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Application of a free-energy-landscape approach to study tension-dependent bilayer tubulation
mediated by curvature-inducing proteins
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We investigate the phenomenon of protein-induced tubulation of lipid bilayer membranes within a continuum
framework using Monte Carlo simulations coupled with the Widom insertion technique to compute excess
chemical potentials. Tubular morphologies are spontaneously formed when the density and the curvature-field
strength of the membrane-bound proteins exceed their respective thresholds and this transition is marked by a
sharp drop in the excess chemical potential. We find that the planar to tubular transition can be described by a
micellar model and that the corresponding free-energy barrier increases with an increase in the curvature-field
strength (i.e., of protein-membrane interactions) and also with an increase in membrane tension.
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I. INTRODUCTION

Highly curved membrane structures at the tens-of-
nanometers length scale, such as buds, vesicles, and tubules,
are essential functional intermediates in cell physiologi-
cal processes. These intermediates are orchestrated by the
membrane remodeling activities of a specialized class of
proteins [1–8]. Proteins comprised of Bin-Amphiphysin-Rvs
(BAR), epsin-N -terminal homology (ENTH), and inverted-
BAR domains are enriched in cellular pathways involving
traffic and transport in cells [1,9]. It is shown that these protein
domains induce membrane curvature on a lipid membrane
bilayer [1,10]; when multiple proteins are localized to a region,
they act cooperatively to induce or stabilize the aforementioned
morphologies that are otherwise unstable. Disklike shapes in
the endoplasmic reticulum have been shown to be stabilized
by deleted-in-polyposis and reticulon class proteins [11], while
membrane tubules are induced through ENTH domains [12],
BAR domains [1,10], dynamin [13], Shiga toxin [14], and
other proteins such as Exo70 [15].

The molecular interaction of a curvature-inducing protein
with a bilayer membrane has been extensively studied using
all-atom and coarse-grained simulations for various classes of
curvature remodeling proteins. These studies can be broadly
classified into those that focus on the properties of the curvature
field at the molecular scale [15–18] and those that focus on
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their membrane remodeling effects at the mesoscale [19–23].
On the other hand, at the continuum scale, elasticity-based
theoretical and computational models have been used to study
membrane remodeling by treating the individual proteins as
an inclusion that modulates the curvature of the membrane
surface [24–32]. Conventionally, the elastic Hamiltonian [see
Eq. (1)] governing the energy of the membrane is taken
to be the free energy of the system and in cases where
membrane inclusions are also considered, the conformational
entropy of these inclusions is accounted for by treating them
as interacting particles with well-defined mixing energies
[33–38]. However, in the context of thermodynamics, the true
free energy should also account for the entropic contributions
from the membrane degrees of freedom, which would involve
explicit free-energy calculations that also account for thermal
fluctuations of the system [39]. For example, an umbrella-
sampling-based coarse-grained molecular simulation has been
used to determine the polymerization free energy of BAR
domain protein on membranes with varying tension [40].
Recently we introduced a number of free-energy methods
derived from chemical physics [41] to delineate the free-energy
landscapes of membranes remodeled by curvature inducing
proteins [32,42,43]. In this article we use some of these
methods to predict the stability of emergent morphologies such
as tubules, blebs, and buds that arise due to the cooperative
interactions of the proteins with the membrane.

Two theories based on stability and instability have been
advocated to address the role of cooperativity. Leibler and
others [33,44,45] have proposed that the presence of these
proteins generates a curvature instability, which drives a
morphological transition in the liposome, the onset of which
is related directly to the strength of the induced-curvature
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field. The authors have developed an analytical model to
describe the boundary that separates the planar and tubular
regions; the boundary depends on factors such as membrane
bending rigidity, tension, and induced-field strength. Sorre
et al. [37] presented a thermodynamic theory (accounting for
the protein’s translational entropy on the membrane surface)
that quantifies the force acting on a tether pulled from a
giant unilamellar vesicle in the presence of a curvature-
coupling protein. However, the theory idealizes the emergent
membrane geometry to be that of a cylinder attached to a flat
membrane.

Alternatively, tour-de-force coarse-grained molecular dy-
namics calculations of membranes decorated with oligomer-
ized networks of ENTH [18], N-BAR [17], and Exo70 [15]
domains have shown that in the presence of these proteins tubu-
lar and vesicular morphologies are stable. A similar approach
has been used to investigate the effect of protein aggregation,
cooperative interactions, and membrane elasticity [40,46] on
the formation of highly curved membrane morphologies.
The first class of models utilizes a continuum top-down
approach to determine regions of curvature instability and
has limited capabilities in predicting emergent morphologies.
The second class of models utilizes a bottom-up molecular
approach to study microscopic mechanisms governing protein
oligomerization and membrane remodeling, but does not
directly compare the thermodynamic stabilities of the planar
and tubular states.

Open questions relevant to cell physiology still remain
unanswered and include the following: What is the nature of
the emergent morphological state (cylinder, bud, bleb, etc.)
and what are the morphological features at the mesoscale
(e.g., protein density and organization, and geometry)? What
is the thermodynamic free-energy landscape defining these
morphological states and their relative stabilities, the driving
forces governing these transitions (e.g., energetic vs entropic
costs of driving membrane curvature)? More significantly,
what are the roles of direct and membrane-mediated co-
operative interactions of proteins in defining the transition
free-energy landscapes (e.g., curvature contribution to the
chemical potential determines protein recruitment by which
curvature gradients define the driving force for transport).

Recent experimental work by Shi and Baumgart [47] has
brought the focus back to these questions, where they report
a reversible transition between the tubule and planar states,
which is strongly influenced by protein surface density and
membrane tension. It is becoming clear that the precise control
of spatial localization and temporal dynamics of the curvature-
inducing proteins is crucial not only to the regulation of
membrane-mediated trafficking such as endocytosis [42] and
exocytosis [15], but also in cell migration [48]. The physical
microenvironment around a cell such as matrix stiffness and
dimensionality will influence the physical variables on the
membrane such as membrane stiffness or tension [49] and
will dictate the underlying trafficking and migratory stimuli in
such cells mediated by curvature-inducing proteins.

II. METHODS

We address the biophysical challenges discussed above by
utilizing a mesoscale computational model we have devel-

oped to describe protein-induced tubulation and combining
it with methods to delineate the free-energy landscapes
of protein recruitment and membrane morphological transi-
tions [32,42,43]. The core methodology for performing the
simulations and free-energy calculations is essentially the
same as that reported in [43]. Here we recapitulate only the
essential details and enhancements to the methodology.

A. Continuum model for membrane and protein-induced
spontaneous curvature field

Following the approaches in our previous works [32,42,43],
the membrane is modeled as a thin elastic sheet, which is
discretized into a triangulated mesh with N vertices and T

triangles [50]. The energy of this surface is given by the
discretized form of the Canham-Helfrich Hamiltonian [51]

H =
N∑

v=1

{
κ

2
(C1,v + C2,v − H0,v)2 + σbare

}
Av, (1)

where κ and σbare are the bending rigidity and bare surface
tension of the membrane [32,43], C1,v and C2,v are the
principal curvatures at vertex v, computed as in [50], and
Av denotes the corresponding surface area. Protein-induced-
curvature remodeling effects are included through the sponta-
neous curvature field H0,v . If rv denotes the position of vertex
v and Ri denotes the position of protein i, then the effective
spontaneous curvature at v, due to the nP proteins on the
surface, is computed as

H0,v =
nP∑
i=1

C0 exp[−(rv − Ri)
2/2ε2]. (2)

Both the membrane and protein degrees of freedom evolve
through the coupled set of dynamically triangulated Monte
Carlo moves described in [43]. There is no explicit interaction
between protein fields besides a self-avoidance potential that
prevents two protein fields from being localized to the same
vertex of the triangulated surface. All other protein interactions
are mediated through the Helfrich Hamiltonian. The results
presented here are for a membrane surface with N = 900
vertices, κ = 20kBT , and σbare = 0. In our previous work [43],
we had noted that this model predicts a tubulation transition.
In the following discussion, we present our analysis of the
tubulation transitions as a function of the magnitude of the
spontaneous curvature C0, its variance ε2, the number of
proteins on the membrane nP , and the excess area of the
membrane A/Ap, defined as the ratio of the curvilinear area
A to its projection onto the x-y plane Ap. All curvatures are
presented in units of a−1

0 with a0 = 10 nm. The choice of
the model parameters including their method of estimation
and justification is based on experimental data and the
computational details regarding the simulations are available
in our previous work [43].

B. Inhomogeneous Widom insertion

The behavior of the remodeled membrane is quantified in
terms of the excess chemical potential μex for nP protein fields
and is computed using the Widom field insertion technique [43]
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as

μex = −kBT ln
∫

〈e−β�H〉MP(sM+1)dsM+1. (3)

Here �H = H(M + 1) − H(M), where M denotes the num-
ber of proteins on the membrane, sM denotes the corresponding
conformational space of the system, and P is the probability
density to add the (M + 1)th protein field at site sM+1, which
is taken to be uniform. The excess chemical potential in Eq. (3)
is an average value that corresponds to the chemical potential
measured in bulk, while the same formulation can also be
extended to systems with spatially varying density [41]. In
this article, we extend the simulation methodology from [43]
to compute spatially dependent excess chemical potentials. If r
denotes a state point in the configurational phase space, μex(r)
its chemical potential, and �H(r) the energy change at r due
to the insertion of the (M + 1)th protein at any point on the
membrane, then the spatially varying excess chemical is given
by

μex(r) = −kBT ln
∫

〈e−β�H(r)〉MP(sM+1)dsM+1. (4)

In this study, r is binned (histogrammed) based on the values
of the mean curvature at different spatial locations Hv =
(C1,v + C2,v)/2 at each vertex v where the test protein field is
inserted. The tubular regions on the membrane are identified
based on the bimodal distribution in the histograms of mean
curvature, as described in Sec. III. In order to achieve adequate
sampling for inhomogeneous Widom insertion calculations,
each membrane simulation is run for at least 3 × 106 Monte
Carlo (MC) steps. Data for Widom test field insertion are
collected only during the production phase, which corresponds
to the second half of the simulation (i.e., the last 1.5 × 106 MC
steps) in order to ensure membrane equilibration. Specifically,
the test protein field is inserted every 100 MC steps at randomly
chosen spatial locations (here we have limited the maximum
number of locations to 20) with the value of exp[−β�H(r)]
being recorded for every insertion move. The reported values
of the error bars in μex correspond to the standard deviation
computed over four replicate ensembles.

C. Computing membrane tension from the undulation
spectrum

A planar membrane is characterized by the extensive
variables entropy S, surface area A, projected area AP , and
number of protein fields nP . If γ is the tension due to the frame
(also called the frame tension), μm is the chemical potential of
the membrane, μ is the chemical potential of the protein field,
and T is the temperature, then at constant projected area Ap

the suitable thermodynamic potential is given by

dF (N,nP ,σ,Ap,T ) = μmdN + μdnP − Adσ

+ γ dAp − SdT . (5)

In this ensemble we initialize the system with set values of
N , nP , AP , and T . The surface tension σ represents the
renormalized tension, which can be estimated through the
fluctuation spectrum analysis discussed below.

The membrane is initialized in a 30 × 30 hexagonal lattice
with a link length l, which can vary within the range of

self-avoidance constraints a0 and
√

3a0. The initial link
length sets the membrane projected area according to Ap =
900(la0)2

√
3/2. Upon equilibration, thermal undulations tend

to increase the curvilinear area of the membrane (i.e., A � Ap)
and this defines an excess area reservoir that is dependent on
the value of l. Hence, the entropic tension depends on the value
of the excess area reservoir A/Ap, which can be measured by
analyzing the power spectrum of membrane undulations [43].

In the absence of any spontaneous curvature field the power
spectrum is given by

kBT = 〈hqh−q〉Ap[κq4 + σq2]. (6)

Equation (6) can be used to measure the renormalization
behavior of κ and σ as a function of A/Ap as discussed
in [43]. However, this simple relationship does not hold for
a membrane with nP > 0. In such a scenario the contributions
from the spontaneous curvature fields to the power spectrum
should also be accounted for. The power spectrum that
incorporates the effect of the protein spontaneous curvature
fields was previously derived in Ref. [43] and is given by

〈H〉= Ap

2

∑
�q

∑
�q ′

{[q2q ′2〈hqhq ′ 〉 − q2〈hqh0,q ′ 〉 − q ′2〈h0,qhq ′ 〉

+ 〈h0,qh0,q ′ 〉]κq+q ′ + qq ′[〈hqhq ′ 〉]σq+q ′ }. (7)

Here q and q ′ correspond to two independent modes that are
coupled to each other through the elastic parameters κq+q ′ and
σq+q ′ , which represent the mode-specific bending rigidity and
tension, and h0,q is the Fourier transform of the spontaneous
curvature field H0(r). While this formalism for carrying out the
fluctuation spectrum analysis in the presence of a finite number
of nonzero curvature fields was presented in [43], its practical
utility was not demonstrated. Here we apply this formalism
and show that it can be utilized to compute the renormalized
values of κ and σ in the presence of spontaneous curvature.
For a homogeneous distribution of κ and σ , κq+q ′ = κδq,q ′ ,
σq+q ′ = σδq,q ′ , and Eq. (7) reduces to

〈H〉 = Ap

2

∑
�q

{[
q4

〈
h2

q

〉 − q2〈hqh0,q〉

− q2〈h0,qhq〉 + 〈
h2

0,q

〉]
κ + q2

〈
h2

q

〉
σ
}
. (8)

Each of the modes obeys equipartition and hence the relation
for the power spectrum in terms of the various Fourier modes
is given by

kBT = Ap

{[
q4

〈
h2

q

〉 − q2〈hqh0,q〉
− q2〈h0,qhq〉 + 〈

h2
0,q

〉]
κ + q2

〈
h2

q

〉
σ
}
. (9)

The renormalized values of κ and σ , in the presence of
spontaneous-curvature-inducing protein fields, can be deter-
mined through a nonlinear fit of Eq. (9).

III. RESULTS AND DISCUSSION

A. Tubulation and bimodal distribution of membrane mean
curvature

A membrane surface can display a number of equilibrium
shapes that depend on the bending stiffness, excess area,
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FIG. 1. (Color online) Representative snapshots of equilibrium membrane morphologies as a function of nP and A/Ap . The membrane
surfaces are colored based on the value of H0,v (expressed in units of a−1

0 ): An isolated Gaussian bump represents an individual protein field
while tubules, formed by the aggregation of multiple protein fields, are seen as sharp protrusions. All protein fields shown have the parameters
C0 = 0.8a−1

0 and ε2 = 6.3a2
0 .

and number of curvature-inducing proteins on its surface.
Snapshots of the various conformations of a membrane with
κ = 20kBT as a function of A/Ap and nP are shown in
Fig. 1. It can be seen that the equilibrium shapes vary between
smooth planar conformations for small A/Ap or nP and rough
protrusions for large A/Ap or nP .

In our simulations, a tubule is a protrusion above the
mean surface of the membrane, as observed in Fig. 1.
The tubulation transition itself is marked by the onset of
a bimodal distribution of the mean curvature P (H ), as
depicted in Fig. 2 for κ = 20kBT , A/Ap = 1.029, and two
protein concentrations nP = 0 and 14 with C0 = 0.8a−1

0 . The
characteristic peaks at H = 0 and H > 0.5 seen for nP = 14
correspond to planar and tubular regions, respectively, and
the peak at higher mean curvatures is not observed for dilute
protein concentrations (data shown for nP = 0). Furthermore,
Figs. 3(a)–3(d) show the distribution of mean curvature as a
function of C0, nP , ε2, and A/Ap, respectively. It is evident
that the tubulation transition is a function of the various
parameters that characterize the membrane-protein system. In
Fig. 3, the absence of a bimodal distribution indicates that
the curvature remodeling effects are not strong enough to
stabilize tubular structures and collectively the results indicate
that the tubulation transition occurs only above a threshold
protein concentration, which is strongly influenced by both
the characteristics of the protein field (given by C0,ε

2) and

−0.5 0.0 0.5 1.0
H

10−4

10−3

10−2

10−1

(a) (b)

tubules

nP = 0

nP = 14

planar region

single proteintubule

P
(H

)

FIG. 2. (Color online) (a) Probability density of the membrane
mean curvature for two protein concentrations nP = 0 and 14 for a
protein field with C0 = 0.8 and ε2 = 6.3. (b) Snapshot corresponding
to the membrane with nP = 14, which clearly illustrates coexisting
planar and tubular regions on the membrane.

the excess membrane area A/Ap. The curvature distribution
P (H ) is a useful marker of tubulation, but can only be used
unambiguously when a large number of tubules are present.
Also, its ability to predict the tubulation boundary is limited
when nontubular structures such as blebs and buds are present.
This is evident from examining the P (H ) versus nP , as shown
in Fig. 3(b): Though P (H ) shows a clear bimodal distribution
only above nP = 12, the protrusions appear even for nP = 10,
but the mode at larger values of H does not appear since these
structures are not persistent. Hence, to faithfully resolve the
transition boundary, we have computed the excess chemical
potential in order to quantify the nature of membrane tubule
formation induced by curvature remodeling proteins.

B. Excess chemical potentials as markers of tubulation

In particular, we utilize the inhomogeneous Widom inser-
tion technique (described in Sec. II B), which for our purpose
involves the computation of three different excess chemical
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P
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(b)
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nP = 24
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H
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P
(H
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(c)

2 = 2.3
2 = 4.3
2 = 6.3
2 = 8.3

0.2 0.4 0.6 0.8 1.0 1.2
H

(d)

A/Ap = 1.029

A/Ap = 1.016

A/Ap = 1.013

A/Ap = 1.011

FIG. 3. (Color online) Histograms of mean curvature for simula-
tions with (a) a range of peak spontaneous curvatures C0, (b) several
protein concentrations nP , (c) a range of curvature field extents ε2, and
(d) several different membrane excess areas A/Ap . All panels have the
parameters C0 = 0.8a−1

0 , ε2 = 6.3a2
0 , nP = 14, and A/Ap = 1.029

unless otherwise stated. A mean curvature cutoff of 0.5a−1
0 is shown

as a vertical dotted line.
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FIG. 4. (Color online) Various excess chemical potentials as a
function of nP for four values of A/Ap . For each value of A/Ap ,
closed symbols with error bars denote μex, open symbols with dotted
lines represent μex

t , and solid lines correspond to μex
p .

potentials, namely, (a) μex in the entire system, (b) μex
p in

spatial regions where H < 0.5, and (c) μex
t corresponding

to the tubular regions, i.e., for regions with H � 0.5. The
thresholds are consistent with (and derived from) the cutoff
value (H = 0.5) that separates the two modes in the P (H )
distributions (see Fig. 3).

The equilibrium chemical potential μex as a function of nP ,
for a protein-induced-curvature field strength of C0 = 0.8a−1

0
and ε2 = 6.3a2

0 , for different values of the membrane excess
area is shown in Fig. 4. Also shown are the corresponding
values of the excess chemical potentials: planar region μex

p

vs tubular region μex
t . We note that in an inhomogeneous

phase showing spatial variation of density, the total chemical
potential μ is a constant, which is the sum of μex, which
strongly depends on the underlying curvature at a given
location, and μid (ρ), which depends on the density at the
location. When nP < 5 the total excess chemical potential
μex is indistinguishable from the chemical potential obtained
from the planar region μex

p , as can be clearly seen for the
case of A/Ap = 1.029. However, at the onset of tubulation
where μex

t is well defined, μex is slaved to the values of μex
t .

This relation holds for all parameter values that can induce
membrane tubules and this is shown for a range of C0, ε2, and
A/Ap in Fig. 5.

The similarity in the values of μex (the excess chemical
potential in bulk) and μex

t (the excess chemical potential
in the tubular region) indicates the presence of a strong
thermodynamic driving force to form tubulated regions on
the membrane. The transition behavior shows a bifurcation
in the excess chemical potential versus density plane and the
transition point for a given field strength of curvature induction
is a function of the membrane excess area A/Ap. As nP

increases in the buildup to the transition μex increases owing
to repulsion between the protein fields. However, beyond the
transition point μex, μex

p , and μex
t decrease. The observed

decrease in μex
t in the tubular phase reflects the fact that the

curvature contribution to μex from the large mean curvatures
of the tubule dominates the free-energy contribution. That
the μex

p for the planar phase also drops (albeit by a much
smaller amount relative to its value prior to the transition) is
a reflection of the fact that the average density of the protein
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(e)
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nP

(f)

FIG. 5. (Color online) Plot of the excess chemical potential vs
protein number for a range of both C0 and ε2 for several initial excess
areas. Solid lines with correspond to μex

p while points with error
bars correspond to μex. Data are depicted for a range of C0 with
ε2 = 6.3a2

0 and corresponding excess areas (a) A/Ap = 1.013, (c)
A/Ap = 1.016, and (e) A/Ap = 1.029 and for a range of ε2 with
C0 = 0.8a−1

0 and corresponding excess areas (b) A/Ap = 1.013, (d)
A/Ap = 1.016, and (f) A/Ap = 1.029. The values of μex

t are similar
to that of μex and hence are not shown for clarity.

fields in the planar region is a constant and lower than the
protein density just prior to the transition. This observation
can be rationalized by the fact that post-transition, the addition
of new protein fields results in their incorporation in the
tubular phase keeping the density in the planar phase at a
constant value (see Fig. 4). That the fluctuations in the μex

values are higher at the transition region and are considerably
lower pretransition and post-transition along the nP axis has
to do with sampling rather than any onset of criticality. This
is reconciled through the P (H ) distributions, which show
metastability in the free-energy landscape of the planar versus
tubule phases, which is a not feature of a first-order-like
transition. Moreover, as we discuss below, the transition we
observe in the model is a state transition (akin to a micellar
transition) and several features in our results outlined in Fig. 4
are in striking agreement with analogous behavior reported for
micellar systems.

C. Membrane tubulation and its analogy to micellization

The thermodynamics of tubule formation can be related
to a critical aggregation concentration nP,∗, analogous to
a critical micelle concentration. An important parameter in
micelle formation is the critical micelle number, or the number
of surfactants in each micelle. For tubule formation, this
number is analogous to the number of membrane proteins
in each tubule. In our coarse-grained model for membranes,
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FIG. 6. (Color online) Plot of several different tube statistics
including (a) the average number of tubes at each concentration for
several excess areas ntubes, (b) the average number of vertices per
tubule nvpt, (c) the average number of monomers n1 and oligomers
npptnN in simulation where monomers represent all proteins on the
basal part of the membrane (closed symbols) and the n-mers represent
all proteins in tubules (open symbols), and (d) the average number of
proteins per tubule nppt. The legends in the panels correspond to four
different values of A/Ap .

a single protein field represents ζ protein units and hence
the absolute number of proteins within each tubule is given
by Nppt = npptζ , where nppt is the number of coarse-grained
protein fields in the tubular region. Figure 6(d) shows nppt as
a function of the total number of coarse-grained proteins nP

for four different membrane excess areas. It can be seen that
nppt saturates to approximately 4 for all values of nP above a
critical aggregation number nP,∗, whose value in turn depends
on the elastic properties of the membrane and the parameters
characterizing the protein field.

In the classic analysis of micellar self-assembly [52,53],
the total surfactant concentration ctot is expressed in terms of
the monomer concentration c1 and the concentration of an
aggregate containing M surfactant molecules cM as

ctot = c1 + McM

≡ c1
(
1 + McM−1

1

{
exp

[
Mβ

(
μ0

1 − μ0
M

)]})
, (10)

with μ0
1 − μ0

M being the chemical potential difference between
the monomer state and the aggregate.

In analogy, the proteins in the planar and tubular regions
on the membrane correspond to the monomers and aggregates,
respectively. Thus, following Eq. (10), the equations governing
the partitioning of proteins between the planar and tubular
states can be rewritten in terms of the protein numbers as

ζnP = ζn1 + ζnpptnN, (11)

with

nN = (ζn1)ζnppt
{

exp
[
ζnpptβ

(
μex

p − μex
t

)]}
, (12)

where n1 is the number of protein fields in the planar phase
(analogous to c1), nN is the number of tubes each containing
ζnppt proteins (analogous to the concentration of micelles cM ),
and ζnpptnN is the total number of proteins partitioned into
the tubular phase. At the critical number of protein fields
nP,∗ that promotes membrane tubulation (see discussions by

Nelson [53]),

nP = nP,∗ n1 = npptnN = nP,∗/2. (13)

Using Eqs. (12) and (13) in Eq. (11) we obtain

ζnppt exp
[
βζnppt

(
μex

p − μex
t

)] =
(

ζnP,∗
2

)(1−ζnppt)

. (14)

Thus, the numbers of protein fields in the planar and tubular
regions are related through the equation

nP = n1

[
1 +

(
2n1

nP,∗

)Nppt−1]
. (15)

Notice that, despite being a coarse-grained model, the number
of coarse-grained protein fields in the planar phase is related
to the total number of proteins through the coarse-graining
parameter ζ , which appears in the exponent of Eq. (15) on the
right-hand side. As will be shown later, ζ can be determined
either by fitting the observed values of n1 to Eq. (15) or by
analyzing how the critical protein density varies as a function
of membrane tension, as shown in Fig. 10; our scaling analysis
yields a value for ζ = 10. Incidentally, this value of ζ shows
an excellent fit of Eq. (15) to our simulation data as shown
in Fig. 7(b). Methods to calculate the protein numbers in the
planar and tubular regions are described below.

In order to compare the tubulation behavior in our simu-
lations with Eq. (15), n1, nN , and nppt were calculated using

nP
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FIG. 7. (Color online) (a) Various excess chemical potentials as a
function of nP for A/Ap = 1.016, C0 = 0.8, and ε2 = 6.3. The closed
symbols with error bars denote μex, open symbols with dotted lines
represent μex

t , and solid lines correspond to μex
p . (b) Total number of

protein fields in the planar n1 and tubular npptnN regions as a function
of nP . Here nppt corresponds to the average number of protein fields
per tubule. The solid and dashed black lines are the analytical fits to
the micelle model described in Eq. (15).
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a clustering algorithm with a mean curvature cutoff of H =
0.5a−1

0 , similar to the cutoff used in inhomogeneous Widom
insertion. The values of n1, nN , and nppt, along with the number
of vertices constituting a tube nvpt are shown in Fig. 6. All
reported data are averaged over four independent ensembles,
each containing 150 uncorrelated membrane conformations.

The distinction between a phase transition in a finite system
versus a state transition resulting in finite-sized assemblies
can be made by recognizing that the former would produce
an ordered phase whose extent will span the size of the
system. However, given that μex in the tubular phase is flat
with increasing nP , following Israelachvili’s argument [52],
multiple tubes of short (finite) lengths are entropically more
favored rather than a single long tube, for which μex versus
nP should decrease monotonically post-transition. The total
number of proteins partitioned into the planar n1 and the
tubular npptnN regions, computed for a membrane with
A/Ap = 1.016, C0 = 0.8, and ε2 = 6.3, is shown in Fig. 7; at
the onset of tubulation, n1 saturates and the number of proteins
in the tubular regions increases linearly. A closer inspection of
the tubule statistics (see Fig. 6) reveals that with increasing nP ,
the number of proteins per tube remains fixed with nppt ≈ 4,
while the number of tubes nN increases. These observations are
characteristic of a micellizationlike transition and this is further
evidenced in Fig. 7, where our data show excellent agreement
with the predictions of the micellar model. We rule out the
possibility that the flat behavior of μex versus nP is an artifact
of our ensemble of holding Ap fixed rather than maintaining
a constant tension because the absolute value of the μex of
the tubular phase remains at a constant value for all values
of nP post-transition for systems with different Ap. Beyond
providing insight into how the thermodynamic stability of the
tubular phase is impacted by the independent variables nP and
Ap, our results show that threshold density (the value of ncrit

P )
that marks the onset of the tubular transition shifts to larger
values with a decrease in the excess area A/Ap, which clearly
implies that membrane tension σ has a predominant effect on
the transition.

D. Estimating membrane tension at tubulation

The membrane tension at the point of tubulation is an
experimentally measurable quantity and the computational
results can be compared to experiments if the tension at
tubulation can be estimated accurately. As pointed out in
Sec. II C, the renormalized tension for planar membranes can
be computed by analyzing their undulation spectrum. How-
ever, in the case of membranes with spontaneous curvature
field, the long-wavelength modes (i.e., small q) would violate
equipartition if the conventional scaling relation given in
Eq. (6) is used. Hence, we explicitly take the contributions from
the spontaneous curvature field into account and estimate σ

using Eq. (9). A comparison of the equipartition relation for the
best estimate of σ determined using Eqs. (6) and (9) is shown
in Fig. 8 for a membrane with κ = 20kBT , A/Ap = 1.029, and
nP = 12. It can be seen that the equipartition is better satisfied
when the latter relation is used. The values of σ , estimated
using Eq. (9), as a function of nP for various values of A/Ap

can be found in Appendix A. The tension at tubulation σ ∗ is
taken to be the value of membrane tension at the tubulation
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0
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n
it
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Eq. (7)

Eq. (10)

FIG. 8. (Color online) Plots of the right-hand sides of Eqs. (6)
and (9), obtained by nonlinear fitting procedures as a function of q.
Data shown correspond to fits with a bin size of 0.02 and a maximum
q of 2, from a tubulated membrane corresponding to κ = 20kBT ,
A/Ap = 1.029, and nP = 12.

point, where the chemical potentials satisfy the condition
μex

p − μex
t � μex. The membrane tension at the tubulation

point as a function of A/Ap for spontaneous curvature field
with C0 = 0.8 is shown in Fig. 9 and we observe that the
tension for tubulation decreases with increasing excess area.

E. Comparison of tension at tubulation to experiments

We test our model predictions against the critical tubulation
density for endophilins reported by Shi and Baumgart [47].
Since curvature fields renormalize the values of σ , for a given
A the tension will depend on nP and differ from its value
at nP = 0; we thus first develop a quantitative relationship
between membrane area A and membrane tension σ . In
order to consider the effect of protein fields on renormalizing
the tension values, we implement the modified fluctuation
analysis method described in Sec. II C. The computed values
of the critical tension σ ∗ versus tubulation density are shown
alongside the experimental data in Fig. 10. In order to make a
direct comparison with experimental data, we self-consistently
determine the length scale a0 by matching tubule diameters
obtained in simulations to that in experiments [12,54,55],
which yields values of a0 in the range 6–10 nm. In turn, a0
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FIG. 9. Plot of σ ∗, the membrane tension at tubulation, as a
function of A/Ap for a membrane with C0 = 0.8a−1

0 .
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FIG. 10. (Color online) Comparison of experimental (closed
symbols) [47] and simulation data (open symbols) for the averaged
membrane tension and protein concentration at the point of tubulation.
Simulation data are shown for three different values of the length scale
a0. In simulations, the protein concentration is calculated as ζncrit

P /Ap ,
where the coarse-graining parameter ζ ≈ 10.

can be used to determine the corresponding protein density in
our simulations, where each protein field is a coarse-grained
representation of ζ proteins, where ζ � 1 can be regarded
as the oligomerization number of protein domains needed to
establish a stable curvature field. Estimated protein concen-
trations match those in experiments when the oligomerization
parameter ζ ≈ 10 and we observe that the computed values
of σ ∗, for all values of a0, are in good quantitative agreement
with those measured from experiments. This estimate of ζ also
matches extremely well with the value of the coarse-grained
parameter obtained through the micellar model, previously
shown in Fig. 7(b).

In addition to A/Ap (or membrane tension σ ), both
curvature field parameters C0 and ε2 can also impact the
onset of tubulation, as shown in Fig. 5 (see also Tables I
and II in Appendix B). For weakly curving protein fields
C0 < 0.6, μex shows a monotonic increase for the range
0 < nP < 30, implying the absence of a tubulation transition
in this regime. In contrast, when C0 > 0.6, μex displays the
characteristic pitchfork signature of tubulation, with the onset
occurring at lower values of nP for both C0 = 0.7 and 0.8.
The critical tubulation density, however, remains unaltered
with a change in the value of ε2 (see Fig. 5). Complementary
to the critical tubulation density ncrit

P , we can estimate the
saturation density of the proteins on the bilayer ρmax using
the relationship ρmax ∝ exp (−μmax/kBT ) [56], where μmax

is the value of the excess chemical potential just prior to
tubulation; the values of μmax for different C0, ε2, and A/Ap

are provided in Fig. 5 (see also Tables I and II in Appendix B).
Based on our results, we find that ρmax and ncrit

P both
decrease with increasing C0. Hence, proteins inducing a strong
curvature field can induce a morphological transition at lower
densities, but also experience higher membrane-curvature-
mediated repulsive interactions, which limits their coverage
on the membrane. This predictive ability extends the utility
of our model and simulations in defining the mechanisms
of subtle yet important morphological transitions in soft
biological systems, in delineating the thermodynamic stability
of the underlying states; it further shows that the approach

can be used to guide new experiments. We advocate that
this thermodynamic description at the microscopic resolution
discussed here will significantly impact and inform cellular
mechanisms (including dynamics) mediated by emergent
membrane morphologies driving intracellular trafficking and
cell motility [57].
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APPENDIX A: RENORMALIZATION OF TENSION WITH
PROTEIN NUMBER

As described before, the renormalized values of κ and
σ , in the presence of spontaneous-curvature-inducing protein
fields, can be determined through a nonlinear fit of Eq. (9).
Figures 11(a) and 11(b) show the values of κ and σ , estimated
using Eq. (9), as a function of protein field number for several
excess areas. Since the Monge-Gauge approximation is valid
only for small deformations, we limit our analysis only to the
planar regions on the membrane; in the case of membranes
with tubules these regions are neglected. It can be seen in
Fig. 11(b) that the presence of proteins alters the in-plane
undulatory modes of the membrane, which is evidenced by an
increase in the renormalized tension with increase in protein
number. As expected, the excess area and membrane tension
are inversely related to the membrane sustaining high tension
when the excess area reservoir is small and vice versa, as
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FIG. 11. (Color online) Plot of the values of (a) κ and (b) σ

obtained by nonlinear fitting of the complex spectrum (9) with tubules
removed. A bin size of 0.02 in q and a maximum q of 1 were used
for these fits.
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TABLE I. Values of μmax, μex
p − μex

t , and ncrit
p as a function of C0

and A/Ap for a fixed value of ε2 = 6.3a2
0 . Value entries of a dash

represent parameters where no tubules were observed or fewer than
three values were obtained in order to calculate the corresponding
standard deviation.

C0

〈
μex

p − μex
t

〉
nP >ncrit

P

μmax ncrit
P

A/Ap

(
units of a−1

0

)
(units of kBT ) (units of kBT ) (±1)

1.029 0.5 11.7 ± 3.0 9.8 ± 6.6 14
0.6 17.2 ± 4.8 16.0 ± 5.6 15
0.7 24.5 ± 3.9 19.5 ± 7.5 5
0.8 28.5 ± 3.2 41.7 ± 3.9 6

1.016 0.5 14.1 ± 3.1 26.4 ± 1.5 22
0.6 23.2 ± 3.1 33.5 ± 6.3 16
0.7 24.2 ± 4.3 34.8 ± 2.2 15
0.8 29.3 ± 3.6 72.8 ± 3.9 15

1.013 0.5 − − −
0.6 28.9 ± − 46.1 ± 6.7 24
0.7 25.0 ± 6.0 44.3 ± 2.0 18
0.8 51.4 ± 3.8 80.4 ± 1.2 22

shown in Fig. 11(b). Furthermore, we also observe that tensed
membranes can be stabilized when the protein concentration
is high and vice versa. On the other hand, our analysis shows
that the membrane softens (i.e., κ decreases) with an increase
in either excess area or protein concentration, which is shown
in Fig. 11(a). The value of tension at tubulation σ ∗, defined
as the tension of a membrane when μex

p − μex
t � μex, points

to the fact that the membrane requires a critical excess area
for tubulation transitions to occur. This can be seen in Fig. 9,
which shows the divergence of σ ∗ at smaller values of A/Ap.

APPENDIX B: THE 〈μex
p − μex

t 〉 DEPENDENCE
CURVATURE FIELD PARAMETERS

The critical density for tubulation shows a dependence on
both membrane tension and the curvature field parameters C0

and ε2. Plots of the various chemical potentials μex, μex
p , and

μex
t as a function of C0, ε2, and A/Ap are shown in Fig. 5. The

critical number of protein fields required to stabilize membrane
regions with mean curvatures above the cutoff value of H >

0.5a−1
0 is a strong function of C0 and ε2. It should be noted

that depending on the value of C0, the regions corresponding
to H > 0.5a−1

0 can be either blebs (a spherical bud) or tubules,
with the former being predominant for C0 ≈ 0.6a−1

0 and the
latter being stable for C0 � 0.8a−1

0 (see [58]). The formation

TABLE II. Values of μmax, μex
p − μex

t , and ncrit
p as a function of

ε2 and A/Ap for a fixed value of C0 = 0.8a−1
0 . Value entry of a dash

represents a parameter where no tubules were observed or fewer than
three values were obtained in order to calculate the corresponding
standard deviation.

ε2
〈
μex

p − μex
t

〉
nP >ncrit

P

μmax ncrit
P

A/Ap

(
units of a2

0

)
(units of kBT ) (units of kBT ) (±1)

1.029 2.3 9.4 ± 1.8 4.6 ± 1.8 8
4.3 23.4 ± 3.0 11.7 ± 7.1 5
6.3 30.6 ± 4.1 46.4 ± 4.1 8
8.3 33.2 ± 3.2 73.5 ± 8.2 12

1.016 2.3 12.1 ± 3.9 10.4 ± 0.8 16
4.3 28.2 ± 5.3 29.3 ± 1.0 12
6.3 42.8 ± 15.1 62.1 ± 1.9 16
8.3 48.8 ± 11.7 107.6 ± 7.4 14

1.013 2.3 13.6 ± − 15.5 ± 0.4 28
4.3 36.2 ± 4.2 36.8 ± 1.4 18
6.3 48.9 ± 8.1 79.4 ± 2.7 18
8.3 60.3 ± 13.6 134.4 ± 0.7 20

of regions with curvatures above the cutoff is accompanied by
a drop in the value of chemical potential μex as shown in all
the panels in Fig. 5. The scaling of μex preceding tubulation is
consistent with earlier results reported by Tourdot et al. [43].

The excess chemical potential μex increases with an
increase in nP and peaks at nP = ncrit

P , with a peak value μmax.
The critical number of protein fields required to form blebs or
tubes is taken to be the value of nP = ncrit

P at which this drop
occurs. However, the values of ncrit

P can be also determined by
analyzing the behavior of the various chemical potentials. We
take ncrit

P to be the minimum value of nP at which the chemical
potentials obey the relation μex

p − μex
t > μex. Tables I and II

show the values of the various chemical potentials and critical
protein number for various systems shown in Fig. 5.

The Widom insertion technique gives reliable estimates for
the chemical potentials for a wide range of parameters char-
acterizing the membrane-protein system especially when the
mean curvature distributions P (H ) show a broad distribution
whose range is much greater than C0/2. It should be noted
that when a protein field with spontaneous curvature C0 is
inserted on a membrane surface, the dominant contributions
to μex come from membrane regions with 2H ≈ C0. Hence,
in analyzing the effects of C0 and ε2 on the morphological
transitions, we only consider values of A/Ap > 1.013, which
clearly satisfy this criterion for P (H ) (see Tables I and II) for
our results.
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