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Universal protein distributions in a model of cell growth and division
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Protein distributions measured under a broad set of conditions in bacteria and yeast were shown to exhibit
a common skewed shape, with variances depending quadratically on means. For bacteria these properties were
reproduced by temporal measurements of protein content, showing accumulation and division across generations.
Here we present a stochastic growth-and-division model with feedback which captures these observed properties.
The limiting copy number distribution is calculated exactly, and a single parameter is found to determine the
distribution shape and the variance-to-mean relation. Estimating this parameter from bacterial temporal data
reproduces the measured distribution shape with high accuracy and leads to predictions for future experiments.
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I. INTRODUCTION

The phenotype of a biological cell—in particular, the
types and copy numbers of its expressed proteins—fluctuates
from cell to cell, even among those whose genotypes and
growth environments are identical (reviewed in Refs. [1–3]).
Protein content depends on a complex interplay of genetic,
epigenetic, and metabolic processes, with numerous cell-
specific regulatory mechanisms and feedback loops. However,
recent experiments [4] have demonstrated that for two different
types of microorganism (yeast and bacteria), each under a
broad range of conditions, the distribution of highly expressed
protein copy number appears universal: Under rescaling by
mean and standard deviation, all such distributions collapse
onto a single skewed curve [5]. In the same experiments
variances were found to depend quadratically on their means,
a trend displayed also by all highly expressed proteins in
Eschericia coli in a genome-wide study [6] (see also Ref. [7]).

A recent study following the protein content in individual
E. coli bacteria over roughly 70 generations has revealed that,
under the same scaling criteria, the shape of the distribution
of protein copy number sampled over time in an individual
converges to the one observed in large populations [8].
While analogous temporal data are currently unavailable
for yeast, this is an important property that reflects the
ergodicity of the relative fluctuations in protein expression
in bacteria. These results can serve as a basis for constructing
a model relating bacterial temporal protein dynamics to their
distributions.

II. MODEL WITHOUT FEEDBACK

Given that the universal statistical properties described
above were found for a range of experimental conditions for
various proteins in bacteria [4], such a model should rely only
on general coarse-grained processes. We therefore start by
assuming as little as possible given the experimental data:

(i) Protein number increases as eki t during the i th gener-
ation, where the exponential growth rate ki fluctuates with
i [8].

(ii) The time Ti of the i th generation [i.e., the time between
cell division at the (i − 1)st generation and that at the i th] is
also random [9–13].

(iii) The product Xi = kiTi is a random variable, with
(positive) mean μ and variance σ 2. We will refer to Xi as
the accumulation exponent.

(iv) Protein number is conserved at cell division, and
protein degradation is much slower than a typical interdivision
time [14].

Let Ni denote the copy number of a given type of protein in
the cell and fi the copy number ratio between the daughter and
parent cells, both at the end of the i th generation. Incorporating
the features listed above gives rise to the recursion relation

Ni+1 = fiNi exp (Xi+1) . (1)

In bacteria fi is narrowly distributed about 1/2 [15]. We take
fi = 1/2 for now and discuss deviations from this assumption
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later. The solution of (1) for arbitrary generation number n is

Nn = 2−nN0 exp

⎛
⎝ n∑

j=1

Xj

⎞
⎠, (2)

where N0 is the initial copy number. Then

ln(Nn/N0) = −n ln 2 +
n∑

j=1

Xj . (3)

The mean of Xj should compensate for the decrease in protein
number in the daughter cells caused by division; otherwise
copy numbers would be unstable, running off to unsustainably
large numbers or falling to zero within a few generations.
Equation (3) can be rewritten as

[ln(Nn/N0) − n(μ − ln 2)]/
√

nσ =
⎡
⎣ n∑

j=1

Xj −nμ

⎤
⎦/√

nσ.

(4)

If the accumulation exponents Xj are independent, then the
central limit theorem gives

[ln(Nn/N0) − n(μ − ln 2)]/
√

nσ → N (0,1), (5)

that is, the left-hand side converges in distribution to the
normal distribution with mean zero and variance 1. There
is no stationary distribution for this process; the mean and
variance of Nn vary with time (or n), even when μ = ln 2
exactly. This conclusion holds independently of the various
distributions used; all that matters is that fluctuations are
independent between generations. This analysis demonstrates
that a stationary distribution, as experimentally observed, can
result only if some negative feedback is present. Given this,
we next introduce and analyze a modified model with effective
feedback regulating protein accumulation, and, following that,
we discuss its experimental justification and consequences.

III. MODEL WITH FEEDBACK

A given protein type in an individual cell has a well-defined
typical copy number N . Its value is nonuniversal, depending on
protein type, growth conditions, and possibly other biological
factors [8,16]. The stationary distribution shape must therefore
be independent of N .

A natural extension of the growth-and-division model con-
sistent with observations is the introduction of an accumulation
exponent that is negatively correlated with protein number
at the start of the cycle. The experimental requirement of
universality constrains the form of the feedback term: A
change in scale of N cannot alter the functional form of the
recursion relation. The only function with this property of scale
invariance is the power law; the modified recursion relation is
therefore

Ni+1 = fiNi[exp(ξi+1)](Ni/N )−α, (6)

with fi defined as before, ξi+1 (which we will call the residual
accumulation exponent) the component of the accumulation
that fluctuates independently from generation to generation,

and a new phenomenological parameter 0 < α < 1; α = 0 is
the case without feedback [17].

The recursion relation of the modified model is

ln Ni+1 = ln fi + ξi+1 + (1 − α) ln Ni + α ln N. (7)

It is not hard to check that, first, there is now a limiting
stationary distribution, with 〈N〉 ≈ N , and, second, that N

can be scaled out of the growth equations.
The introduction of a nonzero α makes the specific form of

the limiting distribution dependent (though not too sensitively;
see below) on the distributions of fi and ξi . Experiments on
bacteria indicate that ξi is approximately normally distributed
[see Fig. 2(b)]. Using this, we can solve for the limiting
distribution exactly when the division ratio is fixed. The
limiting distribution is again lognormal:

P (N ) = 1

N�
√

2π
exp

[
− (ln N − M)2

2�2

]
, (8)

withM = ln N + (μ − ln 2)/α and � = σ/
√

2α − α2. These
two parameters together determine the mean and variance
of the distribution: specifically, 〈N〉 = exp{M + �2/2} and
〈N2〉 − 〈N〉2 = (e�2 − 1) exp{2M + �2}. However, only �

determines the shape of the distribution; different values of
M collapse on one another following scaling by a linear
transformation. Moreover, for fixed � the variance scales
quadratically with the mean.

In terms of the model, Eq. (8) has several important features.
First, it preserves universality under scaling with respect to
all variables that appear only in the parameter M, because
the distribution shape is independent of this additive term.
Consequently, all values of N , μ, and division ratio yield the
same distribution shape.

Second, as noted above, a single composite parameter �

determines the shape of the distribution. � characterizes the
balance between the variance of accumulation exponents,
which tends to drive the process to diverge, and the effective
feedback parameter α, which provides a “restoring force.”
Once � is determined, both properties—collapse of scaled
distributions and quadratic dependence of variance on mean—
are preserved.

Third, it should be noted that in the setting of our model,
the limiting steady-state distribution equally well represents
the time average over many generations of a single individual
or the average at a single large time over a large population in
which the individuals are evolving independently.

The analysis above assumed a Gaussian distribution of the
accumulation exponents and a fixed value of the division ratio.
We now explore the robustness of our conclusions. Without
these assumptions, the lognormal solution will no longer
be exact but will not be significantly altered for a variety
of unimodal distributions for both variables. Moreover, the
scaling properties within classes characterized by � (defined
as before and which is now close to but not exactly equal
to the standard deviation of ln N ) still hold. Figure 1(a)
shows examples of means and variances computed from many
simulations, in which the fi’s were drawn from a Gaussian
distribution and the ξi’s from a gamma distribution. For each
simulation, α and N were chosen randomly, and the variance
σ 2 of the gamma distribution was adjusted to give a shape
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FIG. 1. (Color online) Model simulations. The stochastic process
described by Eq. (6) was simulated over 20 000 generations for each
run. Values for α and N were chosen uniformly at random in the range
[0,1] and [0.25,0.75], respectively. The division ratio fi was drawn
from a Gaussian distribution with mean 1/2 and standard deviation
0.1 and ξi from a gamma distribution whose variance was adjusted to
α to obtain one of three values of the shape parameter �. (a) Variance
vs mean of 18 simulations for each shape parameter show a collapse
on three corresponding parabolas. [(b)–(d)] Limiting distributions of
three simulations for each class are all well fit by lognormal but
have different shape parameters and so span a range of shapes, from
approximately Gaussian (b) to an exponential-like tail (c) to a highly
skewed distribution (d). In each class the distributions collapse onto
one another to high accuracy.

parameter � equal to one of three values: 0.2, 0.4, or 0.6.
The resulting means and variances are seen in Fig. 1(a)
to collapse onto three parabolas corresponding to the three
classes defined by the value of �. Limiting distributions
are shown in Figs. 1(b)–1(d); while they are all very close
to lognormal, the different �’s lead to a range of shapes,
from nearly Gaussian [Fig. 1(b) � = 0.2] to skewed with
exponential-like tail [Fig. 1(c) � = 0.4] and, finally, to highly
skewed [Fig. 1(d) � = 0.6]. Within each class the distributions
from all simulations collapse after rescaling onto a single
curve. Thus, both properties of distribution collapse and the
quadratic dependence of variance on mean hold once � is
fixed, even though the conditions of the exactly solvable model
are relaxed.

In addition, the assumption of symmetric division can be
relaxed as long as the average accumulation compensates for
the loss at division. The assumption of stable proteins can
also be relaxed to include first-order protein degradation; this
would require an additional parameter and would modify only
the accumulation exponent.

FIG. 2. (Color online) Comparison with data. (a) � ln Ni ≡
ln Ni+1 − ln Ni plotted vs ln Ni in units of N . Solid line is y =
−0.37x. Accumulation exponents in consecutive generations are (b)
approximately normally distributed with average ln2 (subtracted out
in the figure) and (c) are independent between generations. Solid
line is y = 0.0075x − 0.00036. (d) Estimating the universality class
parameter � for these data from (a) and (b); the distribution shape
is predicted by Eq. (8) (black line) and compared to data. Gray
circles: large population snapshot; black squares: protein trajectories
of individual trapped bacteria; red stars: sampled points at the end of
each cell cycle. Data from Refs. [4,8].

IV. COMPARISON WITH DATA

To test the assumption of negative correlation we plotted
experimental values of � ln Ni = ln Ni+1 − ln Ni vs ln Ni , as
measured for bacteria, in Fig. 2(a). The data points were
collected from six individual trajectories normalized to unit
average (data from Ref. [8]).

In agreement with Eq. (7), the data are consistent with
random scatter about an overall linear dependence, with
negative slope determining α to be approximately 0.37 ± 0.04.
Using this value the residual accumulation exponents ξi can
be extracted from the data using Eq. (7) and measured
values of Ni . The approximately Gaussian distribution of
these exponents is shown in Fig. 2(b), and their independence
between consecutive generations is evident from Fig. 2(c).

The parameter determining the distribution shape in our
model is � = σ/

√
2α − α2. Estimating α and σ from

Figs. 2(a) and 2(b), respectively, we find � ≈ 0.4 ± 0.02.
Figure 2(d) shows the lognormal distribution of Eq. (8)
corresponding to this parameter in rescaled units (black
line), together with data from a large bacterial population
(gray circles), and single cell trajectories (black squares and
red stars) that exhibits the measured universal distribution
shape over several decades of probability. We note that
this is not a fit but a model prediction with no adjustable
parameters: The single parameter determining the distribution
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shape is computed separately using the single-cell dynamic
measurements.

V. DISCUSSION

Motivated by experiments that found universal protein
distributions under various conditions in yeast and bacteria,
and by single-cell measurements of protein accumulation and
division in bacteria across multiple generations, we have
presented a model based on the premise that the combined
processes of growth, division, and feedback set the distribution
shape. With fixed division ratio and Gaussian randomness
the model is exactly solvable. The solution identifies a
single parameter � [Eq. (8)] defining the distribution shape:
It quantifies the balance between growth of variance and
feedback that stabilizes protein numbers. With � fixed, a
rescaling by mean and standard deviation collapses these
distributions onto a single curve and displays a quadratic
relation between variance and mean.

Thus, our model predicts that populations in the same
class—i.e., which share the same shape parameter—exhibit
similar set-point balance between the opposing forces in the
dynamics of their protein content across time, i.e., between
the variance of accumulation exponents (σ ) that drive the
process to diverge and the feedback parameter (α) that prevents
divergence. Therefore, if the variance of the exponents ξi

changes, then the feedback parameter α should change
in a correlated manner. To test this prediction, single-cell
dynamical trajectories need to be measured over a variety
of conditions that span these parameters. Another possibility
consistent with our model is that both σ and α are fixed. At the
moment, experimental perturbations—for example, changing
medium or temperature—can change the mean, for example,
by modifying the mean cell cycle time, but their effect on the
variance of exponents is unknown [10].

Our approach shares some features with previous theoreti-
cal work but differs in other respects. Earlier work focused
on protein accumulation and division [18–22] or protein
accumulation and continuous dissipation [23,24]. The recent
data on protein content over multiple generations [8] shows
that, due to the exponential nature of protein accumulation,
division or dissipation alone cannot stabilize copy numbers
and reveals a correlation between variables across generations.

The classes of proteins of interest are those consisting of
high-copy-number molecules, characterized by exponential
accumulation between successive cell divisions. The expo-
nential accumulation of protein during a cell cycle suggests
that protein production reflects a coherent integration of many
correlated processes in the cell. Exponential growth of the
cell size between divisions, as well as negative correlation
analogous to the one reported here, were measured in sev-
eral recent experiments [10,11,13,25]. Moreover, results on
trapped bacteria show explicitly that the exponents of cell-size
growth and protein accumulation are strongly correlated on a
cycle-by-cycle basis [8]. This suggests a picture where highly
expressed proteins that are strongly coupled to cell metabolism
are components of multidimensional phenotypes that covary
between individual cells. This view is supported by a model
recently proposed to explain exponential biomass growth as
resulting from an interacting network of reactions [26,27].

Furthermore, our model is mathematically related to a recently
proposed model of cell-size regulation [12,28], which finds
under similar assumptions a lognormal distribution with the
same compound parameter governing its shape. For highly
expressed proteins, this may be expected since protein produc-
tion and cell growth are tightly coupled [8]. However, there
are also important differences between the two models, which
we address in detail in the Appendix.

Our model addresses directly the universal behavior of
bacterial protein distribution among different biological real-
izations, including expression regulation mechanisms, growth
conditions, and types of microorganism. Its ingredients are
independent of specific biological mechanisms and rely on
those general aspects of cellular events—exponential protein
accumulation, division, and feedback—that are likely to be
common to all dividing cell populations. This marks a signifi-
cant departure from the main current line of research on protein
number variation, which investigates synthetically produced
proteins while experimentally isolating the contribution of
specific microscopic mechanisms [29–34].

In particular, we have observed that feedback must be
present, because without it the mean and variance necessarily
drift to larger values as time increases. Moreover, regardless of
the specific processes leading to feedback (which may differ
for different protein types and organisms), the mathematical
form of the feedback in a growth-and-division model must be
power law to be consistent with universality.
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APPENDIX: UNIVERSAL PROTEIN DISTRIBUTIONS
AND CELL GROWTH

In this Appendix, we detail the differences between
our model and a mathematically similar model of cell-size
regulation recently proposed by Amir [12,28]. However,
before describing those differences, we first discuss some
nontrivial consequences following from the similarity between
the models. The fact that similar mathematical descriptions,
albeit with different biological interpretations, may capture the
dynamics of two distinct phenotypes is a potentially significant
mathematical unification resulting from a strong coupling
among disparate biological processes. As noted above, cell
size and protein copy number are two separate, but strongly
correlated, phenotypes of the cell. Which one controls the
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other, or whether both are regulated together, is not known at
this time. One interesting implication of the work presented
here is that not only cell size but also the total content of
highly expressed proteins is under the control of what appears
to be a global cellular feedback, supporting the viewpoint that
protein copy number variation is a global variable. This marks
a significant departure from the main current line of research
on protein number variation.

We now turn to a discussion of some important differences
in the interpretation and consequences of the two models. First,
the requirement that the average must scale out of the distribu-
tion shape in any model of universal distributions necessitates
mathematically the power-law form of the feedback. Second,
the parameter � that governs the “universality class” of the
family of distributions has been identified, and its constancy
leads both to the collapse of all curves under linear scaling
and to the observed quadratic relation between variance and
mean. The latter is an especially important consequence and
has no analog in cell-size distributions. We have also seen
numerically that the division into such classes extends beyond
the conditions of the analytically solvable case, rendering this
result robust with respect to a wide class of distributions of the
underlying random variables.

Perhaps most importantly, our model makes specific
predictions on the constrained changes allowed in protein
trace parameters under varying conditions. Similar predictions
cannot currently be made for cell-size distributions.

Both our model and that of Refs. [12,28] are also easily
modified to handle asymmetric division, as in yeast. However,
until data are available that relate temporal to population
statistics, it remains to be seen to what extent the dynamics of
proteins across generations in yeast can be described by the
approach outlined in the main text.

A final important difference between the approach de-
scribed in this paper and that in [28] concerns the nature of the
feedback itself. Analysis of E. coli data led to the conclusion
that cell-size feedback is characterized by α = 1/2 [28],
corresponding (in leading order) to the proposal that the
feedback arises from constant addition of volume over the
cell cycle. In contrast, a different mechanism(s) may apply
for copy numbers, and α can in principle vary among protein
types: Our current results are consistent with various values of

FIG. 3. (Color online) Cell-size analysis. Similar analysis of that
carried out for protein copy number [Fig. 2(a)] was carried out for
cell-size data, quantified here by the length L of the bacterial cell
in the trapping channel. � ln Li = ln Li+1 − ln Li , computed from
the data in Ref. [8], is plotted vs ln Li . The red dashed line is the
linear best fit given by � ln Li = −0.5185 ln Li + 0.702. The slope,
which represents the feedback parameter α, is approximately 1/2
as predicted by the constant volume addition model described in
Ref. [28].

α with an average of α ≈ 0.37. However, at this stage there is
no direct evidence that can determine which phenotype (cell
size, protein copy number, etc.) controls the division point of
the cell and thus the feedback mechanism that controls it. In
principle, it could also be a cellular state that is defined by
several phenotypes simultaneously.

We show this difference explicitly in the figure above.
Figure 3 uses cell-size data from Ref. [8] to compute the
feedback parameter α, in a manner similar to that used in
Fig. 2(a), for the cell-size phenotype. This results in α ≈ 0.5,
in agreement with Ref. [28], but differing from the value
α ≈ 0.37 shown in Fig. 2(a).
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