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Modeling magnetosensitive ion channels in the viscoelastic environment of living cells
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We propose and study a model of hypothetical magnetosensitive ionic channels which are long thought to
be a possible candidate to explain the influence of weak magnetic fields on living organisms ranging from
magnetotactic bacteria to fishes, birds, rats, bats, and other mammals including humans. The core of the model is
provided by a short chain of magnetosomes serving as a sensor, which is coupled by elastic linkers to the gating
elements of ion channels forming a small cluster in the cell membrane. The magnetic sensor is fixed by one
end on cytoskeleton elements attached to the membrane and is exposed to viscoelastic cytosol. Its free end can
reorient stochastically and subdiffusively in viscoelastic cytosol responding to external magnetic field changes
and can open the gates of coupled ion channels. The sensor dynamics is generally bistable due to bistability
of the gates which can be in two states with probabilities which depend on the sensor orientation. For realistic
parameters, it is shown that this model channel can operate in the magnetic field of Earth for a small number (five
to seven) of single-domain magnetosomes constituting the sensor rod, each of which has a typical size found
in magnetotactic bacteria and other organisms or even just one sufficiently large nanoparticle of a characteristic
size also found in nature. It is shown that, due to the viscoelasticity of the medium, the bistable gating dynamics
generally exhibits power law and stretched exponential distributions of the residence times of the channels in
their open and closed states. This provides a generic physical mechanism for the explanation of the origin of such
anomalous kinetics for other ionic channels whose sensors move in a viscoelastic environment provided by either
cytosol or biological membrane, in a quite general context, beyond the fascinating hypothesis of magnetosensitive
ionic channels we explore.
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I. INTRODUCTION

Evidence of the influence of weak electromagnetic fields
including magnetic fields on many living organisms abounds
[1–9]. Most spectacular and doubtless of such manifestations
are related to the navigation of honeybees, fishes, birds, rats,
bats, and other animals [4,10–13] in the magnetic field of
Earth of about Be = 50 μT in strength. Various hypotheses
related to profoundly different physical mechanisms have
been suggested to explain this influence. They range from
nonthermal quantum mechanisms related to spin-dependent
electron transfer [4,14], which circumvent the so-called “kT”
problem [5,8,15], to a variety of classical mechanisms based
on a widespread occurrence of biomagnetite nanoparticles in
tissues of many living organisms starting from magnetotactic
bacteria [16–19] and ending at the human brain [20]. Magnetite
(Fe3O4) has a saturation magnetization of Ms = 4.8 × 105

A/m, and elongated magnetite nanoparticles are in a single
domain ferrimagnetic state when their sizes range from 20
to 200 nm depending on the short-to-long axis aspect ratio
(shape factor) [11]. Hence, the magnetic energy of a spherical
magnetosome (magnetic nanoparticle dressed in a lipid-
protein membrane shell [17]) of radius 100 nm and magnetic
dipole moment μ ≈ 2 fA m2 is as large as EB = μBe ∼
24.5 kBT when its magnetic moment is aligned with Earth’s
magnetic field. The whole cells with magnetic moments
in the range μ ∼ 4–100 fA m2 were identified recently as
candidate magnetoreceptor cells in trout olfactory epithelium
[21]. Another recent study [22] confirms the existence of
cells possessing such large magnetic moments in both trout
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and pigeons. However, it expresses doubt that this magnetic
moment is caused by biomagnetite and not by magnetic
nanoparticles polluting the environment, which are absorbed
to the cell membranes. In this respect, the presence of iron-rich
organelles filled by ferrihydrate in the hair cells of pigeons [22]
can give support to a biological origin of magnetite therein,
rather than the contrary. Even though the biochemical pathway
of biomagnetite synthesis remains still controversial [17], the
presence of ferrihydrate indirectly supports one of biochemical
schemes suggested earlier [10]. Furthermore, about 10% of
biomagnetite particles found in human brain [12,20] (about
106 or even 108 per one gram of tissue in gray matter and in
meninges, correspondingly, and about 50 ng/g in hippocampus
on average [23]) are about 100 nm or larger in size. In bacteria,
the length of elongated magnetoparticles can reach 110 nm
with shape factor 0.8–0.9 [18] and even larger, up to 200 nm
[19]. It is important that genes encoding magnetosome specific
proteins in some bacteria were identified [17]. This provides
one of the strongest arguments in favor of a biological origin
of magnetite in biological cells.

Importantly, the magnitude of a magnetic field produced
by a spherical magnetosome can reach (at peak of a highly
anisotropic distribution) Bmag ∼ 402 mT near its surface (see
Appendix A), independently of its radius. This is about 8000
times larger than Be. Thus, quantum magnetic effects can also
be mediated by the magnetic near field of a magnetosome
reorienting in an external magnetic field and positioned near
an electron-transferring magnetosensitive molecular complex,
rather than directly by an external field itself [24]. The
particles of intermediate size 55 × 44 × 44 nm, typical for
magnetosomes found in magnetotactic bacteria [25], have
EB ∼ 0.623 kBT , and they easily make chains joined by
magnetic cohesion force, being rigid enough [26] in not too
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strong magnetic fields, smaller than 30 mT [27]. Hence, a rod
consisting of five such nanoparticles with magnetic moments
aligned has EB ∼ 3.12 kBT , and it can easily serve as quite
a classical, compasslike sensor element for magnetosensitive
ion channels, as shown in this paper. When an external field
becomes compatible with Bmag it can disrupt the magnetosome
chain or make it unstable [27]. This is why such a sensor will
not work in too strong fields. It will be literally broken in
pieces, presenting a disordered cluster of nanoparticles. For
another typical size, 103 × 85 × 85 nm, also commonly found
in bacteria [18], EB ∼ 4.23 kBT for a single magnetosome.
Hence, a sensor can consist also of a single nanoparticle.

The idea that a magnetic nanorod can serve as a sensor
and transducer of magnetic field torque was first suggested
by Yorke [28]. Kirschvink [11,12] proposed that it can be
a magnetosensitive ion channel involved with a spherical
magnetosome attached to a cytoskeleton element near an ion
channel in biological membrane and coupled by an elastic
linker to the ion channel gating machinery. An external
magnetic field creates a torque on the magnetosome, which
rotates and opens the ion channel. The sensor is considered
to be essentially monostable in the Kirschvink model. This
model has been refined recently for the chain of magnetosomes
serving as sensor [29], but remained monostable as in the
original proposal. Binhi and Chernavsky proposed a different
model [24], based on the bistability of magnetosome rotations
induced by a magnetic field for a spherical magnetosome
elastically coupled to cytoskeleton. It is not related to gating of
ionic channels. Rather a change in distribution of the magnetic
field induced by magnetosome is of interest in the context of a
related quantum mechanism [24,30]. Furthermore, it has been
shown recently that streptavidin-linked magnetite nanoparti-
cles of 50 nm size (in radius on average) can induce ion channel
like activity being absorbed on phospholipid bilayer [31]. The
corresponding ion current recordings resemble somewhat the
ion channel activity induced in electric fields by alamethicin
peptides inserted into the membrane [32].

In this paper a further generalization of the model by
Kirschvink et al. is suggested and studied. The generalization
consists of several profound aspects. First, the stochastic
motion of the sensor is considered to be bistable because
of bistability of the ion channel gate to which the sensor is
coupled. Such a bistability is a common point in describing
stochastic dynamics of ionic channels [33]. To include it in
the sensor dynamics, we adopt a gating spring model [34]
assuming that the gate can take on just two conformations,
open and closed. A similar model has originally been suggested
in relation to the hair cell dynamics. Second, we consider a
possibility that a magnetic sensor can be coupled to gates of
several ionic channels making a cluster, i.e., that a compact
cluster of ionic channels and a magnetic nanoparticle serving
as sensor make a magnetosensitive complex in a biological
membrane. This can explain why such magnetosensitive
ion channels, as separate units, were not found thus far.
Third, and most important in a more general context of
gating stochastic dynamics of ionic channels, we consider the
influence of the viscoelasticity of the environment in which
the sensor is moving on the sensor dynamics. We show that
viscoelasticity alone can result in profoundly nonexponential
residence time distributions of the channels in their open and

closed states, such as stretched exponential distribution [35,36]
and power law distributions [35,37–41]. This explanation of
unusual gating kinetics is different from other physical theories
suggested thus far, which are based, in particular, on a complex
free energy landscape for sensor or conformational dynamics
of the whole ion channel with very many multiply degenerated
minima and maxima (glasslike dynamics) [42–44]. The latter
one can be modeled in the simplest possible fashion as
a continuous normal diffusion in a potential box, which
already makes it possible to explain [45] the origin of the
−3/2 power law in the distribution of closed times [38,39]
in conjunction with the origin of Hodgkin-Huxley voltage
dependence [33,45]. Such normal diffusion can become also
anomalously slow (fractional diffusion), a modeling pathway
explored in [46].

Recent work [47,48] suggests, however, that the discussed
anomalous kinetics can also result from the standard bistable
dynamics of a sensor, commonly assumed in biophysics
textbooks [33], as a manifestation of memory effects caused by
the viscoelasticity of the environment. This is a very appealing
and simple physical explanation indeed. In this respect, both
cytosol and the plasma membrane are viscoelastic [48,49].
Hence, viscoelasticity is considered to be a major cause
of experimentally observed anomalous diffusion in crowded
colloidal and polymer solutions [50–56] and living cells
[57–60], as well as in single protein molecules [61]. To
study such effects, the approach of the generalized Langevin
equation (GLE) characterized by a power law scaling memory
kernel and power law correlated thermal noise of environment,
which are related by fluctuation-dissipation theorem (FDT),
provides a major well-established theoretical framework in the
case of linear dynamics [50,54]. It is not easy to generalize this
framework towards nonlinear dynamics in bi- and multistable
potentials. For example, a corresponding exact Fokker-Planck
description which would mirror and complement the GLE
approach, like in the case of memoryless dynamics, has
simply not been developed thus far for potentials other than
linear and parabolic [62]. In other words, any nonlinearity
creates a problem for Fokker-Planck description of such a
dynamics with memory [47,48,63]. Recently, we bypassed
such difficulties within the GLE approach using the road of
multidimensional Markovian embedding of GLE dynamics
within a generalized Maxwell-Langevin model of viscoelas-
ticity [47,48]. It has also been generalized to include negative
correlations of stochastic force and corresponding memory
effects leading to superdiffusion and supertransport [64]. The
utility of this approach has been demonstrated on various
basic models of nonlinear stochastic dynamics such as bistable
dynamics [47], washboard dynamics [47,48,65], anomalous
rocking ratchets [48,66–69], and anomalous flashing ratchets
[70], as well as applications to molecular motor dynamics in
viscoelastic cytosol [71–73].

In the context of magnetosomes dynamics in viscoelastic
cytosol, Kirschvink et al. have repeatedly taken the cytosol
influence into account by enhancing the coefficient of normal
viscous friction experienced by magnetosome by a factor of
about 100 [12,21]. This was a standard way to think about
the influence of viscoelasticity and crowding in cytosol in
biological applications until recently [74]. However, recent
results on anomalous diffusion of nano- and submicron
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particles in living cells suggest that this enhancement can be
much larger, of the order of 1000, and even larger [57,71,75],
depending, in particular, on the size of particle [76]. Cytosol
seem to operate normally at the edge of a phase transition from
a liquidlike state to a solidlike state with broken ergodicity [77].
Moreover, even for the enhancement factor 100, the bistable
orientational dynamics of magnetic nanoparticles would be so
slow, as we show in this paper, that it would be completely
out of interest within a biological context. However, a major
effect, which introduces viscoelasticity, is the emergence of
transient subdiffusion which is much faster than the asymptotic
limit of normal diffusion. In fact, this asymptotic regime can
become completely irrelevant for mesoscopic dynamics. This
paradoxical fact also follows from the non-Markovian rate
theory developed beyond the standard memoryless Kramers
theory [78–82]; see [83] for a review and below. Namely, this
“much faster, not slower” [75,84,85], paradoxically due to
subdiffusion, makes operating such bistable magnetic sensors
possible in viscoelastic cytosol. This provides one of the most
important results of this work, which lends further support to
the idea of magnetic field sensing with classical dynamics of
sufficiently large biomagnetite nanoparticles.

II. MODEL AND THEORY

We consider the following model. A biomagnetite rod
made of a chain of magnetosomes of total length L or a
single elongated magnetic nanoparticle can rotate with one
end fixed, e.g., on on a cytoskeleton meshwork attached to
the cell membrane inside the cell (see Fig. 1 for an idea). It
is also elastically attached to the gates of ionic channels (one
is shown) by flexible linkers, which are modeled here within
a finite extensible nonlinear elastic (FENE) model [86]. The
channel gate, or rather a molecular latch, which fixes the gate
in its either open or closed state, can be in two states. The
closed state is characterized by the energy ε1, and the open
one has the energy ε2 − f0x, which depends on the linker
elongation x, where f0 is a force constant characterizing the
strength of coupling (force exerted by the linker on the gate).
Elastic energy is UFENE(x) = − 1

2kl2
max ln(1 − x2/l2

max) within
the FENE model, where k is elastic spring constant and lmax

is the maximal extension length of the linker when it is fully
stretched. The statistical mean force exerted by the channel

B

μ

φ

FIG. 1. Illustration of the considered model of the magnetosen-
sitive ion channel expressing the idea. Proportions are not held. The
rotation of the nanorod is coupled via flexible linkers to gates of
ion channels, which can form a cluster. One channel is shown for
simplicity.

gate on the linker can be found as f (x) = −dG(x)/dx from
the potential of the mean force G(x) = −kBT ln Z(x), where
Z(x) = exp[−βε1] + exp[−β(ε2 − f0x)] is the statistical sum
of the gate and β = 1/(kBT ) is the inverse temperature.
Here one implicitly assumes that the gate-latch dynamics
(transitions between two states) is very fast and, hence, the
actual gating dynamics is enslaved by the sensor dynamics
and reflects the latter one. Mean force is f (x) = f0p(x),
where

p(x) = 1

1 + exp[−f0(x − l0)/(kBT )]
(1)

is that probability of the gate being open and l0 = (ε2 − ε1)/f0.
In order to define some x0 as the equilibrium point, we follow
[34] and redefine mean force by a shift as f (x) = f0[p(x) −
p(x0)]. The motion of the rod is assumed to be restricted to
the plane orthogonal to the membrane and characterized by
the angle φ, 0 � φ � π , counted from the membrane plane
in the counterclockwise direction. The linker elongation is
approximated as x(φ) = 2l[sin(φ/2) − sin(φ0/2)], where l is
the rotation arm, and φ0 is an equilibrium angle. The external
magnetic field B is directed at the angle ψ within the plane of
motion. The potential of mean force (torque) acting on the rod
in our model is

U (φ) = − 1
2kl2

max ln{1 − [x(φ)/lmax]2}
− kBT m ln {1 + exp[f0(x(φ) − l0)/(kBT )]}
+mf0p(φ0)x(φ) − μB cos(ψ − φ), (2)

where p(φ0) = p[x = 2l sin(φ0/2)], μ is the magnetic mo-
ment of the rod, and m is the number of ion channels coupled
to the sensor and treated in a mean-field fashion (all gates
move synchronously enslaved by the same sensor). We scale
the energy in units of U0 = kl2, temperature in units of U0/kB ,
distances in units of l, and forces in units of fu = U0/l. U0

will be fixed to U0 = 10 kBTr ≈ 41 pN nm ≈ 0.25 eV, where
Tr is a typical room temperature, Tr ≈ 297 K. For a typical
k = 0.3 pN/nm [87], this corresponds to l ≈ 11.69 nm and
force units fu ≈ 3.51 pN. For the purpose of illustration, the
magnetic nanorod is assumed to be made of magnetosomes of
size 55 × 44 × 44 nm3. For the magnetosome core made of
magnetite with saturating magnetization of Ms = 480 kA/m,
its elementary magnetic moment is μ1 ≈ 0.0511 fA m2 and
its energy in the magnetic field of Earth taken to be B =
Be = 50 μT is μ1B ≈ 0.623 kBTr , when it is aligned with the
field direction. The sensor can be operable already for n = 5
nanoparticles in the rod with μ5B = 5μ1B ≈ 3.115 kBTr ,
and a reliable operation can be achieved for n = 7 with
μ7B = 7μ1B ≈ 4.363 kBTr . For these two values we do
illustrative calculations below, noting once again, however,
that the sensor can consist also of just one sufficiently large
ferro- or ferrimagnetic nanoparticle. For example, a particle
with the size 103 × 85 × 85 nm3 will have about the same
μB ≈ 4.36 kBTr as our rod with n = 7, and such nanoparticles
are also customarily found in living species. Some examples
of U (φ) for various magnetic energies and the corresponding
p(φ) are plotted in Fig. 2.

Consider first the B = 0 case (solid line) and notice
that when U (φ) arrives at its maximum at φmax ≈ 103.3◦,
p(φmax) ≈ 0.269. For φ � φmax, a further increase of φ
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FIG. 2. (Color online) Orientational potential U (φ) and opening
probability p(φ) (blue line with circles) of the ion channel versus
angle φ in degrees. Potential box walls are imposed for φ < 0 and
φ > π restricting motion to one side of membrane. A magnetic field
is applied at an angle ψ = 180◦, and φ0 = 30◦. Model parameters:
T = 0.1, lmax = 1.5, f0 = 1.5, l0 = 1.22, and m = 7 channels in the
sensor cluster. The gating energy difference ε2 − ε1 = f0l0 = 1.83,
or 18.3 in units of kBTr .

introduces a negative stiffness instability and the rod ro-
tates to a new metastable minimum at φmin,2 ≈ 144.81◦,
where the channel opening probability becomes p(φmin,2) ≈
0.926. At the first metastable minimum, φmin,1 = φ0 =
30◦, p(φmin,1) ≈ 10−8. The corresponding energy differ-
ence between two metastable minima is �U = U (φmin,2) −
U (φmin,1) ≈ 0.3639 = 3.639 kBTr , and the energy barriers
are �U1 = U (φmax) − U (φmin,1) ≈ 0.787 = 7.87 kBTr , and
�U2 = U (φmax) − U (φmin,2) ≈ 0.4232 = 4.232 kBTr . Being
attached to a common sensor, the channels fluctuate stochas-
tically but synchronously between their closed and open
states following the sensor motion, with the averaged opening
probability, which can be roughly estimated as 〈p〉 ∼ 1/{1 +
exp[�U/(kBTr )]} ≈ 0.026 (at room temperatures); i.e., the
channels are closed most of time. Actually, the opening
probability will be lower than this rough estimate because
the first minimum is shallower than the second one; i.e.,
it is also entropically preferred. Judging from the value of
�U , one can expect that, for a sufficiently strong magnetic
field at a proper angle ψ such that μB ∼ �U , the second
metastable minimum can be made lower relative the first one
and the channel will become open on average. Indeed, this is
the case already for μB = 0.3115U0 = 3.115 kBTr at ψ = π ;
see Fig. 2. The entropic effects may, however, compensate
somewhat for the field-induced negative �U , and the channels
are indeed about half-open on average; see below. For a larger
μB = 0.4363U0 = 4.363 kBTr in Fig. 2, the channels will
predominantly be open.

A. Averaged open probability and ionic current
as functions of field direction

The averaged probability of the channel to be open can be
found as

〈p(B,ψ)〉 =
∫ π

0
p(φ)e−U (φ)/(kBT )dφ/Z, (3)

0 60 120 180 240 300 360
ψ

0

0.2

0.4

0.6

0.8
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>
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FIG. 3. Averaged probability of the channels to be open as a
function of magnetic field orientation for two values of μB shown in
the plot. Model parameters: φ0 = 30◦, T = 0.1, lmax = 1.5, f0 = 1.5,
l0 = 1.22, and m = 7 channels in the sensor cluster.

where Z = ∫ π

0 e−U (φ)/(kBT )dφ is the corresponding statistical
sum (integral). It accounts also for entropic effects. Unfor-
tunately, this expression cannot be found in a closed compact
analytic form for the model considered. However, its numerical
evaluation can be easily done. The corresponding results are
shown in Fig. 3 and reveal that the direction of magnetic field
can be detected by a bell-shaped increase of the opening prob-
ability within the angle �ψ ∼ 180◦ ± 60◦. Further sharpening
of the detection of the field direction can be achieved via an
adjusted threshold of excitation in the sensory cell.

The averaged ionic current conducted by this sensory
complex is thus 〈I 〉 = mi0〈p(B,ψ)〉, where i0 is the unitary
current through one open channel. Let us estimate it with
i0 = 50 pA being a typical value for large conductance cation
channels [33]. These should be either sodium or calcium
channels in order to cause depolarization of the cell membrane
by their opening, given typically small out-of-equilibrium
inner-cell concentrations of sodium and calcium ions with
respect to the cell exterior. Then, for m = 7 and 〈p〉 = 0.5,
〈I 〉 = 175 pA. Estimating the whole cell membrane resistance
at rest as R = 100 M� [88], the transmembrane potential
change is estimated as �V = R〈I 〉 ∼ 17.5 mV. This can
already be sufficient to depolarize an excitable cell membrane
and to trigger a spiking activity mediating further information
about external magnetic field changes. However, a detailed
elaboration of related excitable cell model in the spirit of the
Hodgkin-Huxley type conductances based approach is beyond
the scope of the present work and is left for the future.

B. Stochastic dynamics

In order to operate as a sensor, the opening-closing
stochastic dynamics of the considered magnetic sensor should
also be sufficiently fast. Clearly, if it would take minutes,
on average, to accomplish transitions to the open state,
such a sensor would simply be too slow to be of any
relevance in biology. The motion of the sensor occurs in
viscoelastic cytosol. It is considered to be overdamped with the
inertial effects neglected. Apart from the mean torque f (φ) =
−dU (φ)/dφ, it is subjected to viscoelastic memory-friction
torque − ∫ t

0 ηmem(t − t ′)φ̇(t ′)dt ′, which acts in addition to
the viscous Stokes friction torque, −η0φ̇, caused by the
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primary water component of cytosol. The dissipative forces
are complemented by the corresponding zero-mean Gaussian
thermal random noises of the environment at temperature T ,
ξmem(t) and ξ0(t), correspondingly. The friction and thermal
noise are related by the (second) FDT by Kubo [89–91],

〈ξmem(t)ξmem(t ′)〉 = kBT ηmem(|t − t ′|), (4)

〈ξ0(t)ξ0(t ′)〉 = 2kBT η0δ(t − t ′) . (5)

This ensures thermal detailed balance in the absence of
external driving. Stochastic dynamics is described by the GLE
[89–92],

η0φ̇ = f (φ) −
∫ t

0
ηmem(t − t ′)φ̇(t ′)dt ′ + ξmem(t) + ξ0(t).

(6)

The memory kernel reflecting the viscoelasticity of complex
polymeric fluids such as cytosol has often an intermediate
power law scaling ηmem(t) = ηαt−α/
(1 − α) between two
memory cutoffs, τl and τh, with 0 < α < 1. It corresponds to
a complex shear modulus G∗(ω) ∝ ωα [50,54] at intermediate
frequencies in accordance with a huge body of rheology
[93,94] and microrheology research [51–54,56,57]. ηα is
a fractional friction coefficient [48,95] corresponding to a
fractional viscosity coefficient ζα [93], ηα ∝ ζα . A strict power
law is clearly an idealization and cutoffs must be present
on physical grounds. The short time cutoff τl reflects the
molecular size effects or highest vibrational modes present in
the environment (which cannot be captured by any continuous
medium type approximation). The long time cutoff τh must
also be present in any fluidlike environment making the
overall integral ηeff = ∫ ∞

0 ηmem(t)dt finite. This reflects a finite
macroscopic viscosity ζeff ∼ ηeff of such complex fluids on
a large time scale t � τh. The model with τl → 0, τh →
∞ (strict power law scaling) corresponds to the so-called
fractional Langevin equation (FLE) upon using the formalism
of fractional time derivatives [63,69,92,96,97] or a strict
sub-Ohmic memory friction within dynamical approach to
generalized Brownian motion [90,98]. Then the solution of
a potential-free FLE (6), f (φ) = 0, with the Stokes friction
neglected, η0 → 0, and for φ regarded as a linear, rather than
cyclic variable, is fractional Brownian motion (fBm) [48,63].
It presents a Gaussian process with stationary increments and
a long-range memory, which is completely characterized by its
variance, 〈δφ2〉 = 2Dαtα/
(1 + α), growing sublinearly. The
fractional (orientational) diffusion coefficient Dα is related to
the fractional friction coefficient ηα by the generalized Einstein
relation, Dα = kBT /ηα . Upon taking the Stokes friction into
account it becomes [69],

〈δφ2(t)〉 = 2D0tE1−α,2[−(t/τin)1−α], (7)

where Ea,b(z) := ∑∞
0 zn/
(an + b) is generalized Mittag-

Leffler function, and D0 = kBT /η0 is a normal diffusion
coefficient. Furthermore, τin = (η0/ηα)1/(1−α) is a transient
time constant. For t 
 τin, diffusion is initially normal,
〈δφ2(t)〉 ≈ 2D0t . It becomes anomalously slow, 〈(δφ)2〉 =
2Dαtα/
(1 + α), for t � τin. We take further advantage of
the approximation of the power-law scaling memory kernel by

a sum of the exponentials [47,48],

ηmem(t) =
N∑

i=1

ki exp(−νit), (8)

with a fractal scaling of relaxation rates νi = ν0/b
i−1 and

weights ki ∝ να
i (having physical dimension of energy in the

present case) to embed non-Markovian dynamics of φ(t) as
a component or projection of N + 1-dimensional Markovian
dynamics,

η0φ̇ = f (φ) −
N∑

i=1

ki(φ − yi) + ξ0(t),

(9)
ηiẏi = ki(φ − yi) + ξi(t),

where yi are nondimensional linear auxiliary variables, ηi =
ki/νi , and ξi(t) are independent auxiliary white Gaussian
noises obeying

〈ξi(t)ξj (t ′)〉 = 2δij kBT ηj δ(t − t ′) (10)

and also independent of ξ0(t). The initial positions yi(0) are
sampled from a Gaussian distribution centered around φ(0),
〈yi(0)〉 = φ(0) with variances 〈[yi(0) − φ(0)]2〉 = kBT /ki , in
order to have complete equivalence with the corresponding
GLE in Eqs. (4)–(6) and (8) in the ensemble sense [48]. It is
convenient to choose

ki = ν0ηeff
b1−α − 1

b(i−1)α[bN(1−α) − 1]
, (11)

where ν0 = 1/τl is the largest relaxation rate of environment
equal to the inverse small time cutoff, τl 
 τin. Diffusion
becomes again normal on the time scale t � τh = τlb

N−1,
and ηα = ηeffτ

α−1
h /gα , with a proportionality coefficient gα

about unity, gα ∼ 1 [71]. For example, gα ≈ 0.93, for α = 0.4
and N � 5 [72]. The scaling coefficient b controls the quality
of approximation of the power law dependence between two
time cutoffs. Relative error is about 4% only for a crude
decade scaling with b = 10, which suffices in most studies,
and improves further to 0.01% for b = 2 [68]. Interestingly,
τh/τin = (ηeff/η0)1/(1−α) independently of b, which makes
it possible to estimate the time duration of intermediate
subdiffusion in units of τin from merely the knowledge of α and
an effective enhancement of friction in cytosol relative to that
in water in the long-time normal diffusion limit. For example, if
τin ∼ 1 ms and η̃eff = ηeff/η0 = 103 for α = 0.5, intermediate
subdiffusion will last until τh ∼ 103 s; i.e., it extends over six
time decades in units of τin. Such a consideration can be very
useful for estimating η̃eff from experimental data. We scale
time in units of τsc = η0/U0. For U0 = 10 kBTr and for the
rod of length L = 275 nm consisting of five magnetosomes
it is estimated as τsc ≈ 0.404 ms, and for the rod of length
385 nm consisting of seven magnetosomes it is estimated
as τsc ≈ 0.905 ms (see Appendix B). This corresponds to
the rotational diffusion coefficients D0 = 0.248 rad2/ms and
D0 = 0.110 rad2/ms, respectively.

C. Relaxation within a potential well

Nonlinear viscoelastic dynamics in a bistable potential
is rather intricate [47]. To understand its main features,
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it is important to realize first the character of relaxation
process in one potential well. This can be done within a
parabolic well approximation, U (φ) ≈ κ1,2(φ − φmin,1,2)2/2,
where κ1,2 = d2U (φ)/dφ2|φ=φmin,1,2 . The relaxation of an
initial fluctuation, δφ(0) = φ(0) − φmin,1,2, within a parabolic
potential follows the relaxation law 〈δφ(t)〉 = δφ(0)θ (t), with
relaxation function θ (t) whose Laplace transform reads [48,99]

θ̃(s) = η̃(s)

κ + sη̃(s)
(12)

for arbitrary memory kernel η(t). Here we omitted subindexes
1,2 at κ for simplicity. The relaxation function coincides with
the normalized stationary autocorrelation function of fluctu-
ations, or ACF, 〈δφ(t0)δφ(t0 + t)〉eq/〈δφ2〉eq , with 〈δφ2〉eq =
kBT /κ , which does not depend on time shift t0. In other words,
the Onsager regression property holds generically within this
model, as shown in [99]. However, ACF depends generally
on both time arguments and displays aging phenomenon
[48,99,100]. In the present case, η̃(s) = η0 + ηαsα−1, and

θ̃ (s) = τ0 + τr (sτr )α−1

sτ0 + 1 + (sτr )α
= r + r1−αsα−1

s + r + r1−αsα
, (13)

where we denote τ0 = η0/κ , τr = (ηα/κ)1/α and r = 1/τ0,
r1−α = ηα/η0 = τα−1

in . Upon change α → 1 − α, i.e., identi-
fying our present α with 1 − α in [101] and identifying our
present τ0 with 〈τ 〉 therein, one can see that this result coincides
(up to a normalization factor) with one obtained in Ref. [101]
for the stationary ACF of fluctuations in a very different model
based on the continuous time random walk (CTRW) approach
to relaxation phenomena. This other approach is featured by
two parallel relaxation channels characterized by normal rate r ,
and fractional rate r1−α , correspondingly, and by a finite mean
residence time 〈τ 〉 = 1/r; see [75,101] for basic formulations
and details. In [101], the corresponding spectral power of
fluctuations, S(ω), and the response function χ (ω) are also pre-
sented and discussed. The relaxation behavior of θ (t) depends
very strongly on the relationship between τ0 and τr . The time
constant τr can be expressed through τ0 and the above τin as

τr = τ0

(
τ0

τin

)1/α

. (14)

A salient feature is that τr depends on the potential curvature
κ only through τ0, and τin that characterizes free diffusion.
The Laplace transform of relaxation function can be inverted
exactly to the time domain for a special case α = 0.5. Then
it reads

θ (t) = 1

2

(
1 + 1√

1 − 4z

)
e(1−√

1−4z)2t/(4z2τr )

× erfc[(1 − √
1 − 4z)

√
t/(4z2τr )]

+ 1

2

(
1 − 1√

1 − 4z

)
e(1+√

1−4z)2t/(4z2τr )

× erfc[(1 + √
1 − 4z)

√
t/(4z2τr )], (15)

where z = τ0/τr , and erfc is the complementary error function.
Furthermore, for any 0 < α < 1, if τ0 
 τr , then relaxation
follows approximately θ (t) ≈ Eα[−(t/τr )α]; see numerical
results in Fig. 4(b) for α = 0.4 and the relaxation in the first
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FIG. 4. (Color online) Non-Markovian relaxation function
against time in units of τr for two different potential wells
corresponding to a potential U (φ) realization in Fig. 2 at
μB = 0.3115 for α = 0.4 in parabolic approximation and in neglect
of the memory cutoff effects. Time constant τr has different absolute
values (in units of τsc = η0/U0) for different potential wells.
Panels (a) and (b) correspond to two different values of fractional
friction coefficient ηα ∼ ηeffτ

α−1
h . In (a), τh = 104 and ηeff = 100η0,

z1 = τ0/τr = 4.838 (for the relaxation in the first potential well
which corresponds to closed times, see the dash-double-dotted blue
curve), and z2 = τ0/τr = 536.83 (for the relaxation in the second
potential well which corresponds to open times, see the dash-dotted
black curve). The dashed black line depicts single-exponential
approximation. The solid red curve is the Mittag-Leffler relaxation
function Eα[−(t/τr )α], which corresponds to the Cole-Cole dielectric
response and β relaxation in glasslike materials. The tail of relaxation
is universally a power law, θ (t) ∼ t−α . The inset in (a) shows the
same plot on a semilogarithmic scale. It reveals that nearly 70% of
initial relaxation in the second well occurs in the exponential regime.
In (b), ηeff is increased to ηeff = 1000, with other parameters kept
the same, which corresponds to a tenfold larger ηα , as compare with
panel (a). Here z1 = 0.015 93 (dash-double-dotted blue curve, which
is difficult to see because it almost coincides with the solid red line
corresponding to the Mittag-Leffler relaxation), and z2 = 1.6976
(dash-dotted black curve). The relaxation in the first potential well
is excellently described by the Mittag-Leffler relaxation function,
and the relaxation in the second potential well is also clearly
nonexponential all the time, as the inset shows. Numerical results
are obtained by numerical inversion of the Laplace-transform
in Eq. (13) with Stehfest-Gaver method as described in
Refs. [102,103].
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potential well (closed times), within the parabolic approxi-
mation. It is initially a stretched exponential for t 
 τr and
then a power law, θ (t) ∝ t−α . The spectral power of intrawell
fluctuations is S(ω) ∝ 1/ω1−α at low frequencies, and such
an intrawell motion is featured by the Cole-Cole response to
external fields [99]. It is measured in many biological tissues
[8] and corresponds to the so-called β− relaxation in glassy
systems. Clearly, for a sufficient small κ and τin such a regime
can always be realized. Another regime with τ0 � τr can also
be very important. For a given τin, it can always be realized for
a sufficiently large κ , i.e., sufficiently stiff trapping potential.
Then the relaxation of θ (t) starts universally from an exponen-
tial regime, θ (t) = exp(−t/τ0), which changes into a power
law tail θ (t) ∝ 1/tα; see Fig. 4(a) for α = 0.4 (open times)
and also Figs. 2 and 3 in [101] for α = 0.5. The larger the ratio
τ0/τr , the smaller is the weight of a heavy tail. In other words,
the major part of θ (t) relaxation occurs exponentially for
z � 1. The power law tail starts then from some θc 
 1. For
example, in Fig. 4(a), about 70% of the whole relaxation in the
second potential well (open times) occurs in the exponential
regime. The power law tail of open times has just a few percent
weight therein, as the main double-logarithmic plot in Fig. 4(a)
reveals. Nevertheless, it can be very important yielding to the
S(ω) ∝ 1/ω1+α feature of the fluctuations power spectrum for
τ−1

0 
 ω 
 τ−1
r . It has been detected, e.g., experimentally in

Ref. [60] for transversal fluctuations of cargo moving along a
microtubule. Moreover, slow residual relaxation in the poten-
tial wells leads generally to a breakdown of the rate theory and
validates the physical picture of slowly (on a characteristic time
scale of transitions) fluctuating barriers and fluctuating rates.

D. Thermally activated transitions between metastable
states of sensor

Although transitions between the potentials wells cannot
be described as a rate process for the biophysically most
important case of intermediate barriers (less than about 10 kBT

depending on α), in the case of power law memory kernels,
the rate theory has been shown to be able to predict, at least
in some cases, the most probable logarithm of residence times
in the potential wells [47]. Moreover, the rate description is
restored in the limit of very high barriers. Then the transition
rates R1,2 follow as

R1,2(μ) = ω1,2

2π
�(μ) exp(−β�U1,2), (16)

where ω1,2 = √
κ1,2/J are circular attempt frequencies, and

0 � �(μ) � 1 is the so-called transmission coefficient, which
for the considered intermediate-to-strong friction limit is found
[79,83] as �(μ) = μ/ωb. Here ωb = √

κb/J is the imaginary
barrier frequency, κb = −d2U (φ)/dφ2|φ=φmax , and μ is the
renormalized barrier frequency. The latter one is found at
the largest positive root of a transcendental equation taking
(in the considered overdamped limit, J → 0) the general
form μη̃(μ) = κb, and for the memory kernel considered,
μη0 + ηαμα = κb. By introducing τ

(b)
0 = η0/κb and τ (b)

r =
(ηα/κb)1/α , we can write it as

τ
(b)
0 μ + (

τ (b)
r μ

)α = 1. (17)

For the memory kernel expanded into a sum of exponentials it
takes the form

μ

(
η0 +

N∑
i=1

ki

μ + νi

)
= κb, (18)

which can be rewritten as an algebraic equation of
N + 1 degree for the unknown μ. For a special case
α = 0.5, Eq. (17) can be solved exactly to yield

μ = 4[τ (b)
r ]−1/

[
1 +

√
1 + 4τ

(b)
0 /τ

(b)
r

]2

, and

R1,2 = 1

2π

√
κ1,2

κb

1

τ
(b)
r

4 exp(−β�U1,2)[
1 +

√
1 + 4τ

(b)
0

/
τ

(b)
r

]2 . (19)

This insightful result can be expressed in terms of the normal
diffusion (ηα → 0) overdamped Kramers rate,

R
(0)
1,2 = 1

2π

√
κ1,2

κb

1

τ
(b)
0

exp(−β�U1,2)

= 1

2π

1

τ
(b)
0

exp(−β�G1,2) (20)

as

R1,2 = R
(0)
1,2F

(
zb = τ

(b)
0

/
τ (b)
r

)
, (21)

where

F (z) = 4z

[1 + √
1 + 4z]2

. (22)

Notice that in the second line of Eq. (20), we incorporated the
difference of the curvatures κ1 and κ2 as additional entropic
contributions to the free energy barriers, �G1,2 = �U1,2 −
T �S

(ad)
1,2 with entropy differences �S

(ad)
1,2 = kB ln(κ1,2/κb)/2.

Generally, reduction of a multidimensional dynamics to a
two-state dynamics contains such important additional en-
tropic contributions. It should be mentioned, however, that
in our model U (φ) in Eq. (2) is also temperature dependent,
i.e., is in fact a (Gibbs) free energy profile. We consider,
however, a fixed value of temperature throughout the paper.
The correct separation of �G1,2 into the internal energy (or
rather enthalpic) part �H1,2 and entropic part −T �S1,2 must
always be done using fundamental thermodynamic relation
�H = �G + T �S = �G − T (∂�G/∂T )P [104].

Furthermore, for z 
 1 in (22), F (z) ≈ z, and for z � 1,
F (z) approaches unity, F (z) → 1. Hence, in the parameter
regime τ

(b)
0 � τ (b)

r , which correlates with τ0 � τr (see above),
R1,2 ≈ R

(0)
1,2, i.e., the rate is practically not affected by

subdiffusion. This is a very important result, which is valid also
for other values of α. It is very different from the suppression
by the factor ηeff/η0, which some unjustified intuition might
suggest. This result shows that subdiffusion does not necessary
suppress the activation rates, in accordance with our earlier
results in [47] obtained in the presence of inertial effects. Here
the inertial effects were, however, entirely neglected. More-
over, it will be shown elsewhere that in the presence of inertial
effects the transmission factor for subdiffusive dynamics can
arrive at its maximal value of unity in the case of cusplike
potential barriers κb � κ1,2. The combination of nonlinearity
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FIG. 5. (Color online) Trajectory realization of Markovian mem-
oryless dynamics. The black line describes stochastic rotational
fluctuations of the sensor, while the green (light gray) line depicts
fluctuations of the probability of the gate to be open (and normalized
ion current fluctuations). The blue horizontal lines depict some
detection thresholds (two possible sets are shown). Model parameters:
T = 0.1, μB = 0.3115, φ0 = π/6, ψ = π , lmax = 1.5, f0 = 1.5,
l0 = 1.22, and m = 7 channels in the sensor cluster.

and viscoelastic subdiffusion is really counterintuitive and
paradoxical. An essential suppression of rate occurs in the
regime τ

(b)
0 
 τ (b)

r , which correlates with τ0 
 τr , i.e., when
the Mittag-Leffler relaxation within potential wells covers
most of time. Then we obtain (for arbitrary α)

R1,2 ≈ 1

2π

√
κ1,2

κb

1

τ
(b)
r

exp(−β�U1,2). (23)

Notice that it is smaller than R
(0)
1,2 by the factor τ

(b)
0 /τ (b)

r .

III. RESULTS

A. Markovian dynamics

We performed first stochastic simulations of Markovian
memoryless dynamics (ηα → 0) for the same parameters as
in Figs. 2 and 3, ψ = π , with time step δt = 2 × 10−6 using
the stochastic Heun method, in accordance with our previous
studies. A typical trajectory of bistable fluctuations for μB ≈
3.12 kBTr is shown in Fig. 5. One can see characteristic
bistable fluctuations of sensor orientation. It flips between
two metastable positions (interwell fluctuations) and exhibits
also profound fluctuations within potential wells (intrawell
fluctuations). The open-shut dynamics reveals a new flickering
feature, apart from large amplitude fluctuations reflecting
bistability of sensor. Flickering comes about from intrawell
fluctuations of sensor corresponding to its open metastable
state; see below.

The statistics of transitions can be determined from one very
long single trajectory by setting different detection thresholds,
e.g., p1 = 0.2 and p2 = 0.7 (set 1), or p1 = 0.1 and p2 = 0.9
(set 2). One can also relate thresholds to the minima of U (φ)
(set 3). For example, for μB = 0.3115 in Fig. 2, φmin,1 ≈
0.762 ≈ 43.69◦, φmin,2 ≈ 2.551 ≈ 146.13◦, and for μB =
0.4363 in Fig. 2, φmin,1 ≈ 0.910 ≈ 52.14◦, φmin,2 ≈ 2.559 ≈
146.63◦. With this choice, φmin,1 corresponds to a very small
p1 ∼ 10−8–10−6, and φmin,2 corresponds to p2 ∼ 0.92–0.95.

Yet an experimentalist can prefer the choice p1 = 0.5 and
some p2 > p1, e.g., p2 = 0.9 (set 4). It must be emphasized
that the statistics of transitions can very essentially depend on
the thresholds, i.e., on how the current signal is detected. This
is because there are very fast events even within the purely
Markovian version of the considered dynamics, where very
short outbursts occur from the open state to the closed state,
when the probability of the channel to be open becomes briefly
less than one-half. The lower the low detection threshold
0 < p1 � 0.5 in Fig. 5, the larger is the number of missed short
closure events. This is why the averaged residence times in the
states do increase with lowering p1, when the bursting events
are increasingly disregarded. The explanation of a highly
bursting character of dynamics even in the absence of memory
effects can easily be grasped from Fig. 2. Indeed, the maximum
of the potential U (φ) corresponds to the opening probability
p ∼ 0.17–0.27, depending on the μB value in Fig. 2. Hence,
an essential part of closure dynamics occurs when the sensor
moves within the second metastable minimum of sensor not
reaching the transition state of sensor. This observation is also
quite generally of a great importance within the context of
gating dynamics of other ionic channels. It emphasizes the
importance of a very complex molecular structure of ionic
channels [105], where the sensory part and the gating part are
generally not the same and their mechanical coupling can be
very important in all fine details. Our treatment makes this
implicit complexity quite obvious within the simplest model
setting. The opening probability of the channel defined as
a time average, p = 〈τo〉/(〈τo〉 + 〈τc〉), however, is weakly
sensitive to the choice of the detection thresholds and agrees
reasonably well with the ensemble averaged result depicted in
Fig. 3, where p ≈ 0.52 at μB = 0.3115 and ψ = π .

Transitions from open to closed state are regarded as
accomplished by a downward crossing of the low threshold.
In turn, transitions from closed to open state are accomplished
by an upward crossing of the high threshold. In this way,
one finds pairs of random time intervals in the closed, τc,
and open, τo, states whose statistics is subsequently studied.
For a very long trajectory of the kind depicted in Fig. 5,
the survival probabilities Po(τ ) and Pc(τ ), which correspond
to residence time distributions, ψi(τ ) = −dPi(τ )/τ , i = o,c,
are shown in Figs. 6(a)–6(d). They are derived from the
same single very long trajectory by using different sets of
thresholds. As a test of ergodicity (in distribution), we derived
probability density P̂ (φ) of sensor orientations from a single
trajectory and compared it with the ensemble equilibrium
Peq(φ) ∝ exp[−U (φ)/(kBT )]. Excellent agreement (not pre-
sented) implies ergodicity. In Fig. 6, we provide fits of the tail
of distributions with the exponential functions ci exp(−τ/τi),
with weight ci and time constant τi . Furthermore, the initial
part of closed time distribution therein is nicely fitted by the
fourth type Pareto law with survival probability [106],

P (τ ) = 1

[1 + (τ/τp)γ1 ]γ2
. (24)

For τ � τp, P (τ ) ∝ τ−γ , with γ = γ1γ2. It reflects the short
time bursting dynamics. Notice that in Fig. 6(a) the open time
distribution is almost a single exponential, co ≈ 0.966, while
the weight of the exponential tail of closed time distribution
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FIG. 6. (Color online) Survival probabilities of open (black diamonds) and closed (blue open circles) times derived from numerical data for
the case μB = 0.3115, ψ = π , φ0 = π/6, using different sets of detection thresholds: (a) p1 = 0.2, p2 = 0.7; (b) p1 = 0.1, p2 = 0.9, (c) for
the minima of U (φ) used as detection thresholds, p1 = p(φmin,1), p2 = p(φmin,2); (d) p1 = 0.5, p2 = 0.9. Lines present the corresponding
exponential, ci exp(−τ/τi), or Pareto law (24) fits with the parameters shown in the plots. The mean residence times, as well as the opening
probability p = 〈τo〉/(〈τo〉 + 〈τc〉) are also shown. Notice a strong dependence of these fits on the detection thresholds used. Other parameters:
T = 0.1, lmax = 1.5, f0 = 1.5, r0 = 1.22, and m = 7 channels in the sensor cluster.

is about cc ≈ 0.4 only, and nearly 60% of distribution is
described by the Pareto law (24). With lowering the detection
threshold p1 in Fig. 6(b) to p1 = 0.1, the weight of exponential
tail increases to cc ≈ 0.62. This is because fewer bursting
events are detected. The variation of the time constant τc

describing mean residence time in the closed state with a
variation of detection thresholds in Figs. 6(a)–6(c) is not
statistically significant. Notice that a two-stage relaxation
of the closed times P (τ ) cannot be described by a simple
sequential Markovian scheme with just two closed substates,
C2 ↔ C1 → O. This is because (i) the relative weight of two
stages depends very essentially on the detection threshold and
(ii) initial stage is described by the Pareto power law (24) and
not by an exponential.

Furthermore, if to detect transitions by crossing p1,2 levels
corresponding to the minima of U (φ) (set 3), then the sur-
vival probabilities become practically single exponential [see
Fig. 6(c)], where the mean times coincide with the correspond-
ing time constants. In this case, the bursts within long opening
events are completely neglected. The mean residence times
increase accordingly. The standard Kramers rate result in (20)
gives R

(0)
1 ≈ 0.003 805 2 and R

(0)
2 ≈ 0.003 089 9. The corre-

sponding inverse values 1/R
(0)
1 ≈ 262.80 and 1/R

(0)
2 ≈ 323.63

agree with 〈τc〉 ≈ 251.96 and 〈τo〉 ≈ 313.24, correspondingly,
in Fig. 6(c) within a 4% error margin. This is a typical accuracy
of our stochastic simulations. However, if to use p1 = 0.5 for
the lower threshold, which experimentalists can prefer, and to
keep p2 = 0.9, a more complex picture emerges for the closed
residence times; see Fig. 6(d). It reveals two characteristic
power law regimes described by Pareto laws. The initial Pareto
law describes almost 90% of the probability decay with γ =
γ1γ2 = 1.405. It corresponds to the residence time distribution
ψ(τ ) ∝ τ−δ , with δ = 1 + γ = 2.405. Interestingly, similar
power laws were indeed derived from experimental recordings
of large conductance BK ion channels [40], which resemble
the open-shut dynamics in our Fig. 5. However, a very
different phenomenological theory has been proposed earlier
for such a gating dynamics [46]. The second Pareto law part
(24) in Fig. 6(d) has weight cp ≈ 0.079 and describes thus
about the last 8% of decay. Unexpectedly, an exponential
tail fit of the data for the closed times in Fig. 6(d) is worse,
although its time constant correlates with one in Fig. 6(c), as
expected. The distribution of open times remains, however,
practically single exponential independently of thresholds
with a threshold-dependent time constant. Our results show
that a continuous-state Markovian bistable dynamics can
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FIG. 7. (Color online) Survival probabilities of open (black diamonds) and closed (blue open circles) times derived from numerical data for
the case μB = 0.4363, ψ = π using different sets of detection thresholds: (a) p1 = 0.2, p2 = 0.7; (b) p1 = 0.1, p2 = 0.9, (c) for the minima
of U (φ) used as detection thresholds, p1 = p(φmin,1), p2 = p(φmin,2); (d) p1 = 0.5, p2 = 0.9. Lines present the corresponding exponential,
ci exp(−τ/τi), and the Pareto law (24) fits with the parameters shown in the plots. The mean residence times, as well as the opening probability
p = 〈τo〉/(〈τo〉 + 〈τc〉) are also displayed. Notice a strong dependence of these fits on the detection thresholds used. Other parameters: T = 0.1,
lmax = 1.5, f0 = 1.5, r0 = 1.22, and m = 7 channels in the sensor cluster.

explain such experimental non-Markovian features (within
a contracted two-state non-Markovian dynamics) as bursting
and power law distributions of the residence times. They can
be caused by a nontrivial interplay of coupled sensor and
gate dynamics, as well as threshold levels used for detection.
What we measure depends really on how we detect. This is
a signature of complex dynamics. Notice that the opening
probability within the two-state interpretation of continuous
state dynamics is rather robust with respect to the choice of
the detection thresholds. It agrees fairly with the ensemble
average in (3) done for the continuous-state dynamics.

With increasing the number of magnetosomes in the
sensor rod to n = 7 (or for a correspondingly larger single
nanoparticle used as sensor), the probability of channels to
be open in the magnetic field of Earth increases to over
p = 0.8 at a proper field orientation; see Fig. 3. The residence
times statistics displays similar features; see Figs. 7(a)–7(d).
Namely, the open times are nearly exponentially distributed,
whereas the distribution of closed times depends strongly
on the lower detection threshold. The lower the threshold,
the closer the distribution is to a single exponential. The
rate theory yields R

(0)
1 ≈ 0.012 306, and the corresponding

1/R
(0)
1 ≈ 81.26 agrees well, within a 2.25% error margin,

with the numerical value of mean close time 〈τc〉 ≈ 79.43
in Fig. 7(c). For the corresponding open times, the rate
theory yields 1/R

(0)
2 ≈ 708.11, which agrees in this case

somewhat worse, within a 10.2% error margin, with numerical
〈τo〉 ≈ 635.91 in Fig. 7(c). However, experimentalists can
reveal power law features related to bursting, if they set
p1 = 0.5 or somewhat lower. So, in Fig. 7(d) Pareto law
with γ = γ1γ2 ≈ 1.721 covers about 94% of the survival
probability decay of the closed time distribution, which ends
by an exponential tail with the weight of about 5.7% and
decay time constant τc, which weakly depends on the choice
of threshold; see Figs. 7(a) to 7(d). The Pareto law describes
durations of closed time intervals within a burst, whereas
the time constant τc corresponds approximately to the mean
time interval between the bursts, when the channels are well
closed. Clearly, the time constant of open times τo depends
very essentially on the choice of lower detection threshold.

Our results show that if the sensor motion would occur
in water, its dynamics would be reasonably fast, being in
hundreds of milliseconds range. Hence, it could serve as a
detector for quasistatic or slowly changing magnetic fields.
However, in cytosol the effective friction ηeff is enhanced dra-
matically for the particles of a typical size of magnetosomes.
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Kirschvink et al. estimated η̃eff = ηeff/η0 by a factor of
η̃eff = 100 [12,21]. If to just renormalize the Stokes friction
by this factor, the effective time scale τsc would enlarge
accordingly, τsc → (η̃eff + 1)τsc. Then our sensor would be
really too slow to be functional. However, accounting for
non-Markovian memory effects by a naive renormalization of
the friction coefficient is patently wrong within the context
of thermally activated dynamics, as it is well recognized
within non-Markovian generalizations of Kramers rate theory
[79–83]. Therefore, it is compelling to clarify the role of
low-dimensional non-Markovian memory effects.

B. Role of memory effects

Stochastic simulations of Eq. (9) were done for the follow-
ing additional parameters: α = 0.4 [59,60,72,73], ν0 = 104,
N = 9, and b = 10. Hence, τl = 10−4 and τh = 104. The
latter time is about 4.04 s for τsc ≈ 0.404 ms or about 9.05
s for τsc ≈ 0.905 ms. Furthermore, we used two values of ηeff ,
ηeff = 100 and ηeff = 1000, which correspond to two different
values of ηα = ηeffτ

α−1
h /gα in simulations, and the rotational

subdiffusion coefficients Dα ≈ 0.360 rad2/ms0.4 and Dα ≈
0.036 rad2/ms0.4 at τsc ≈ 0.404 ms or Dα ≈ 0.260 rad2/ms0.4

and Dα ≈ 0.026 rad2/ms0.4 at τsc ≈ 0.905 ms, respectively. In
this respect, one can enlarge both ηeff and τh (by using a larger
N ), while keeping ηα the same. For example, by taking N =
11, and enlarging τh to about 404 and 905 s, correspondingly,
we can keep ηα the same by enlarging ηeff from 100 to
approximately 1585 and from 1000 to approximately 15 850,
respectively. Furthermore, for the used parameters we have
τin ≈ 4.64 for ηeff = 100 and τin ≈ 0.01 for ηeff = 1000. For
τsc ≈ 0.404 ms, this corresponds to τin ≈ 1.88 ms (ηeff = 100)
or τin ≈ 0.04 ms (ηeff = 1000). Furthermore, for τsc ≈ 0.905
ms, this corresponds to τin ≈ 4.20 ms (ηeff = 100) or τin ≈
0.09 ms (ηeff = 1000).

The first striking universal feature of the influence of
viscoelastic memory effects is the emergence of a stretched
exponential distribution ci exp[−(τ/τi)βi ],0 < βi < 1 out of a
formerly exponential one; compare Fig. 6(c) and Fig. 8(a),
where ηeff = 100, for other parameters being the same in
both figures and detection thresholds set at the minima of
U (φ). In Fig. 8(a), the residence time distributions (RTDs)
become stretched exponential (Weibull distribution) to a good
degree, co ≈ 1, cc ≈ 1, except for some initial times; see
in the inset, where a deviation from linear dependence of
− ln P (τ ) ∝ (τ/τi)βi plotted on the double-logarithmic scale
becomes seen. For this choice of thresholds, we can compare
the results of non-Markovian rate theory (NMRT), namely the
Grote-Hynes result in Eqs. (16) and (17), with our numerics
for the particular memory kernel studied. As observed in
Ref. [47], the Grote-Hynes result is capable of describing
the most probable value of the logarithmically transformed
residence times, ln τ , even beyond the strict rate regime,
when RTDs become profoundly nonexponential. For the
case of Weibull distribution characterized by the survival
probability Pi(τ ) = exp[−(τ/τi)βi ] and non-Markovian rate
R(τ ) = −d ln P (τ )/dτ = βiτ

−1
i /(τ/τi)1−βi , the correspond-

ingly transformed distribution of y = ln τ has its maximum
at ymax = ln τi . Hence, in accordance with [47], NMRT is
expected to yield τi of Weibull distribution as τi = R−1

i .
For the results depicted in Fig. 8(a), the Grote-Hynes result
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FIG. 8. (Color online) Survival probabilities of open (black dia-
monds) and closed (blue open circles) times derived from numerical
data for the case μB = 0.3115, ψ = π , using the detection thresholds
defined by the minima of U (φ), p1 = p(φmin,1), p2 = p(φmin,2) for
(a) ηeff = 100 and (b) ηeff = 1000. Lines present the corresponding
stretched exponential, ci exp[−(τ/τi)

β

i ], fits with the parameters
shown in the plots. The mean residence times, as well as the
opening probability p = 〈τo〉/(〈τo〉 + 〈τc〉), are also displayed. Other
parameters: T = 0.1, lmax = 1.5, f0 = 1.5, l0 = 1.22, and m = 7
channels in the sensor cluster.

yields Ri = 0.8169 R
(0)
i , for the exact memory kernel, where

R
(0)
i is the overdamped Kramers result. It has been already

discussed above in relation to our numerical results presented
in Fig. 6(c). Hence, NMRT yields τ

(NMRT)
o,exact ≈ 396.17 and

τ
(NMRT)
c,exact ≈ 321.70 for the exact memory kernels. For the

memory kernels approximated by a sum of exponentials,
we obtain τ (NMRT)

o ≈ 395.30, τ (NMRT)
c ≈ 321.00. Notice that

the kernel approximation introduces an error of about 0.2%
only in theoretical NMRT results. The value τ

(NMRT)
o,exact ≈

396.17 agrees very well with τo = 397.57 in Fig. 8(a). The
difference is less than 0.4%. Furthermore, τ

(NMRT)
c,exact ≈ 321.70

somewhat overestimates numerical τc ≈ 267.08. However,
it agrees well with the numerical average 〈τc〉 ≈ 321.22.
Also for the results in Fig. 8(b), where we increase ηeff to
ηeff = 1000, for the same other parameters, NMRT yields
τ

(NMRT)
o,exact ≈ 2531.56 and τ

(NMRT)
c,exact ≈ 2055.68 for the exact mem-

ory kernels and τ (NMRT)
o ≈ 2450.84 and τ (NMRT)

c ≈ 1990.13 for
the approximate kernels. The error due to the memory kernel
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FIG. 9. (Color online) Survival probabilities of open (black dia-
monds) and closed (blue open circles) times derived from numerical
data for the case μB = 0.3115, ψ = π , using the detection thresholds
p1 = 0.5 and p2 = 0.9 for (a) ηeff = 100 and (b) ηeff = 1000. Lines
present the corresponding stretched exponential, ci exp[−(τ/τi)

β

i ],
Pareto law (24), and power law, ∼ τ−γ , fits with the parameters
shown in the plots. The mean residence times, as well as the
opening probability p = 〈τo〉/(〈τo〉 + 〈τc〉), are also displayed. Other
parameters: T = 0.1, lmax = 1.5, f0 = 1.5, l0 = 1.22, and m = 7
channels in the sensor cluster.

approximation now increases to about 3.2%. τ
(NMRT)
o,exact ≈

2531.56 agrees with τo ≈ 2566.0 derived from the numerical
data using maximum likelihood fitting within 1.4% error
margin. Also τ

(NMRT)
c,exact ≈ 2055.68 agrees with the maximum

likelihood value τc ≈ 1993.6 within a 3% error margin. Notice
that deviation from the numerical mean values, 〈τo〉 ≈ 4216.83
and 〈τc〉 ≈ 3410.36, in this case is very essential. In this
respect, NMRT describes the most probable ln τ generally
much better than the mean residence time 〈τ 〉. Only in the strict
rate regime or for βi close to one does NMRT describe well
〈τ 〉, which coincides with the effective inverse rate thus defined
and is also the so-called stationary flux-over-population rate
[83]. Our results confirm that NMRT is of a high predictive
value even beyond the strict rate regime [47,48]. What it cannot
do, however, is predict the form of nonexponential RTDs, or
detailed course of non-Markovian kinetics.

Furthermore, in Fig. 9 the results are depicted for the same
anomalous kinetics discussed in Fig. 8, but for the detection
thresholds p1 = 0.5 and p2 = 0.9 (set 4). For the smaller

value of ηα in Fig. 9(a), one can see, by comparison with
Fig. 6(d), that the initial Pareto law for the closed times is not
changed dramatically. This is because on the corresponding
initial time scale dynamics is nearly normal. The profound
changes are reflected by the tail of the closed time survival
probability and by the whole open time distribution, which
are stretched exponential. The average residence times are
only slightly enlarged. However, with the increase of ηα some
further changes become detectable in Fig. 9(b). Namely, the
mean residence times increase, which is expected, however,
not so strongly as for another detection threshold choice;
compare with Fig. 8(b). Next, an initial power law regime can
be revealed in the distribution of open times, and the weight of
a stretched exponential tail is only co ≈ 0.359 versus co ≈ 1
in Fig. 9(a), where the stretched exponential covers practically
over all essential transition times [except for very short times;
see the inset in Fig. 8(a)]. Also, an intermediate power law
emerges for closed times in Fig. 9(b), and the weight of
the stretched exponential tail becomes smaller: cc ≈ 0.017 in
Fig. 9(b) vs cc ≈ 0.064 in Fig. 9(a). Moreover, the initial Pareto
law is also changed in Fig. 9(b). This is because for larger
ηeff = 1000 diffusion is not normal anymore on the related
time scale. Similar characteristic features hold also for other
choices of thresholds, see the Supplemental Material [107].

For the same detection thresholds, but a larger μB =
0.4163 the results are depicted in Figs. 10(a) and 10(b). These
results are to be compared with the results in Fig. 7(d), in
the absence of non-Markovian effects. Again, for a smaller
ηα (ηeff = 100), the mean residence times are almost not
influenced, although the initial power law parameters in the
survival probability of closed tomes are somewhat changed.
The most essential typical change is the conversion of expo-
nential RTD of open times and an exponential tail of the closed
time distribution into the stretched exponential dependencies.
The larger ηα in Fig. 10(b) leads to expectedly larger mean
residence times and smaller βi of stretched exponential tails.
Notice also the emergence of an intermediate power law for
the closed times and an initial power law regime for the open
times. Furthermore, survival probabilities corresponding to
the thresholds set in accordance with the U (φ) minima are
shown in Fig. 11. They are clearly stretched exponentials in
Fig. 11(a) with the parameters derived using the maximum
likelihood criterion. In this case, NMRT predicts τ

(NMRT)
o,exact ≈

887.93 and τ
(NMRT)
c,exact ≈ 101.90 for the exact memory kernels

and τ (NMRT)
o ≈ 885.68, τ (NMRT)

c ≈ 101.64 for the approximate
ones. τ

(NMRT)
o,exact agrees with the numerical τo ≈ 833.8 within a

6.1% error margin, while the agreement of τ
(NMRT)
c,exact with the

numerical τc ≈ 92.84 is worse, with about 8.9% discrepancy.
Interestingly, in this case the mean values, 〈τo〉 ≈ 883.38 and
〈τo〉 ≈ 107.73 agree with the results of NMRT theory better,
within 0.51% and 5.72% error margins for the exact memory
kernels. This shows that for larger βi , like β0 = 0.883 and
βc = 0.788, in this plot the difference between τi determined
from the most probable ln τi and the corresponding mean
values 〈τi〉 can be within the actual statistical errors of
our simulations. In Fig. 11(b), the results for ηeff = 1000
are presented at the same other parameters. In this figure,
a maximum likelihood fit by a stretched exponential with
β0 ≈ 0.549 and τo ≈ 5.917 × 103 is shown for the open time
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FIG. 10. (Color online) Survival probabilities of open (black di-
amonds) and closed (blue open circles) times derived from numerical
data for the case μB = 0.4346, ψ = π , using the detection thresholds
p1 = 0.5 and p2 = 0.9 for (a) ηeff = 100 and (b) ηeff = 1000. Lines
present the corresponding stretched exponential, ci exp[−(τ/τi)

β

i ],
Pareto law (24), and power law, ∼τ−γ , fits with the parameters
shown in the plots. The mean residence times, as well as the
opening probability p = 〈τo〉/(〈τo〉 + 〈τc〉) are also displayed. Other
parameters: T = 0.1, lmax = 1.5, f0 = 1.5, l0 = 1.22, and m = 7
channels in the sensor cluster.

distribution. The closed time kinetics is more complex. It
reveals an intermediate power law, γ ≈ 0.356, and a stretched
exponential tail and therefore is not expected to be described
by NMRT. Let us compare the analytical NMRT results
with the numerical results depicted in Fig. 11(b). NMRT
yields τ

(NMRT)
o,exact ≈ 6.817 × 103 and τ

(NMRT)
c,exact ≈ 0.782 × 103 for

the exact memory kernels and τ (NMRT)
o ≈ 6.553 × 103 and

τ (NMRT)
c ≈ 0.752 × 103 for the approximate memory kernels

used in simulations. The error introduced by the memory
kernel approximation is about 3.9% in this case. The numerical
mean values obtained on 1267 transitions (which required
about 9 weeks of simulations), 〈τo〉 ≈ 9.403 × 103 and 〈τc〉 ≈
1.207 × 103, are larger than τ (NMRT)

o,c by 43.5% and 60.5%,
correspondingly. At the same time, the maximum likelihood
value τo ≈ 5.917 × 103 deviates from τ (NMRT)

o by about 6.6%
only. However, NMRT clearly fails to describe characteristic
features of the closed time distribution, which has a significant
power law part. Two-dimensional densities corresponding to
Fig. 11(a) and Fig. 11(b) in the Supplemental Material [107]
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FIG. 11. (Color online) Survival probabilities of open (black di-
amonds) and closed (blue open circles) times derived from numerical
data for the case μB = 0.4363, ψ = π , using the detection thresholds
defined by the minima of U (φ), p1 = p(φmin,1), p2 = p(φmin,2) for
(a) ηeff = 100 and (b) ηeff = 1000. Lines present the corresponding
stretched exponential, ci exp[−(τ/τi)

β

i ], and power law fits with the
parameters shown in the plots. The mean residence times are also
shown along with the opening probability p = 〈τo〉/(〈τo〉 + 〈τc〉).
Other parameters: T = 0.1, lmax = 1.5, f0 = 1.5, l0 = 1.22, and
m = 7 channels in the sensor cluster.

(see Figs. 3 and 4 therein, respectively) provide some important
additional insight in this respect.

IV. DISCUSSION

We generalized a gating spring model of ion channels
open-shut dynamics originally proposed for ion channels in
stereocilia of hair cells [34] in application to hypothetical
ion channels involved in magnetosensing [12]. Our modeling
displays several generic features beyond the particular model
considered. This makes it pertinent to other ionic channels
in living cells, where a generalized coordinate of gating
variable and sensor can be very different. For example, the
sensor is presented by charged α helices in the case of
voltage-sensitive ion channels [105]. The first striking generic
feature is that the sensor moves typically in a viscoelastic
environment, rather than a simple fluidlike medium. In the
present model this is cytosol. However, it can also be a
biological membrane or ion channel protein macromolecule
itself, with a sensory part relocating inside the macromolecule.
We showed that viscoelasticity alone can explain the physical
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origin of stretched exponential and power law distributions
of open and shut residence times. As a matter of fact, they
emerge already within a standard double-well description of
the sensor energetics with well defined potential wells, rather
than due to a flat or rugged free energy landscape (another
possibility). The neglect of the medium’s viscoelasticity leads
immediately to distinct single-exponential distributions of the
sensor residence times within our model; see Figs. 6(c) and
7(c). Hence, viscoelasticity can be the primary physical reason
of complex nonexponential gating dynamics, the explanation,
which has apparently been overlooked thus far. Second, we
treat the gating spring elasticity within a nonlinear FENE
model, where a maximal extension length of the linker is taken
into account. It is more physical than a standard harmonic
spring model. Next, the probability p(φ) of a channel to be
open does not reflect one-to-one the characteristic features of
the sensor potential U (φ). This is, in fact, a generic feature
of the gating spring model, which is not related in principle
to viscoelasticity or nonlinear elastic effects. However, this
fundamental feature has also been overlooked earlier. In our
model, the value p(φ) = 0.5 when the channel is half open
belongs to the attraction domain of sensor open state, rather
than to the potential barrier (transient state) separating two
domains of attraction, and the barrier value pb = p(φmax) can
be as small as pb ∼ 0.1, depending on μB and ψ . Even in
the Markovian memoryless case, this leads to a profoundly
bursting character of the ion current recordings reflecting
p[φ(t)] fluctuations within the open state of the sensor; see
Fig. 5. Theorists can believe that the most rigorous way to
calculate the RTDs in open and closed states of a channel is to
use the detection thresholds placed at the minima of U (φ). For
a purely Markovian dynamics such a procedure leads to single-
exponential distributions of residence times of the sensor [see
Figs. 6(c) and 7(c)], with the mean residence times given by
the inverse of Kramers rate. However, experimentalists can
proceed differently. After detecting a bursting character of
ion current fluctuations, like in our Fig. 5, an experimentalist
is expected to put one detection threshold at p1 = 0.5 and
another one somewhere at p2 > p1 [108], e.g., at p2 = 0.9,
as in our Figs. 6(d) and 7(d). Then he or she would find a
Pareto distribution (24) of closed residence times within a
burst with power law exponents γ = γ1γ2 ≈ 1.45 in Fig. 6(d)
and γ = γ1γ2 ≈ 1.72 in Fig. 7(d) within the main power
law regimes. One expects that this power law will end in
an exponential tail, which corresponds to interburst distances
associated with large-amplitude relocations of sensor between
the minima of U (φ). Indeed, the tail is single exponential
in Fig. 7(d), with weight cc ≈ 0.057 and τc ≈ 73.48, which
roughly corresponds to 〈τc〉 ≈ 79.43 in Fig. 7(c). A corre-
sponding single-exponential fit in Fig. 6(d) is, however, not that
good, and a Pareto law fit at the same weight cp = cc ≈ 0.079
and γ = γ1γ2 ≈ 1.42 is visually better. This happened clearly
by chance in a very particular case. Indeed, by choosing
different thresholds in Figs. 6(a) and 6(b) one can see that
there generally exists an exponential tail with a time constant
which roughly corresponds to 〈τc〉 in Fig. 6(c). This latter one
is nicely described by the inverse Kramers rate. The weight
cc depends strongly on the choice of thresholds. The open
times are nearly exponentially distributed in all parts of Figs. 6
and 7, with the time constants which depend strongly on the

threshold choice. Important is that even if the mean residence
times and the detailed structure of survival probabilities
do strongly depend on the choice of thresholds, the time
averaged portion of open time p = 〈τo〉/(〈τc〉 + 〈τo〉) is not
changed dramatically. Its value approximately corresponds
to the ensemble average depicted in Fig. 3 at ψ = π . This
implies not only ergodicity, but also that a two-state reduction
of continuous state dynamics is a reasonable one. With τsc ≈
0.404 ms and τsc ≈ 0.905 ms estimated for the rods consisting
of n = 5 and n = 7 magnetosomes, correspondingly (see in
Appendix B) one has 〈τc〉 ≈ 7.15 ms and 〈τo〉 ≈ 9.62 ms in
Fig. 6(d), as well as 〈τc〉 ≈ 4.16 ms and 〈τo〉 ≈ 30.34 ms
in Fig. 7(d). These are typical time scales for ion channel
gating dynamics. However, with the bursts neglected, the
characteristic times lie in the hundreds of milliseconds range,
which defines a characteristic time scale of the reaction of such
a detector on changes of external magnetic field.

Furthermore, even in the absence of memory effects our
model can explain the origin of power law distributions of
closed times, ψc(τ ) ∝ τ−δ , with δ = 1 + γ in some range
around δ = 2.5, as our numerical results imply. Similar burst-
ing fluctuations with δ ≈ 2.24 and exponentially distributed
open times were indeed found in the locust large conductance
BK channels [40]. A proper generalization for BK channels
is, however, out of the scope of this work. It is reserved for the
future. In this respect, one should mention that a very different
phenomenological model was suggested earlier to rationalize
bistable dynamics of BK channels in terms of a fractional
conformational dynamics [46].

Our sensor operates, however, in viscoelastic cytosol, and
a common line of reasoning is to account for the enlarged
effective cytosol viscosity by using ηeff instead of η0 within
a Markovian Langevin dynamics [12]. This would mean the
enlargement of τsc and the corresponding 〈τc〉 and 〈τo〉 by
about the same factor. Then, already for ηeff = 100η0 [12] the
mean opening and closing times would become so large that
such a magnetosensitive channel could not be of any potential
relevance as a biosensor. It would be far too slow. However,
our results obtained by a proper treatment of non-Markovian
memory effects show that such simplistic estimations can be
very misleading. Our model channel can yet be functional in
a viscoelastic environment. It must be stressed that ηeff can
only be finite if subdiffusion is transient and normal diffusion
is established again for t � τh. The central role is played, in
fact, by the fractional friction coefficient ηα ∼ ηeffτ

α−1
h and

not by ηeff . Given the same ηα , ηeff ∼ τ 1−α
h . By comparison

of the results in Fig. 9(a) with the corresponding Markovian
case depicted in Fig. 6(d) one establishes that the mean open
and closed times are changed a little, for ηeff = 100η0 and
τh = 4.04 s (n = 5), or τh = 9.05 s (n = 7). Also, the initial
Pareto law regime for the closed times is almost not affected
in Fig. 9(a). This is because non-Markovian memory effects
are still not at play on the relevant time scale smaller than
τin of free subdiffusion. Diffusion is normal on that time
scale. The latter feature is, however, not universally valid
(see below) because (i) τin ∼ τh(η0/ηeff)1/(1−α) is strongly
influenced by ηeff at fixed τh and (ii) the transition from
initially normal dynamics to subdiffusional is also strongly
affected by the presence of potential. Furthermore, the tails
of distributions are changed dramatically. They became a
stretched exponential, in agreement with [47,48], as a major
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manifestation of viscoelastic effects. The stretched exponential
tail of the closed time distribution describes the distribution of
interburst time intervals, as can be understood from Fig. 8(a),
where the bursts are neglected. The distribution of both open
and closed times is almost stretched exponential in Fig. 8(a),
except for an initial stage (see the inset in this figure). The
mean residence times are somewhat enhanced with respect to
the Markovian case in Fig. 6(a), in a good agreement with
NMRT. The other choices of thresholds in Figs. 1(a) and
2(a) of the Supplemental Material [107] confirm these main
features. Moreover, for a larger μB in Fig. 10(a) one observes
similar features by comparison with Fig. 7(d): The mean
residence times are about the same (within typical numerical
error margins), and the exponential tails turn into the stretched
exponential ones. However, the initial Pareto distribution in
this cases is changed.

The observed features provide a general physical explana-
tion for the emergence of stretched exponential distributions
in the statistics of ion channel fluctuations, as observed first by
Liebovitch et al. [35]. Our theory explains it as a manifestation
of viscoelastic memory effects for the sensor dynamics in
cytosol. This explanation is rather general. It is expected to
hold also for other models of ion channel gating dynamics
with the sensor moving within the membrane, or within the
membrane protein itself. One should stress that the discussed
results for fixed values of ηeff and τh are not expected to visibly
change if we enlarge τh and ηeff so that ηα is not changed. This
is because the main features we discuss are observed for the
time intervals less than τh in our figures. A typical length
of single stochastic trajectories used to obtain these figures
exceeds greatly τh, and the diffusion becomes again normal
on that time scale. What does matter indeed is the anomaly
of diffusion caused by the memory of viscoelastic medium
on the relevant time scales of transitions. For example, if we
enhance τh by a factor of 100 (using two additional auxiliary
Brownian particles in our simulations) and enhance ηeff by
the factor of 1001−α ≈ 15.9 (for the used α = 0.4), ηα is
not changed, and we do not expect any significant changes
of the results discussed. However, if we increase ηeff by the
factor of ten at the same τh, ηα is tenfold increased, and this
results into the further qualitative changes observed. What
does matter indeed even for a finite τh is the fractional friction
coefficient ηα .

Indeed, for ηeff = 1000 with the same τh, the qualitatively
new additional features are observed in the panel (b) of Figs. 9
and 10; see also Figs. 1(b) and 2(b) of Supplemental Material
[107]. First, an initial power law emerges in the open time
distribution, and a novel intermediate power law emerges in
the closed time distribution. The mean residence times are
essentially increased for the case with detection thresholds
placed at U (φ) minima; see Figs. 8(b) and 11(b). However,
in Figs. 9(b) and 11(b) they are a little increased (less than
doubled). Hence, the gating dynamics of our model channel
remains in a physiologically acceptable range. Such a sensor
would slowly operate, yet be suitable to detect quasistatic
or slowly changing magnetic fields. We see also how inter-
mediate power law distributions can emerge naturally due to
viscoelastic memory effects. Clearly, our theoretical approach
is not restricted by a particular model of magnetosensitive ion
channels we proposed and studied in this work.

V. CONCLUSIONS

In this paper we proposed and studied a model of magne-
tosensitive ion channels featured by a bistable magnetosensor
moving in viscoelastic cytosol. It is shown that a cluster of
ionic channels gated by such a sensor can operate for realistic
parameters and provide a tentative explanation for biological
manifestations of the influence of weak magnetic fields, in
particular, such as navigation of different biological species in
the magnetic field of Earth, as suggested earlier by Kirschvink
et al. Our model provides also a natural explanation of the
origin of stretched exponential and power law distributions
in the statistics of ion current fluctuations as ones caused
by the viscoelasticity of the medium in which the sensor
operates. We believe that our study will spark a further
interest, both theoretical and experimental, in the hypothesis
of magnetosensitive ion channels and in the physical modeling
of anomalous dynamics of ion channels and other proteins in
living cells.
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APPENDIX A: ESTIMATION OF MAGNETIC MOMENTS
AND MAGNETIC FIELD STRENGTHS

Consider a sphere of magnetite with radius R and saturation
magnetization Ms = 4.8 × 105 A/m. Assuming that it is mag-
netically ordered makes it possible to calculate its magnetic
moment as μ = (4/3)πR3Ms , which for a sphere of radius
R = 100 nm yields μ ≈ 2.01 × 10−15 A m2. The energy of
such a sphere in the magnetic field of Earth estimated as Be =
50 μT is EM = μBe ≈ 10−19 J ≈ 24.5 kBTr , with kBTr =
4.1 × 10−21 J = 4.1 pN nm. The magnetic field produced by
such a magnetic nanoparticle at the distances r = |�r| � R from
its center is the same as one of the point magnetic dipole μ

located at its center [109],

�B(�r) = μ0

4π

[
3�r( �μ�r)

r5
− �μ

r3

]
, (A1)

where μ0 = 4π × 10−7 T m/A is magnetic permittivity of
vacuum. This field is highly anisotropic and its maximal value
near the surface of particle is

Bmax = μ0

2π

μ

R3
= 2

3
μ0Ms ≈ 0.402 T. (A2)

This is a very large field as compared with Be. Notice that it
does not depend on the particle radius and scales as Bmax(R/r)3

with the distance r � R from its center. Hence, up to the
distances of about r = 20R the maximum of the field produced
by such a magnetic nanoparticle is larger than external Be.
For R = 100 nm, the corresponding distance is about 2 μm,
a typical size of the bacterial cell. Given large EM , such a
particle is easily reoriented in the magnetic field of Earth.
Together with a large Bmax this provides a ground for the
assertions that even quantum mechanisms can be mediated by
the endogenous magnetic field of a magnetosome, rather than
directly caused by the external magnetic field of Earth. Also,
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the spatial gradient of such an endogenous magnetic field is
large on nanoscale.

Furthermore, the magnetic energy of dipole-dipole interac-
tion of two identical nanospheres separated by distance r � 2R

is

Edd = Vdd (sin ϕ1 sin ϕ2 − 2 cos ϕ1 cos ϕ2) (A3)

in the approximation of point dipoles. Here one assumes for
simplicity that the magnetic moments lie in a common plane
making angles ϕ1 and ϕ2 with the line connecting their centers.
Furthermore,

Vdd = 10−7 16

9
π2M2

s R3

(
R

r

)3

, (A4)

which for the spheres in close contact, r = 2R, is

Vdd = 10−7 2

9
π2M2

s R3. (A5)

For R = 100 nm, this yields Vdd ≈ 5.05 × 10−17 J ≈ 1.23 ×
104 kBTr . This is a huge amount of energy. Even for R = 10
nm, Vdd ≈ 12.3 kBTr is still large. This explains why such
magnetic nanoparticles tend to make magnetically ordered
chains at ambient temperatures, which are clearly seen in
magnetotactic bacteria.

Several further remarks are required. First, R = 100 nm
is about the maximal size of a spherical particle made of
magnetite which possesses a permanent magnetic moment
at ambient temperatures [10,11]. Larger spherical particles
do not possess a permanent magnetic moment. They are
in a multidomain superparamagnetic state. However, if the
particle is elongated it can still be in a ferrimagnetic state at
ambient temperatures. Next, the preferable direction of the
magnetic moment is not completely fixed by the magnetic
anisotropy of a Fe3O4 crystal and the form of a particle.
When thermally agitated it can flip its direction to the opposite
one; i.e., small nanoparticles are, in fact, intrinsically bistable.
The corresponding thermal magnetic reorientation time (Neel
relaxation time) exponentially depends on the particle volume.
So, for R = 11.5 nm it is about 0.1 s only. However, already
for R = 15 nm it is as large as 109 s ([92], p. 125), or about

32 yr; i.e., a metastable state can be considered as physically
stable from a practical point of view. Furthermore, the physical
anisotropy of a nanoparticle, e.g., an elongated ellipsoidal
form, or the form of a rectangular parallelepiped further
stabilizes the single domain structure. Many biomagnetite
particles have proper sizes to be in the ferrimagnetic state.
Typical sizes considered in this paper ensure the ferrimagnetic
state at room and physiological temperatures. Notice also that
the dipole-dipole interaction can also dramatically stabilize
ferromagnetic order for small particles like R = 10 nm
assembled into a chain.

APPENDIX B: ESTIMATION OF CHARACTERISTIC
PHYSICAL TIME SCALE OF DYNAMICS

Here we estimate the rotational friction coefficient of a rod
of length L and diameter d in fluid of viscosity ζ0 following
[110]. For this we use the rotational “end-over-end” diffusion
coefficient D0 [110] and the Einstein relation η0 = D0/(kBT ).
As a result,

η0 = πζ0L
3

3[ln p + C]
, (B1)

where p = L/d is the aspect ratio and

C = −0.662 + 0.917/p − 0.050/p2 , (B2)

which is valid for p = 2–20. For a magnetosome of size a ×
b × b and the rod of length L = na, we approximate d ≈ b,
and p ≈ na/b. Hence,

η0 ≈ n3 πζ0a
3

3[ln(na/b) + C]
(B3)

and

τsc ≈ n3 ζ0a
3

U0

π

3[ln(na/b) + C]
. (B4)

In water, ζ0 ∼ 1 mPa s at T = 20 ◦C, and for U0 = 41 pN nm,
a = 55 nm, we obtain ζ0a

3/U0 ≈ 4.058 μs. This yields for
b = 44 nm and n = 5, τsc ≈ 0.404 ms and for n = 7, τsc ≈
0.905 ms.
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