bound state. The master equations that govern these
probabilities are given by

dPm

dt
= f (Pm−1 + Pm+1 − 2Pm) − γPm

+ [δm,0(−b1P0 + u1Q1) − κ(δm,−r + δm,r )Pm],

(A1)

where κ is a parameter that adjusts the strength of an absorbing
boundary at −r and r , and

dQ1

dt
= b1P0 − (u1 + b2)Q1 + u2Q2,

dQ2

dt
= b2Q1 − (u2 + b3)Q2 + u3Q3,

... (A2)

dQw−1

dt
= bw−1Qw−2 − (uw−1 + bw)Qw−1 + uwQw,

dQw

dt
= bwQw−1 − uwQw.

We start with the solution for Pm(t). Let us denote by ϕm−n(t)
the solution of (A1) with the initial condition Pm(0) = δm,n,
when the terms inside the square brackets are set to zero,
which corresponds to random walk in an infinite lattice where
the random walker disappears at rate γ . Using Laplace and
discrete Fourier transforms to convert differential equations to
algebraic equations, ϕm−n(t) can be obtained as

ϕm−n(t) = e−(2f +γ )t Im−n(2f t), (A3)

where Im(t) denotes the modified Bessel function of the first
kind [33]. The Laplace transform of (A3) is given by (see
Ref. [34], p. 75)

L{e−at Iν(bt)} = [(ε + a + b)1/2 − (ε + a − b)1/2]2ν

(2b)ν[(ε + a)2 − b2]1/2
, (A4)

where, Re[ν] > −1, Re[ε] > max {Re[b − a], − Re[b + a]}
and L denotes the Laplace transform defined in (4) with ε

as the Laplace variable. We use tildes (̃ ) to denote Laplace
transformed variables as in the main text. To obtain the full
solution of (A1), we note that it is a first-order linear differential
equation, which allows us to express its solution as

Pm =
∑

n

Pn(0)ϕm−n +
∫ t

0
ds

∑
n

ϕm−n(t − s)[· · · ](n,s),

(A5)

where [· · · ](n,s) corresponds to the expression in square
brackets on the right-hand side of (A1) as a function of n

and s. Note that we need to express Q1 in terms of P0 in
order to obtain a closed equation for Pm’s. To achieve this,
we formally solve the system of equations given in (A2) for
an initial condition where the first bound state is occupied
with probability Q1(0) and all other bound states are initially
unoccupied, that is, Qi(0) = 0 for i > 1. Taking the Laplace
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transform of the system in (A2), and solving recursively, we find

Q̃w = Q̃w−1
bw

ε + uw

,

Q̃w−1 = Q̃w−2
bw−1

ε + uw−1 + bw − uwbw

ε + uw

,

Q̃w−2 = Q̃w−3
bw−2

ε + uw−2 + bw−1 − uw−1bw−1

ε + uw−1 + bw − uwbw

ε + uw

,

... .

Note that we readily have

Q̃2 = Q̃1
b2

ε + u2
, (A6)

which can be substituted in the Laplace transform of the first equation in (A2) to obtain an equation that only involves Q̃1 and
P̃0, whose solution is

Q̃1 = Q1(0) + b1P̃0

ε + u1 + b2 + K2(w)u2
, (A7)

where Kj (w) is defined as

Ki(w) = 1

ui

w

K
j=i

(−ujbj )

(ε + uj + bj+1)

= − bi

ε + ui + bi+1 − ui+1bi+1

ε + ui+1 + bi+2 − ui+2bi+2

· · · −
. . .

ε + uw−1 + bw − uwbw

ε + uw

, (A8)

where the big-K notation is one of the convenient ways of
denoting parts of continued fractions, defined as [35]

j

K
i

ai

bi

= ai

bi + ai+1

bi+1 + ai+2

· · · +
. . .

bj−1 + aj

bj

.

Note that in the limit ε → 0, we have

lim
ε→0

Ki(w) = −bi

ui

. (A9)

Combining all these, we observe that the solution for Q̃i can
be compactly written as

Q̃i = (−1)i−1Q̃1

i∏
j=2

Kj (w), (A10)

for i � 2. For w � 2, the total probability of being bound is
given by

w∑
i=1

Q̃i = (1 − K2{1 − K3[· · · − Kw−1(1 − Kw) · · · ]})Q̃1,

(A11)

which is obtained by summing up (A10) and rearranging terms
in the summation [the argument w of Ki(w) is omitted for
brevity in notation]. When there is only a single bound state,
that is, w = 1, the probability of being bound in simply equal
to Q1.

Taking the Laplace transform of (A5), we can obtain an
algebraic equation for Pm in terms of the probabilities P−r ,
P0, and Pr , which reads

P̃m = 
′
m − b′

m − κϕ̃m+r P̃−r − κϕ̃m−r P̃r , (A12)
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where we defined


′
m = 
m + u1Q1(0)

ε + u1 + b2 + K2(w)u2
ϕ̃m,


m =
∑

n

Pn(0)ϕ̃m−n,

b′
m =

[
1 − u1

ε + u1 + b2 + K2(w)u2

]
b1ϕ̃m.

Substituting m = −r, 0, and r in (A5), we then obtain the
following system of linear equations:

⎡⎣1 + κϕ̃0 b′
−r κϕ̃−2r

κϕ̃r 1 + b′
0 κϕ̃−r

κϕ̃2r b′
r 1 + κϕ̃0

⎤⎦⎡⎣P̃−r

P̃0

P̃r

⎤⎦ =
⎡⎣
′

−r


′
0


′
r

⎤⎦, (A13)

which can be solved for P̃−r , P̃0, and P̃r to complete the whole
solution.

APPENDIX B: PROBABILITY OF COMPLETION, FIRST
COMPLETION, AND DISSOCIATION TIME

DISTRIBUTIONS

In this section, we outline the calculation of the probability
of completion before dissociation from the filament, the first
completion time given completion precedes dissociation, and
the dissociation time, all for a random walker that is initially
occupying the first bound state. The appropriate limit in (A1)
is κ → 0. The full solution for P̃m is obtained by solving the
system of equations in (A13) and substituting the resulting

expressions in (A12). The explicit solution is given by

Pm(ε) = 
m + ϕ̃m[u1Q1(0) − b1
0(ε + b2 + K2u2)]

u1 + (1 + b1ϕ̃0)[ε + b2 + K2(w)u2]
.

(B1)

When there is only a single bound state, (B1) reduces to

Pm(ε) = 
m + ϕ̃m[u1Q1(0) − εb1
0]

u1 + ε(1 + b1ϕ̃0)
.

Note that the expressions above hold for all initial conditions,
described by 
m and Q1(0). We consider the case where the
random walker is initially occupying the first bound state, that
is, 
m = 0 and Q1(0) = 1.

1. Dissociation time distribution

We denote the distribution of the dissociation time by
fdis(t). The molecule is allowed to visit any state any number
of times; therefore, we do not have the restriction uw = 0
that we used in the calculation for the completion time. In this
respect, fdis(t) is not a conditional distribution, unlike fcomp(t).
The distribution of the first dissociation time can formally be
written as

fdis(t) = − d

dt

[∑
m

Pm(t) +
∑

i

Qi(t)

]
, (B2)

where the quantity inside the parentheses is the survival
probability, the probability that the random walker is still
diffusing in the lattice, or the system is in any of the bound
states. In the Laplace domain, this expression becomes

f̃dis(ε) = 1 − ε

(∑
m

P̃m +
∑

i

Q̃i

)
. (B3)

The probability of being at any lattice site can be obtained by
substituting ϕ̃m(ε) and summing over m

∑
m

P̃m(ε) = u1(α + γ + 4f + ε)

(α + γ + ε){(α + b1)[ε + b2 + u2K2(w)] + u1α} . (B4)

Combining this with (A11), the explicit form of the dissociation time is obtained as

f̃dis(ε) = 1 − ε{u1[4f + γ + ε + α(ε)] + �w[(γ + ε)b1 + (γ + ε + b1)α(ε) + α(ε)2]}
[γ + ε + α(ε)]{b1(ε + b2) + (ε + b2 + u1)α(ε) + K2(w)u2[b1 + α(ε)]} , (B5)

where �w is equal to the quantity in the square brackets on the
right-hand side of (A11).

In order to obtain the distribution of dissociation time given
the process never reaches completion before dissociation,
denoted by f ′

dis(t) in Sec. III D), one can eliminate the constant
bw and the variable Qw in the set of Eqs. (A2) and drop the
last equation, thereby removing the possibility of completion.
Then the solution of this modified master equation for the
dissociation time, performed in the same way as above, would
provide f ′

dis(t).

2. Probability of completion and the
completion time distribution

When the system transitions into the final bound state w,
we call the process complete. We can calculate the probability
of completion and the first completion time by setting uw, the
rate of leaving the final bound state, to zero and finding out the
probability Qw. Note that this is equivalent to setting uw = 0
in the master equation and solving for Qw. With this choice,
system trajectories that arrive at the final bound state cannot
leave, and the distribution of first completion times can be
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written as

fcomp(t) = 1

Pcomp

{
− d

dt
[1 − Qw(t ; uw = 0)]

}
, (B6)

= 1

Pcomp

dQw

dt

∣∣∣∣
uw=0

, (B7)

where Pcomp is the probability of completion, acting as a
normalization constant. Note that the quantity in square
brackets in (B6) is the survival probability, defined as the
probability of not having visited the wth bound state up to time
t . In this respect, (B6) is analogous to (B2), except that fcomp

is a conditional distribution and needs to be normalized with
the probability of completion, Pcomp. In the Laplace domain,
we have

f̃comp(ε) = εQ̃w(ε; uw = 0)

Pcomp
, (B8)

since Qw(0) = 0. Note that this is equivalent to solving the
master equations (A1) and (A2) by setting uw = 0 first and
then calculating Qw, since the solutions (A10) and (B1) are
valid for uw = 0.

Pcomp is the probability of occupancy of state w in the long-
time limit. Therefore, we have Pcomp = Qw(t → ∞; uw = 0).
To find Pcomp we first calculate Q̃w(ε; uw = 0) from (A10).
Then, using the limit theorem for the Laplace transform,
limt→∞ f (t) = limε→0 εf̃ (ε), we obtain the explicit result

Pcomp = 1

1 + λ(w)/(1 + β)
, (B9)

where

β = b1/
√

γ (γ + 4f ), (B10)

λ(w) = [πb(2; w)]−1u1(πb(3; w) + u2{πb(4; w) + · · ·
+uw−2[πb(w; w) + uw−1] · · · }), (B11)

πb(i; w) =
w∏

k=i

bk. (B12)

Note that w � 2 and λ(2) = u1.
The Laplace transform of the first completion time valid for

w � 2 is obtained from (B8) and is explicitly given by

f̃comp(ε)

= (−1)w−1

Pcomp

(
w∏

i=2

Ki(w)

)

×
{

ε

ε + b2 + u1α(ε)/[α(ε) + b1] + u2K2(w)

}∣∣∣∣
uw=0

,

(B13)

where α(ε) = √
(γ + ε)(γ + 4f + ε) and Ki(w) is defined in

(A8).

APPENDIX C: RESIDENCE TIME DISTRIBUTION

In this section, we are concerned with the case where the
random walker is initially occupying the first bound state and
can be absorbed if it travels far enough from the binding site.
We consider the residence time of the random walker in a
symmetric interval centered around the target site, given the
walker does not dissociate from the lattice before exiting this
interval. To calculate the residence time (equivalently, the first
exit or escape time), we consider (A1) in the limit κ → ∞
and γ → 0, which amounts to placing perfectly absorbing
boundaries at m = −r and r and eliminating the possibility of
dissociation from the lattice.

After solving for P̃m using the same method presented in
the previous sections, the Laplace transform of the residence
time distribution, which we denote by f̃res, is then found by
using (B3). The probability of finding the molecule in the
unbound state is obtained by summing P̃m over all lattice
sites, resulting in

∑
m

Pm = u1[4f + ε + δ(ε)]{−(2f )r + [2f + ε + δ(ε)]r}2

[ε + δ(ε)](u1[(2f )2r + β(ε)]δ(ε) − [ε + b2 + u2K2(w)]{(2f )2r [b1 − δ(ε)] − β(ε)[(b1 + δ(ε)]}) ,

where β(ε) = [
√

ε(4f + ε) + 2f + ε]
2r

and δ(ε) = √
ε(4f + ε). The probability of being in any bound state is given by the

sum in (A11). Substituting these two sums in (B3) and performing the algebra, we obtain

f̃res(ε) = 1 − ε(u1[4f + ε + δ(ε)]{(2f )r − [2f + ε + δ(ε)]r}2 + �w[ε + δ(ε)]{(2f )2r [−b1 + δ(ε)] + β(ε)[b1 + δ(ε)]})
[ε + δ(ε)](u1[(2f )2r + β(ε)]δ(ε) + [ε + b2 + u2K2(w)]{(2f )2r [−b1 + δ(ε)] + β(ε)[b1 + δ(ε)]}) ,

(C1)

where �w is equal to the quantity in the square brackets on the right-hand side of (A11). We denote the residency time as Tres.
The moments of Tres can be calculated from

〈T n
res〉 = (−1)n lim

ε→0

dnf̃res

dεn
. (C2)

The mean and variance of Tres, normalized by f −1 and f −2, respectively (f being the hopping rate along the lattice,
proportional to the 1D diffusion coefficient along the DNA), for the first few values of w are given by

w = 1 :

μres = 1

2

(
r2 + 2 + rb1

u1

)
, σ 2

res = 3(2 + rb1)2 + 2(r + 2r3)b1u1 + r2 (1 + 2r2)u2
1

12u2
1

,
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TABLE I. Comparison of numerically exact and simulated values of Pcomp. Values of u∗ and w are indicated in the first two columns, and
all other parameter values are fixed at f = 1, b1 = 2, u1 = 1, b∗ = 0.25, γ = 0.1. In computing simulation results, an ensemble of N = 105

independent simulation runs were obtained, and this process was repeated 20 times to compute error due to finite sample size. P
seq
comp (sim) and

P ran
comp (sim) correspond to simulation results, given in the format x [y, z], where x is the average, and [y, z] is the 95% confidence interval

computed via bootstrapping.

u∗ w P
seq
comp [Eq. (1)] P

seq
comp (sim) P ran

comp [Eq. (1)] P ran
comp (sim)

0.10 2 0.5076 0.5078 [0.5071, 0.5086] 0.5076 0.5084 [0.5076, 0.5092]
0.40 3 0.2839 0.2840 [0.2832, 0.2847] 0.4423 0.4420 [0.4413, 0.4429]
0.08 4 0.4202 0.4206 [0.4199, 0.4213] 0.7101 0.7105 [0.7099, 0.7111]
0.19 5 0.2708 0.2699 [0.2694, 0.2705] 0.6863 0.6859 [0.6852, 0.6866]
0.13 6 0.3397 0.3398 [0.3394, 0.3402] 0.8007 0.8009 [0.8005, 0.8014]
0.31 7 0.0858 0.0858 [0.0855, 0.0861] 0.5531 0.5527 [0.5520, 0.5534]
0.15 8 0.2979 0.2983 [0.2976, 0.2990] 0.8571 0.8570 [0.8566, 0.8575]

w = 2 :

μres = 1

2

[
r2 + (2 + rb1)

(
1 + b2

u2

)
u1

]
,

σ 2
res = (

12u2
1u

2
2

)−1(
3(2 + rb1)2b2

2 + (
3(2 + rb1)2 + 2(r + 2r3)b1u1 + r2(1 + 2r2)u2

1

)
u2

2

+ 2b2{3(2 + rb1)2u2 + u1[12 + rb1(6 + u2 + 2r2u2)]}),
w = 3 :

μres = 1

2

{
r2 +

(2 + rb1)
[
1 + b2(b3+u3)

u2u3

]
u1

}
,

σ 2
res = (

12u2
1u

2
2u

2
3

)−1[(
3(2 + rb1)2 + 2(r + 2r3)b1u1 + r2(1 + 2r2)u2

1

)
u2

2u
2
3 + 3(2 + rb1)2b2

2(b3 + u3)2

+ 2b2
(
6(2 + rb1)b3u1(b3 + u2) + b3{3(2 + rb1)2u2 + u1[24 + rb1(12 + u2 + 2r2u2)]}u3

+ {
3(2 + rb1)2u2 + u1

[
12 + rb1(6 + u2 + 2r2u2)

]}
u2

3

)]
,

where r is considered dimensionless, an integer corresponding to the number of lattice sites from the target site.

APPENDIX D: NUMERICAL INVERSE
LAPLACE TRANSFORM

Based on previous experience, we pick the Gaver-Stehfest
method [36,37] for the numerical inversion of Laplace trans-
forms, which only requires the evaluation of the transformed
function at real values of the Laplace variable and is suitable
for bounded functions such as first-passage time distributions.
We employ the algorithm described by Abate and Whitt [38]
to approximate the inverse Laplace transform of f̃ (ε) as

f (t) = ln 2

t

2M∑
k=1

wkf̃

(
k

ln 2

t

)
,

wk = (−1)M+k

min(k,M)∑
j=�(k+1)/2�

jM+1

× 2j !

(j !)2(M − j )!(2j − k)!(k − j )!
,

where M is a positive integer and �(k + 1)/2� means the largest
integer less than or equal to (k + 1)/2. The number M is chosen

based on the available numerical precision, and, according to
the estimate provided in Ref. [38], the result has around 2.2M

digits of precision.

APPENDIX E: COMPARISON WITH SIMULATIONS

Assembly formation process is simulated according to the
model description given in Sec. II using the Gillespie algorithm
[39] that proceeds by determining the time of the next transition
in the system, as well as which transition is going to take place.
The system state is then updated, and the process is repeated
until the random walker: (1) arrives at the bound state w, (2)
decays (at rate γ while at an unbound state), or (3) reaches
one of the sites −r or r for the computation of Tcomp, Tdis, and
Tres, respectively. Pcomp is obtained by computing the ratio of
the number of times the assembly forms to the total number
of independent simulation runs. In each simulation run, the
system starts at the same state where the random walker is
occupying the first bound state with certainty, in accordance
with the model description in Sec. II.

In Table I and Fig. 11, we display the comparison between
analytical and simulation results for Pcomp and the cumulative
distributions of Tcomp, Tdis, and Tres for several randomly
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(a)

(c)

(e) (f)

(d)

(b)

FIG. 11. (Color online) Comparison of numerically exact and simulated cumulative probability distributions of Tcomp, Tdis, and Tres, defined
in (E1). Curves correspond to the numerical inverse Laplace transform of (E1) [with the use of Eqs. (B13), (B5) and (C1)], and black filled
circles along with error bars represent simulation results. Legends of the topmost graphs apply to all graphs in the same column, and values
in parenthesis correspond to (b∗/u∗, w). For the calculation of Fres, we set r = 10. Rest of the parameter values are the same as those in the
caption of Table. I. In computing simulation results, an ensemble of N = 103 independent simulation runs were obtained, and this process was
repeated 20 times to compute error bars. Error bars correspond to 95% confidence intervals computed via bootstrapping.

selected parameter values. The cumulative probability dis-
tribution of Tx , which is straightforward to calculate from
simulation data without any binning, is defined as

Fy
x (t) =

∫ t

0
ds f y

x (s) = L−1

{
f̃

y
x (ε)

ε

}
, (E1)

where y is either “seq” or “ran” for sequential and ran-
dom binding models, respectively, and the inverse Laplace
transform, denoted by L−1, is performed as in Appendix D.
Parameter values are given in captions. As both sets of
comparisons show, numerically exact and simulation results
that are obtained independently are in excellent agreement.
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