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Differential dynamic microscopy of weakly scattering and polydisperse protein-rich clusters
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Nanoparticle dynamics impact a wide range of biological transport processes and applications in nanomedicine
and natural resource engineering. Differential dynamic microscopy (DDM) was recently developed to quantify the
dynamics of submicron particles in solutions from fluctuations of intensity in optical micrographs. Differential
dynamic microscopy is well established for monodisperse particle populations, but has not been applied to
solutions containing weakly scattering polydisperse biological nanoparticles. Here we use bright-field DDM
(BDDM) to measure the dynamics of protein-rich liquid clusters, whose size ranges from tens to hundreds of
nanometers and whose total volume fraction is less than 10−5. With solutions of two proteins, hemoglobin A
and lysozyme, we evaluate the cluster diffusion coefficients from the dependence of the diffusive relaxation time
on the scattering wave vector. We establish that for weakly scattering populations, an optimal thickness of the
sample chamber exists at which the BDDM signal is maximized at the smallest sample volume. The average
cluster diffusion coefficient measured using BDDM is consistently lower than that obtained from dynamic light
scattering at a scattering angle of 90◦. This apparent discrepancy is due to Mie scattering from the polydisperse
cluster population, in which larger clusters preferentially scatter more light in the forward direction.
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I. INTRODUCTION

Diffusive dynamics play an important role in many biologi-
cal transport processes, including intracellular transport [1–3],
bacterial motility [4], biofilm growth [5], and protein aggrega-
tion, complexation, and crystallization [6–8], and additionally
may affect the efficacy of emerging nanomedicine-based
therapies [9–12]. Understanding the role of dynamics in
both natural and engineered processes requires methods to
quantify the motion of micro- and nanoscale particles in
complex biological media. Traditionally, scattering methods
such as dynamic light scattering (DLS) [13] have been used to
measure the dynamics of submicron particles. Measurements
of biological dynamics in complex media in vitro or in vivo,
however, may be incompatible with DLS, which requires
optically transparent samples and low concentrations of
scatterers. In addition, many biological particles, including
bacteria, protein complexes, polyplexes, viruses, and cellular
organelles, scatter light only weakly. Optical microscopy
coupled with particle-tracking techniques [14] circumvents
some of the limitations inherent to scattering methods and
hence is widely employed to measure microscale particle
dynamics in biological settings. Biological particles, however,
may be smaller than the resolution limit of an optical micro-
scope (∼400 nm), precluding the use of standard bright-field
microscopy. Fluorescence labeling of biological particles [15]
and/or superresolution optical microscopy techniques [16]
can allow access to the dynamics of particles smaller than
the optical resolution limit, yet these methods also exhibit
disadvantages for dynamic measurements: Fluorescent labels
may perturb biological function and the acquisition times
required for many superresolution methods may be too long to
access the fast dynamics of submicron particles. There remains
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an unmet need for simple and nonperturbing methods to
measure dynamics of nanoscale biological objects in complex
media.

Differential dynamic microscopy (DDM) is a recently
developed variant of digital Fourier microscopy [17] that yields
measurements of the dynamics of submicron particles [18]. In
DDM, the dynamics of particles in solution are obtained by
analyzing the Fourier spectrum of a time series of difference
images [19]. The resulting function describes the decorrelation
of intensity fluctuations and contains the intermediate scatter-
ing function measured in DLS [19]. Differential dynamic mi-
croscopy has two key advantages: First, it yields measurements
of the dynamics of particles whose size is smaller than the
optical resolution limit [18,19]; second, its simplest implemen-
tation requires only a standard optical microscope, incoherent
(white light) illumination, and a digital video camera, although
extensions to fluorescence [19] and confocal [20] microscopy
add specificity and resolution. As a result, this method has
been used to characterize the dynamics of monodisperse
spherical [21] and anisotropic [22–24] nanoparticles and
bacteria [25–27] in complex geometries [28,29]. Despite these
achievements, two factors currently limit the use of DDM for
nanoscale biological particles. First, how to generate sufficient
DDM signal from weakly scattering biological systems while
maintaining low sample volumes has not been addressed.
Second, how dispersity in the particle size affects the dynamics
measured in DDM remains poorly understood. A fundamental
understanding of the effects of weak scattering and size
polydispersity on DDM signal generation will allow this
method to be applied to characterize the dynamics of a wide
range of biological particles.

Here we demonstrate the applicability of bright-field DDM
(BDDM) to characterize weakly scattering and polydisperse
biological nanoscale objects. As model systems we use
undersaturated solutions of two proteins, hemoglobin A
and lysozyme, that contain polydisperse protein-rich liquid
clusters of radius 70–250 nm [30–38]. Hemoglobin A is
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the main oxygen-transporting protein found in red blood
cells; the presence of free heme in solution (the prosthetic
group of hemoglobin) promotes the formation of hemoglobin
clusters [39]. Lysozyme is a well-studied and robust protein for
which cluster formation is thought to be due to conformational
changes in the lysozyme dimer [40]. Both solutions scatter
light only weakly and the properties of the clusters of both
proteins remain constant over many hours at room temperature.
Using BDDM, we obtain the average diffusion coefficient
from the wave-vector dependence of the diffusive relaxation
time. First, we show that the signal-to-noise ratio obtained
in BDDM depends on the thickness of the sample chamber;
as a consequence, the accessible range of wave vectors
is maximized with minimal sample volume at an optimal
chamber thickness. Second, we find that the average diffusion
coefficient of clusters obtained from BDDM measurements
is consistently smaller than that obtained from DLS at a
scattering angle of 90◦. We attribute the apparent discrepancy
between BDDM and DLS to a combination of Mie scattering
and polydispersity: BDDM accesses smaller scattering angles
than DLS and hence captures more signal from the larger
clusters, which preferentially scatter more light in the forward
direction. These results demonstrate that DDM is a simple
yet powerful tool for characterizing weakly scattering and
polydisperse submicron particles, including many found in
biological settings.

II. METHODS

A. Reagents and solutions

Lyophilized lysozyme, purchased from Affymetrix, was
dissolved at ∼200 mg ml−1 in pure deionized (DI) water.
Protein concentration was determined by absorbance measure-
ments using a Beckman Coulter DU 800 spectrophotometer
and extinction coefficient ε = 2.64 ml mg−1 cm−1 at 280 nm.
The solution was dialyzed for two days against DI water to
remove undesired low molecular weight salts. After dialysis,
the solution was adjusted to a concentration of 103 mg ml−1

and filtered through 0.45-μm Polyethersulfone (PES) syringe
filters prior to all measurements. The measured pH of this
solution was 5.41, likely due to acidic salts present in the
lyophilized powder after purification.

Normal adult hemoglobin (hemoglobin A) was obtained by
lysis of red blood cells obtained from a healthy donor following
institutional and NIH regulations; for details of this procedure,
see Ref. [41]. It was purified by ion-exchange chromatography
and stored in liquid nitrogen. A solution sample was thawed
and diluted to 50 mg ml−1 in potassium phosphate buffer at
a concentration of 0.15M and pH 7.35. The hemoglobin A
concentration was determined using Drabkin’s reagent (which
converts hemoglobin to the cyan-met form) and extinction
coefficient ε = 0.6614 ml mg−1 cm−1 at 540 nm for cyan-met
hemoglobin. The solution was filtered through 0.22-μm PES
syringe filters prior to all measurements.

B. Differential dynamic microscopy

Samples for differential dynamic microscopy were sealed
in glass chambers constructed from cover glasses. Two
(22 × 22)-mm2 cover glasses (thickness 0.19–0.23 mm,

Fisherbrand), separated laterally by ∼10 mm, were attached
to a rectangular cover glass with dimensions of 48 × 65 mm2

(thickness 0.13–0.17 mm, Gold Seal) using an epoxy-based
adhesive (Devcon). A (22 × 22)-mm2 cover glass was then
centered on top of the two cover glasses to create an open
chamber. One side of the chamber was sealed with epoxy.
Protein solution was introduced into the chamber through
the open side, which was then closed with epoxy [21]. We
assumed that the thickness of this chamber was 160 μm.

To study the effects of chamber thickness on the BDDM
signal, we also used borosilicate square capillaries (Vitrocom)
with internal diameters of 500 and 800 μm. To access
thicknesses smaller than 160 μm, we designed a wedge-shaped
chamber. In this case, a single (22 × 22)-mm2 cover glass
(thickness 0.19–0.23 mm, Fisherbrand) was attached using a
UV adhesive (Norland Adhesive) to a rectangular cover glass
with dimensions 48 × 65 mm2 (thickness 0.13–0.17 mm, Gold
Seal). A (22 × 22)-mm2 cover glass was placed over the top
to create an open wedge-shaped chamber. One of the open
sides was sealed completely using UV adhesive; the other
one was partially sealed. Protein solution was introduced from
the half-open side, which was subsequently sealed with UV
adhesive.

To calibrate the thickness at different locations along the
wedge-shaped chamber, we filled it with a solution of fluores-
cently labeled poly(methyl methacrylate) (PMMA) particles.
The chamber was imaged with a confocal point scanner
(VT-Eye, VisiTech International) attached to an inverted
microscope (Leica DM4000) with a 100× oil-immersion
objective (Leica Microsystems HCX PL APO, numerical
aperture of 1.4) at a wavelength of 491 nm. The thickness
at a select location was evaluated as the difference between
the highest and lowest microscope stage positions at which
fluorescently labeled PMMA particles were in focus. This
method was constrained to thicknesses lower than 80 μm.
To determine higher thicknesses in the same chamber, up
to 125 μm, we assumed that the increase in thickness was
linear and extrapolated from the measured thicknesses using
the distance from the thin chamber edge.

For BDDM data collection, protein solutions were imaged
on a Leica inverted microscope attached to an 100× oil-
immersion objective using a high-speed 8-bit AOS camera
(AOS Technologies AG). The microscope was equipped with
a condenser of numerical aperture 0.7; an electronic aperture
inside the microscope was partly closed during measurements,
reducing the effective numerical aperture to approximately
0.41 for hemoglobin and approximately 0.23 for lysozyme
and introducing maximum angles θmax of 24.5◦ and 14◦,
respectively. We recorded multiple series of 4200 images
of size 480 × 640 pixels2 at a frame rate of 63 frames per
second. To extract the dynamics of cluster diffusion from
micrographs, a DDM algorithm was implemented as described
in Ref. [21]. Images separated by a fixed lag time τ were
subtracted to obtain the intensity difference �(x,y; τ ) =
I (x,y; t + τ ) − I (x,y; t), where I (x,y; t) was the intensity
at position (x,y) measured at time t . Here τ ranged from
0.0158 to 25 s. Because the size of clusters fell below the
resolution limit of microscope, image subtraction generated a
speckle pattern. We computed the two-dimensional Fourier
transform of �(x,y; τ ) and averaged over all image pairs

042712-2



DIFFERENTIAL DYNAMIC MICROSCOPY OF WEAKLY . . . PHYSICAL REVIEW E 92, 042712 (2015)

with the same τ . This procedure yielded a Fourier power
spectrum �(ux,uy ; τ ), where ux and uy were the coordinates
in Fourier space. For a given τ , averaging was performed
over 4200 − nf image pairs, where nf = Fτ , with F denoting
the frame rate. The Brownian motion of clusters was not
geometrically constrained and as a result the two-dimensional
(2D) power spectra were isotropic. We therefore averaged
the 2D power spectra azimuthally to obtain image structure
functions �(q,τ ), where q = 2π

√
u2

x+u2
y is the wave-vector

magnitude.
The light scattered by monomers at small angles was

negligible and hence the BDDM signal was predominantly
due to cluster diffusion. In the DDM theory derived for a
monodisperse population of scatterers [18,19], the structure
function is fit to �(q,τ ) = A(q){1 − exp [−τ/τ0(q)]} + B(q),
where A(q) is a prefactor that depends on the generalized
optical transfer function of the optical setup, B(q) is the
background, and τ0(q) is the characteristic relaxation time of
the scatterers at a wave vector q. Here we modified the standard
DDM fitting function to model a polydisperse population of
scatterers and fitted �(q,τ ) of the protein cluster solutions at
each q using a modified cumulant fit [42]

�(q,τ ) = A(q)

[
1 − exp

(
− τ

τc(q)

)(
1 + μτ 2

2

)]
+ B(q),

(1)

where τc(q) is the wave-vector-dependent cluster relaxation
time and μτ 2

c is a measure of the relative polydispersity of
the cluster population. The use of the polydisperse cumulant
function allowed us to describe curvature in �(q,τ ) at the
shortest time scales that could not be well fit using a single-
exponential model (Fig. 8 in Appendix A). We found that
τ−1
c ∝ q2 and thus the diffusion coefficient Dc was evaluated as

the slope of the straight line τ−1
c versus q2 (i.e., τ−1

c = Dcq
2).

The range of wave vectors was determined by the optical
properties of the experimental setup. The minimal accessible
wave vector was qmin = 2π/l, where l was the largest
dimension of the original images that were captured by the
camera; using the typical l = 140 μm, qmin = 0.045 μm−1.
The maximum accessible wave vector was qmax = 2π/�l,
where �l was the pixel dimension in the space of the
image; using the typical �l = 0.21 μm, qmax = 28.7 μm−1.
In practice, qmax was limited by the smallest resolvable
distance that a cluster could travel between two frames;
we found that qmax = min {q ′,q ′′}, where q ′ = √

F/D and
q ′′ = 2πn sin (θmax)/λ, where n = 1.331 is the refractive index
of water.

C. Dynamic light scattering

Light scattering data were collected with an ALV go-
niometer equipped with a He-Ne laser (632.8 nm) and an
ALV-5000/EPP Multiple tau Digital Correlator (ALV-GmbH,
Langen, Germany). For light scattering experiments samples
were placed in cylindrical cuvettes of diameter 10 mm;
to minimize contamination, all cuvettes were washed with
soap and rinsed with copious amounts of DI water prior to
loading into the DLS instrument. Thirty intensity correlation
functions were acquired at 90◦ for 60 s each to obtain an

average intensity-intensity correlation function g2(τ ) at lag
times τ ranging from 0.1 μs to 10 s. Light is scattered by
the fluctuations of concentration and the correlation function
characterizes the rate of diffusion of scatterers during decay
of fluctuations [43]. Protein solutions typically contain two
scatterers with distinct diffusion times, protein monomers,
and protein-rich clusters [31,33,34,44,45]. We therefore de-
termined the characteristic diffusion times τm and τc of the
monomers and clusters, respectively, by fitting the normalized
correlation function with a square sum of two terms, a
single-exponential function corresponding to the monomer
population and a modified cumulant function [42,46] to model
the polydisperse cluster population

g2(τ ) − 1 =
[
Am exp

(
− τ

τm

)

+Ac exp

(
− τ

τc

)(
1 + μτ 2

2

)]2

+ ε(�t), (2)

where Am and Ac are related to the concentration of monomers
and clusters, μτ 2

c characterizes the relative polydispersity
of the clusters, and ε(τ ) accounts for inevitable noise [45].
We used τc to determine the cluster diffusivity Dc from
τ−1
c = Dcq

2, where q = (4πn/λ) sin (θ/2) is the scattering
wave vector at 90◦C, λ = 632.8 nm is the wavelength of the
incident red laser, and n = 1.331 is the refractive index of DI
water.

D. Calculation of the characteristic cluster size

We determined the average cluster radius Rc from Dc

(measured using DDM or DLS) using the Stokes-Einstein
equation

Rc = kBT

6πηDc

, (3)

where kB is the Boltzmann constant, T is the temperature,
and η is the viscosity of the protein and cluster solution.
Determinations of the viscosity are made on solutions con-
taining proteins and clusters; the volume fraction of clusters
is less than 10−5 and hence the clusters negligibly affect the
background viscosity. In lysozyme solutions (103 mg ml−1)
this viscosity is determined from the dynamics of Optilink car-
boxylated polystyrene spheres with diameter 2R = 0.424 μm,
characterized by DLS, and Eq. (3) [31]. For hemoglobin A
(50 mg ml−1), the solution viscosity was calculated using the
relation [47]

η = η0 exp

(
[η]C

1 − (k/ν)[η]C

)
, (4)

where η0 = 0.937 mPa s is the viscosity of the phosphate
buffer at 25◦C, [η] = 0.036 dl g−1 is the viscosity increment,
C is the HbA concentration in g dl−1, k is a crowding factor,
and ν is a shape factor coefficient for nonspherical particles so
that k/ν = 0.42 [47]. For hemoglobin at C = 50 mg ml−1,
η = 1.14 mPa s; for lysozyme at C = 103 mg mg−1, η =
1.42 mPa s.
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III. RESULTS AND DISCUSSION

A. Characterization of protein-rich clusters with BDDM

We acquire optical microscopy movies of protein-rich
liquid clusters, reported in a variety of protein solutions
[30–38,48], diffusing in solution for two proteins in chambers
of thickness 160 μm. Optical bright-field micrographs of a
hemoglobin A solution at a concentration of 50 mg ml−1

show that the clusters are too small to be directly resolved
[Fig. 1(a)]; the large black spots correspond to dust and dirt in
the microscope optical train. Subtracting two micrographs that
are separated by a fixed lag time τ generates an image with
a diffuse speckle pattern, as shown in Figs. 1(b)–1(d). These
image differences usually have limited dynamic range, with
typical intensities in an 8-bit image ranging in absolute value
from 1 to 20 (Fig. 9 in Appendix A). The fluctuations increase
as the lag time separating the micrographs is increased,
indicating that the cluster positions become increasingly
decorrelated over time.

To characterize the dynamics of these clusters, we apply
BDDM and investigate the behavior of the azimuthally
averaged structure function �(q,τ ). At a constant lag time
τ , �(q,τ ) exhibits a pronounced maximum at a particular
wave vector q, as shown in Fig. 2 for a solution containing
hemoglobin A clusters. The existence of the maximum is
related to the optical transfer function and is characteristic
of BDDM measurements [24]. Increasing the lag time shifts
this maximum to lower q and its height increases, as also seen
in other BDDM measurements [19].

At a constant scattering wave vector q, �(q,τ ) first
increases monotonically at short lag times and reaches a
plateau at long lag times, as shown for solutions containing
hemoglobin A and lysozyme clusters in Figs. 3(a) and 3(b),
respectively. For a fixed q, the structure function � can
be fitted to a cumulant model (1), from which we extract
the q-dependent characteristic relaxation time τc(q), signal
coefficient A(q), background term B(q), and polydisper-
sity μτ 2

c . The background term B(q) is nearly constant at
all wave vectors and does not differ significantly between
the two proteins (Fig. 10 in Appendix A), consistent with
the suggestion that B(q) depends on the electronic noise of

(b)(a)

τ = 11.11 sτ = 1.59 s

τ = 0.159 s50 µm

(d)(c)

FIG. 1. (a) Representative bright-field micrograph of a
hemoglobin A solution with a concentration of 50 mg ml−1. (b)–(d)
Representative subtractions of two images at lag times τ , as indicated
in the panels. The scale bar for all images is shown in (a).
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FIG. 2. (Color online) Structure function � as a function of wave
vector q at lag times τ specified in the plot, obtained with bright-field
differential dynamic microscopy for a hemoglobin A solution with a
concentration of 50 mg ml−1.

the sensor and the power spectrum of the optical train of the
microscope [19]. Hemoglobin A generates a measurable DDM
signal for q = 0.5–6.5 μm−1; by contrast, lysozyme generates
a measurable signal for a smaller range of wave vectors
q = 1–3.7μm−1. Here a measurable signal is one for which
the quotient A(q)/B(q), one metric of the signal-to-noise
ratio [21], is greater than or equal to 0.055 (Fig. 11 in
Appendix A). In the polydispersity term, μ is the second
cumulant of the intensity-weighted diffusion time distribution
and larger values of μτ 2

c (which is approximately independent
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FIG. 3. (Color online) Structure function � as a function of lag
time τ at three wave vectors q, indicated in the plots, for solutions of
(a) hemoglobin A at a concentration of 50 mg ml−1 and (b) lysozyme
at a concentration of 103 mg ml−1. Lines are best fits to Eq. (1).
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FIG. 4. (Color online) Reciprocal relaxation time 1/τc as a func-
tion of the wave vector q for a hemoglobin A solution with a
concentration of 50 mg ml−1 (squares) and lysozyme solution with a
concentration of 103 mg ml−1 (triangles). Here τc scales as q−2 and
the intercept is insignificant (linear fits pass through the origin), as
expected for freely diffusing clusters.

of the scattering vector for q > 1, as shown in Fig. 12
in Appendix A) correspond to a more polydisperse cluster
population. Here the lysozyme solutions are more polydisperse
(μτ 2

c ≈ 0.16) than the hemoglobin A solutions (μτ 2
c ≈ 0.075).

For both proteins, the reciprocal relaxation time 1/τc(q) scales
linearly with q2 (Fig. 4) and a linear fit goes through the origin.
These features indicate that the dynamics of the clusters is
purely diffusive. We calculate the average diffusion coefficient
for each cluster from the slope of the fit line and obtain Dc =
0.760 × 10−12 and 1.59 × 10−12 m2 s−1 for hemoglobin A
and lysozyme clusters, respectively. From the Stokes-Einstein
equation (3) where η is the viscosity of the protein solution, the
characteristic radii of hemoglobin A and lysozyme clusters are
232 and 95 nm, respectively. The hemoglobin A clusters are
larger and thus scatter more light, leading to a greater DDM
signal-to-noise ratio as compared to that of lysozyme clusters,
consistent with the structure functions shown in Fig. 3.

B. Do thicker chambers yield a stronger DDM signal?

The DDM measurements reported in Figs. 2 and 3 are
performed in thin chambers of thickness ∼160 μm. Many
biological samples are difficult to purify or obtain in large
volumes and so the use of thinner chambers and hence smaller
sample volumes is desirable. The bright-field DDM method
generates signal from a thickness that is greater than the
focal volume of the optical train but can be limited by the
sample thickness. The minimum sample thickness required to
neglect finite-size effects in the DDM signal is Lmin > 1/�q,
where �q is the uncertainty in the scattering wave vector
due to the finite numerical aperture of the condenser and the
polychromaticity of the illumination source [19]. We calculate
(�q/q)2 ≈ 0.0307 using the expression from Ref. [19] and
obtain Lmin = 11 μm and 0.83 μm at the minimum and
maximum q of 0.5 and 6.5 μm−1, respectively, accessible with
hemoglobin A solutions. We can therefore neglect finite-size
effects for chambers whose thickness exceeds 11 μm.

To determine the chamber thickness required to generate
signal in DDM for weakly scattering protein clusters, we
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FIG. 5. (Color online) Structure function �(q,τ ) as a function
of lag time τ for a hemoglobin A solution at a concentration of
50 mg ml−1, measured in chambers of indicated thicknesses, at wave
vector (a) q = 0.88μm−1 and (b) q = 2.92 μm−1. (c) Reciprocal
relaxation time 1/τc, obtained from the fit of �(q,τ ) to Eq. (1),
as a function of the wave vector q for a hemoglobin A solution with
a concentration of 50 mg ml−1 measured in chambers of varying
thickness; symbols and colors correspond to those used in (a) and (b).
The inset shows the same dependence for the two thinnest chambers
(of thicknesses 25 and 53 μm), showing that the noisy and weak
BDDM signal can be measured only for a limited range of q.

measure the intensity differences (Fig. 13 in Appendix A) and
the image structure function �(q,τ ) for hemoglobin clusters in
chambers of thickness ranging from 25 to 800 μm, for which
we expect finite-size effects to be negligible. The dependence
on chamber thickness arises from the fact that planes farther
from the object plane contribute progressively less to the
DDM signal [19]. At a low wave vector (q = 0.88 μm−1)
the signal above the noise [i.e., A(q)/B(q)] is sufficiently
large, allowing each �(q,τ ) to be fit to Eq. (1) and the
relaxation time scale τc(q) to be extracted [Fig. 5(a)] [21].
At higher wave vectors, however, A(q)/B(q) < 0.055 for the
thinnest sample chambers and these �(q,τ ) cannot be fit to
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Eq. (1) [Fig. 5(b)]. Reducing the chamber thickness below
∼160 μm restricts the range of wave vectors from which τc(q)
can be extracted, in accord with the theoretical prediction
from Ref. [19]. Nonetheless, over the accessible range of
wave vectors for each thickness the inverse relaxation time
1/τc(q) scales with q2; moreover, all points lie on a single
line, confirming that the diffusion coefficient of the clusters
remains constant across chambers of different thickness. This
result suggests that there exists an optimal chamber thickness
for biological samples (here ∼160 μm for hemoglobin A
solutions), which minimizes the total sample volume while still
allowing the maximum range of wave vectors to be accessed.
This optimal thickness, which must depend on the properties
of the sample and of the optical setup, can be determined from
the ratio of the signal to noise A(q)/B(q) (shown in Fig. 14
in Appendix A). We found that the signal-to-noise criterion
A(q)/B(q) � 0.055 established for bulk solutions also applies
to the thickness measurements; only those thicknesses and
wave vectors satisfying this criterion yield relaxation times
that scale diffusively with the cluster size.

C. Comparison with DLS

To verify the diffusion coefficients and cluster sizes ob-
tained using BDDM, we measure the characteristic relaxation
time scale using DLS at a single scattering angle of 90◦ in a
cuvette of internal diameter of 8 mm. The dynamic correlation
functions (g2 − 1)1/2 of hemoglobin A [Fig. 6(a)] and of
lysozyme [Fig. 6(b)] solutions exhibit two distinct relaxations,
indicating the presence of objects of two different charac-
teristic sizes. From fitting each dynamic correlation function
using the method of cumulants (2) we obtain the characteristic
relaxation time of the (polydisperse) clusters [45] τc. Using
the Stokes-Einstein equation (3), we calculate an average
radius of 144 and 72 nm, respectively, for hemoglobin A
and lysozyme clusters; these values are in agreement with
previous determinations for both proteins [31,33]. Notably,
the characteristic sizes for hemoglobin A (232 nm) and
lysozyme (95 nm) determined using DDM are greater than
those determined using DLS.
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(b)
0.0

0.2

0.4

0.6

0.8

1.0

Lag time [ms]

(a)

Hemoglobin A

10-3 10-1 101 103 105

(g
2-

1)
1/

2

10-5

FIG. 6. (Color online) Autocorrelation function (g2 − 1)1/2 of
scattered light as a function of lag time τ for (a) a hemoglobin A
solution with a concentration of 50 mg ml−1 and (b) a lysozyme
solution with a concentration of 103 mg ml−1. All dynamic light
scattering measurements were performed at a detector angle of 90◦,
corresponding to a scattering vector q = 18.7 μm−1.

We consider several potential origins for the discrepancy
between the sizes measured by DDM and by DLS. First,
in earlier experiments [21] we showed that DLS and DDM
experiments on monodisperse polymer particles of radii 50–
200 nm yield identical particle sizes; this finding suggests that
collective motion within the sample chambers does not lead to
the observed discrepancy. Second, the relative polydispersities
at higher q are equal within errors of each measurement
(Fig. 12 in Appendix A), suggesting that the discrepancy does
not arise from differences in the sensitivities of the camera
used in the DDM experiment and of the correlator used in the
DLS experiment. Finally, the decorrelation times measured in
DDM (Figs. 4 and 5) and in DLS [38] both scale diffusively
with the wave vector, i.e., 1/τ ∝ q2, as expected for a dilute
suspension of spherical scatterers; this result suggests that any
asphericity of the clusters does not give rise to the discrepancy.

D. Effect of polydispersity on apparent cluster sizes

Instead, we apply Mie theory to understand the origin of
the discrepancy between the sizes from DDM and DLS. First,
we show that the Mie scattering limit is applicable to these
systems. For a particle of diameter 2R interacting with light
of wavelength λ in a medium of refractive index n, the size
parameter x = 2πRn/λ determines the relevant scattering
limit: Mie scattering applies for x > 0.4. The illumination
source used in the microscopy experiments has a broad
distribution of wavelengths; using an average wavelength
of λ0 = 550 nm for the incident white light, x = 2.18 and
1.09 for hemoglobin A and lysozyme clusters, respectively.
The size of the particles is comparable to the wavelength
of incident light and so we consider the Mie solution
to Maxwell’s equations, which describes the scattering of
an incident plane wave from a collection of spheres. The
Mie solution is written as a series expansion in terms of
spherical harmonic functions [49], which in turn are typically
expressed in terms of the associated Legendre polynomials
P m

l (cos θ ) = (1−cos2 θ)m/2

2l l!
dl+m(cos2 θ−1)l

d(cos θ)l+m . The angular dependence
of the Mie angular functions πn(cos θ ) = (1/ sin θ )P m

l (cos θ )
and τn(cos θ ) = dP m

l (cos θ )/dθ thus determines the intensity
of scattered light as a function of the scattering angle [50].
The function πn exhibits fore-aft symmetry for even n, with
lobes directed forward (i.e., 0◦) and backward (i.e., 180◦);
for odd n, however, the backward lobe vanishes. Similarly,
τn exhibits fore-aft symmetry for odd n, but the backward
lobe vanishes for even n. This angular dependence leads to a
forward-directed bias in the scattering intensity that becomes
more pronounced as the index l is increased. Furthermore,
as the size of the scattering objects is increased, more terms
in the series expansion are incorporated in the scattering
diagram [51]. Larger scatterers, which scatter more strongly
overall, also preferentially scatter more in the forward direction
compared to smaller scatterers.

We employ a Mie scattering model [52] to estimate the dif-
ference in magnitude of the intensity of forward-scattered and
laterally scattered light for hemoglobin A clusters. (Additional
details on the Mie scattering model calculations are given in
Appendix B.) Our DLS experiments use homodyne detection,
in which only the scattered light is captured by the photode-
tector. By contrast, DDM is a heterodyne near-field scattering
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method: the light scattered from the clusters interferes with
the transmitted light. Hence in DDM the intensity of scattered
light is proportional to the scattered electrical field [53]. To
confirm that the heterodyne condition was satisfied for our
experiments, we calculated the distributions of the intensity
difference. The distributions of the intensity difference were
Gaussian at all τ , confirming that the heterodyne condition
was satisfied (Fig. 9 in Appendix A).

Still, the DDM structure function is derived from fluc-
tuations in intensity. Under the Gaussian approximation,
valid for these experiments, the DDM structure function is
proportional to the square of the scattered electrical field, as
in homodyne DLS, and hence proportional to the scattered
intensity. (A short derivation applicable to our experiment is
given in Appendix C.) Indeed, Giavazzi et al. pointed out that
�(q,τ ) is the two-dimensional generalization of the photon
structure function measured in DLS experiments [19]. In our
experiments, the homodyne and heterodyne detection schemes
contain the same information and we therefore use the Mie
model for both the DDM and DLS signals.

For calculations of the DLS scattering intensity, we use
the excitation wavelength of λ = 633 nm in our experimental
DLS setup and a scattering angle of 90◦. For calculations of the
DDM scattering intensity, following Ref. [19] we assume that
the distribution of wavelengths in the illumination source can
be described by a Gaussian function centered at a wavelength
λ0 = 550 nm. At a scattering angle of 90◦, the intensity of
scattered light exhibits a local maximum at a particular radius
[Fig. 7(a)], arising from morphological resonances due to
constructive interference [51]. At a scattering angle of 0◦ the
intensity monotonically increases with radius [Fig. 7(b)]. For
a given particle radius, the scattered intensity is greater at 0◦
than at 90◦, as expected in the Mie scattering regime. The
DDM experiments for hemoglobin A access scattering angles
ranging from approximately 1.8 to 24.5 degrees, as calculated
from the minimum and maximum scattering vectors q = 0.5
and 6.5 μm−1 via q = (4πn/λ0) sin (θ/2). We therefore also
report the Mie scattering intensity at an angle of 24◦ [Fig. 7(c)].

The protein-rich liquid clusters are not monodisperse but
instead exhibit a distribution of sizes. To assess the effect of
cluster size polydispersity on the DDM signal intensity, we
assume that the cluster size distribution can be described by
a Gaussian function of characteristic width σ that is centered
near the average radius of hemoglobin A clusters measured
using DLS, Rc = 140 nm. We sum the Mie scattering intensi-
ties for hemoglobin A clusters of each radius, weighted by the
Gaussian function, and thereby obtain the scattered intensity
for a polydisperse distribution of cluster sizes. When the char-
acteristic width σ is small (σ/Rc ≈ 0.016), the distributions
of scattered intensity at 0◦, at 24◦, and at 90◦ strongly overlap
with the distribution of cluster radii [Fig. 7(d)], indicating
that the characteristic radius measured at each angle is nearly
identical. By contrast, when the cluster radii are more broadly
distributed (σ/Rc ≈ 0.28) the position of the maximum in
scattering intensity is shifted to larger radius compared to
that of the Gaussian radius distribution N , as shown in
Fig. 7(e). Moreover, this shift is more pronounced at scattering
angles of 0◦ and 24◦, corresponding to the angular range
accessed in the DDM experiments, than at 90◦, corresponding
to the angle in the DLS experiments. This result indicates
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FIG. 7. (Color online) (a)–(c) Scattered intensity of hemoglobin
A clusters as a function of cluster radius predicted using Mie
scattering theory for (a) dynamic light scattering, using a wavelength
λ = 633 nm and a scattering angle of θ = 90◦; (b) BDDM, using a
wavelength range λ = 450–650 nm and a scattering angle of θ = 0◦;
and (c) BDDM, using a wavelength range λ = 450–650 nm and a
scattering angle of θ = 24◦. (d) and (e) Calculated scattered intensity
distributions containing clusters with a Gaussian size distribution N

centered at 140 nm and of width (d) σ = 2.25 nm (σ/Rc = 0.016) and
(e) σ = 40 nm (σ/Rc = 0.28). The inset in (d) shows the discrepancy
between the peak positions predicted for DLS and DDM as a function
of size distribution width σ .

that polydispersity can generate the discrepancy between the
DDM and DLS characteristic sizes. We quantify the predicted
discrepancy between the characteristic sizes measured using
BDDM and DLS as (Rc,DDM − Rc,DLS)/Rc,DLS for the 0◦
scattering intensity and the 90◦ scattering intensity and find
that this discrepancy increases monotonically with σ [inset
in Fig. 7(d)]. As the cluster size distribution broadens, the
characteristic size measured by DDM becomes progressively
larger compared to that measured by DLS.

IV. CONCLUSION

We showed that DDM can be used to monitor the dynamics
of weakly scattering and polydisperse biological nanoscale
objects, protein-rich liquid clusters, and to characterize the
sizes of the clusters. Increasing the thickness of the sample
chamber enhances the signal from weakly scattering objects
and hence increases the range of wave vectors accessible with
DDM; increasing above a certain thickness, here approxi-
mately 160 μm for hemoglobin A, produces no further increase
in the DDM signal. We noted that the optimal thickness
must depend on the concentration, size, and refractive index
mismatch of the scatterers and on the bit depth of the camera.
The characteristic size measured by DDM was consistently
larger than that measured by DLS at a scattering angle of
90◦. Using the Mie scattering solution, we showed that larger
clusters preferentially contribute to the low-angle DDM signal,
leading to a bias towards longer relaxation times and hence
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larger average sizes. This bias increases with the width of the
cluster size distribution. This result neglects absorption from
the clusters or scattering medium, which does not significantly
affect the accuracy of data collected using scattering methods;
for example, the slight absorption of hemoglobin A does not
affect cluster sizes measured using DLS [54] and we expect
that it also does not significantly alter the shift in characteristic
size using DDM.

Although here we focused on the dynamics of a well-
characterized model system, our results are broadly applica-
ble for polydisperse nanoparticles that weakly scatter light.
Weakly polydisperse protein clusters exhibit near-exponential
decays in DDM. This result is in contrast to the stretched ex-
ponential dynamics of nanoparticles in homogeneous porous
media measured using DDM [28], which may reflect local
environmental heterogeneity [55]. This comparison suggests
that DDM could be used to identify the physical origins of
dynamical processes. When combined with optical methods
used for concentrated suspensions [20] or extended analyses
used for nonspherical objects [24,27], we therefore expect
that DDM will provide a simple, inexpensive, and rapid
method to characterize the diffusive dynamics of a broad
range of polydisperse nanoparticles in complex biological
environments.
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APPENDIX A: SUPPLEMENTAL FIGURES

In this Appendix we provide additional figures (Figs. 8–14)
to justify statements made in the main text. In Fig. 8 we
show that the DDM data cannot be adequately fit with a
single-exponential fitting model. In Fig. 9 we show that the
histograms of intensity difference values (which have limited
dynamic range) can be fitted by a Gaussian distribution,
satisfying the heterodyne condition. In Fig. 10 we show that
the background term B(q) is nearly constant at all wave vectors
and does not differ significantly between the two proteins. In
Fig. 11 we show that the criterion for a measurable signal in
our DDM setup is A(q)/B(q) � 0.055. In Fig. 12 we show
that the relative polydispersity is approximately independent
of the scattering wave vector for q > 1 μm−1. In Fig. 13 we
show the histograms of absolute intensity difference measured
for a solution of hemoglobin A in chambers of thickness
ranging from 25 to 800 μm. Finally, in Fig. 14 we show that
the criterion for a measurable signal established in Fig. 11,
A(q)/B(q) � 0.055, is also valid for chambers of varying
thickness.
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FIG. 8. (Color online) Structure function � as a function of lag
time τ at wave vectors q, indicated in the plots, for (a) and (b) a
hemoglobin A solution with a concentration of 50 mg ml−1 and (c)
and (d) a lysozyme solution with a concentration of 103 mg ml−1.
Orange dash-dotted lines indicate fits to a single exponential fitting
function and black dotted lines indicate fits to a polydisperse cumulant
fitting model. At low q the single-exponential model systematically
overestimates the short-time plateau and a polydisperse exponential
model (1) gives a better fit.

APPENDIX B: MIE SCATTERING CALCULATIONS

The Mie scattering solution of Maxwell’s equations, first
developed by Lorenz [56] and independently by Mie [49], de-
scribes the relation between transverse components of electric
and magnetic fields of scattered electromagnetic wave from a
dielectric (potentially absorbing) spherical particle of radius
R with respect to incident fields of electromagnetic wave. The
Mie solution assumes that the tangential components of the
electric and magnetic fields are continuous across the surface
of the spherical particle. The resulting components of the
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FIG. 9. (Color online) Histogram of intensity difference values
measured at lag times of (a) 0.015 87 s, (b) 0.1587 s, (c) 1.587 s,
and (d) 15.87 s for a hemoglobin A solution with a concentration of
50 mg ml−1. Black lines indicate Gaussian fits to each distribution,
with the centroid of the Gaussian indicated in each panel, confirming
that the heterodyne condition is satisfied for these data sets.

042712-8



DIFFERENTIAL DYNAMIC MICROSCOPY OF WEAKLY . . . PHYSICAL REVIEW E 92, 042712 (2015)

0 1 2 3 4 5 6 7

0

1

2

3

q [µm-1]

0

2

4

6

10
5 
A

(q
), 

10
5  B

(q
)

(b)
Lysozyme

(a)
Hemoglobin A

 1
06 

A
(q

), 
10

6 
B

(q
)

B(q)

B(q)

A(q)

A(q)

FIG. 10. (Color online) Parameters A(q) and B(q) determined
from fits of experimental data to Eq. (1), as a function of scattering
wave vector q for (a) hemoglobin A with a concentration of
50 mg ml−1 and (b) lysozyme with a concentration of 103 mg ml−1.

scattered electric and magnetic fields are described in terms
of an infinite series expansion of vector spherical harmonics.
For a detailed derivation of the Mie solution, see Ref. [50];
here, we give only the formulas needed for a computational
Mie approach.

For an incident plane wave, the scattering amplitudes in the
Mie solution S1(θ ) and S2(θ ) are given by

S1(θ ) =
∞∑

n=1

2n + 1

n(n + 1)
[anπn(cos θ ) + bnτn(cos θ )] (B1)
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FIG. 11. (Color online) Ratio of the fit parameters A(q)/B(q),
a measure of the signal-to-noise ratio, as a function of scattering
wave vector q for a hemoglobin A solution with a concentration
of 50 mg ml−1 and a lysozyme solution with a concentration of
103 mg ml−1.
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FIG. 12. (Color online) Relative polydispersity μτ 2
c as a function

of the scattering wave vector q for a hemoglobin A solution with
a concentration of 50 mg ml−1 and a lysozyme solution with a
concentration of 103 mg ml−1 measured using DDM. Dashed lines
indicate the average polydispersity. The inset shows a comparison
of average relative polydispersity from the DDM and DLS mea-
surements; the errors given for the DDM measurements indicate the
standard deviation of the values obtained at different q. Within the
reported error, the polydispersities measured in DLS and DDM are
identical.

and

S2(θ ) =
∞∑

n=1

2n + 1

n(n + 1)
[anτn(cos θ ) + bnπn(cos θ )]. (B2)

The Mie angular functions πn(cos θ ) and τn(cos θ ) describe the
angular dependence of the scattering radiation and are given
in terms of the associated Legendre polynomials P 1

n as

πn(cos θ ) = 1

sin θ
P 1

n (cos θ ) (B3)
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indicated in the plots.
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a measure of the signal-to-noise ratio, as a function of scattering
wave vector q for a hemoglobin A solution with a concentration of
50 mg ml−1 in chambers of varying thickness. The signal-to-noise
criterion identified for bulk signals A/B = 0.055 is indicated as a
dashed line in the figure.

and

τn(cos θ ) = d

dθ
P 1

n (cos θ ). (B4)

The scattering coefficients an and bn are obtained by
matching the tangential electric and magnetic fields at the
surface of the dielectric sphere (at r = R). These coefficients
are typically given in terms of the Ricatti-Bessel functions ψn

and ξn [50] as

an = mψn(mx)ψ ′
n(x) − ψn(x)ψ ′

n(mx)

mψn(mx)ξ ′
n(x) − ξn(x)ψ ′

n(mx)
(B5)

and

bn = ψn(mx)ψ ′
n(x) − mψn(x)ψ ′

n(mx)

ψn(mx)ξ ′
n(x) − mξn(x)ψ ′

n(mx)
, (B6)

where m = n − iκ is the complex index of refraction and x =
2πRn/λ is the Mie size parameter for a particle of radius
R scattering light of wavelength λ in a medium of refractive
index n. The Ricatti-Bessel functions are defined as

ψn(z) =
(

πz

2

)1/2

Jn+1/2(z) (B7)

and

ξn(z) =
(

πz

2

)1/2

Hn+1/2(z). (B8)

In Eqs. (B7) and (B8), Jn+1/2(z) is the half-integer-order Bessel
function of the first kind and Hn+1/2(z) is the half-integer-order
Hankel function of the second kind.

In the far field, the transverse components of the scattered
electric field are given by [50]

Esθ ∼ E0
eikr

−ikr
cos φS2(cos θ ) (B9)

and

Esφ ∼ E0
eikr

−ikr
sin φS1(cos θ ), (B10)

where eikr/(−ikr) represents the outgoing spherical wave.
Finally, the scattered intensity parallel to the scattering plane
is I1 = I‖ = |S2|2 and that perpendicular to the scattering
plane is I2 = I⊥ = |S1|2, with the total scattering intensity
thus given by I = I1 + I2. This calculation is true not only
for our (homodyne) DLS setup, but also for our (double-
frame heterodyne) DDM setup, as we have shown that the
DDM structure function is also proportional to the scattering
intensity (C10).

In a typical Mie scattering algorithm, the coefficients an and
bn are first calculated for values of n = 1, . . . ,N , where N ≈
x + 4x1/3 + 2 [50]. Next, the functions πn(cos θ ) and τn(cos θ )
are calculated using the recursion relations for the associated
Legendre polynomials. Finally, the scattering amplitudes S1(θ )
and S2(θ ) are calculated as a function of the scattering angle
θ . In our calculations we use the MATLAB functions for Mie
scattering and absorption by Mätlzer [52] and report the total
scattering intensity I .

APPENDIX C: RELATIONSHIP OF THE DDM SIGNAL
TO THE SCATTERING INTENSITY

Differential dynamic microscopy originated in the
double-frame analysis in heterodyne near-field scattering
(HNFS) [53]. Briefly, the DDM method is based on the Fourier
analysis of the intensity image differences [19]. The key idea
for DDM (as for all near-field scattering methods) is that
the Fourier components of the intensity distribution in the
image differences can be put in one-to-one correspondence
with the Fourier components in terms of the sample refractive
index [19].

Let I (r,t1) and I (r,t2) be the intensity of images at times t1
and t2 separated by a time difference τ = t2 − t1. In the DDM
analysis, the intensity difference between these two images is
first calculated as

δIt (r; τ ) = |I (r,t2) − I (r,t1)|. (C1)

This process removes the potentially large and heterogeneous
background signal. Next, the Fourier power spectrum of the
intensity difference δIt (r; τ ), a robust statistical estimator of
the energy content [57], is calculated as

|δÎt (q; τ )|2 =
∣∣∣∣
∫

[δIt (r; τ )]e−qrdr

∣∣∣∣
2

. (C2)

Finally, the expectation value of this spectrum is calculated by
averaging over all starting times t1 to generate the structure
function

�(q; τ ) = 〈|δÎt (q,τ )|2〉. (C3)

The DDM structure function �(q; τ ) is the two-
dimensional generalization of the photon structure function in
DLS [18,19]. Hence, for Brownian diffusion of a population
of monodisperse scatterers, �(q; τ ) obtained from the DDM
analysis can be fitted with a single-exponential function to
extract the diffusion time of particles, just as the square root of
the intensity-intensity correlation function can be fitted with
a single-exponential function to extract the diffusion time of
monodisperse particles in DLS. Below we show that �(q; τ ) is
proportional to the intensity of the scattering field Is(r), which
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is enhanced by a static prefactor equal to the intensity of the
transmitted beam I0(r). The intensity of the scattered light is
directly proportional to concentration fluctuations, which are
caused by the Brownian motion of particles.

Next we show how to extract the DDM signal from a double-
frame HNFS analysis. In HNFS [53], the static electric field
E0(r) corresponding to the transmitted beam interferes with
the time-dependent weak scattered field Es(r,t) to produce the
transmitted field

Et (r,t) = E0(r) + Es(r,t). (C4)

The intensity of the transmitted beam It = |Et (r,t)|2 can be
written as

It (r,t) = Et (r,t)Et (r,t), (C5)

where E is the complex conjugate of E. Substituting Eq. (C4)
and neglecting the scattered intensity (which is small compared
to the transmitted intensity), the intensity at a given time t is

It (r,t) = E0(r)E0(r) + E0(r)Es(r,t) + E0(r)Es(r,t). (C6)

The static transmitted intensity can be eliminated by calcu-
lating the intensity difference δIt (r,τ ) = It (r,t + τ ) − It (r,t).
Thus δIt (r,τ ) can be written in terms of the scattered electric

field Es(r,τ ) = Es(r,t2) − Es(r,t1) as

δIt (r,τ ) = E0(r)Es(r,τ ) + E0(r)Es(r,τ ). (C7)

Equation (C7) can be transformed to Fourier space. By
applying properties of Fourier transforms, it can be shown that
the Fourier transform of the intensity difference can be written
as

δÎt (q,τ ) = E0(q) ∗ [Es(−q,τ ) + Es(q,τ )]. (C8)

Finally, the spectrum of the double-frame heterodyne signal
|δÎt (q,τ )|2 can be calculated from Eq. (C8), yielding

|δÎt (q,τ )|2 = I0(q)[Es(−q,τ ) ∗ Es(−q,τ )

+Es(q,τ ) ∗ Es(q,τ ) + Es(−q,τ ) ∗ Es(q,τ )

+Es(q,τ ) ∗ Es(−q,τ )], (C9)

where ∗ indicates a convolution operation. The first two
terms contain the scattered intensity, whereas the last two are
shadowgraph terms. The shadowgraph terms are eliminated
after averaging over all initial times t [58,59], leading to

〈|δÎt (q,τ )|2〉 = I0(q)Is(q,τ ). (C10)

By comparing Eqs. (C3) and (C10), we conclude that the DDM
signal is proportional to the scattered intensity. We note that
this analysis holds for the case when number fluctuations can
be neglected (and hence is not applicable, for example, to the
case of dilute scatterers in convective flow).
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