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Dynamics of a single red blood cell in simple shear flow
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This work describes simulations of a red blood cell (RBC) in simple shear flow, focusing on the dependence
of the cell dynamics on the spontaneous curvature of the membrane. The results show that an oblate spheroidal
spontaneous curvature maintains the dimple of the RBC during tank-treading dynamics as well as exhibits
off-shear-plane tumbling consistent with the experimental observations of Dupire et al. [J. Dupire, M. Socol, and
A. Viallat, Proc. Natl. Acad. Sci. USA 109, 20808 (2012)] and their hypothesis of an inhomogeneous spontaneous
shape. As the flow strength (capillary number Ca) is increased at a particular viscosity ratio between inner and
outer fluid, the dynamics undergo transitions in the following sequence: tumbling, kayaking or rolling, tilted
tank-treading, oscillating-swinging, swinging, and tank-treading. The tilted tank-treading (or spinning frisbee)
regime has been previously observed in experiments but not in simulations. Two distinct classes of regime are
identified: a membrane reorientation regime, where the part of membrane that is at the dimple at rest moves to the
rim and vice versa, is observed in motions at high Ca such as tilted tank-treading, oscillating-swinging, swinging,
and tank-treading, and a nonreorientation regime, where the part of the membrane starting from the dimple stays
at the dimple, is observed in motions at low Ca such as rolling, tumbling, kayaking, and flip-flopping.
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I. INTRODUCTION

Experiments in the past several decades have established
that in shear flow at low shear rates a suspended red blood
cell (RBC) behaves as a rigid body and undergoes a tumbling
motion (here denoted TU) [1], while at higher shear rates in
a sufficiently viscous fluid its orientation takes on a constant
angle with respect to the flow direction and the membrane
rotates about the interior in a so-called tank-treading (TT)
motion [1–4]. More detailed observations have revealed a
number of variations on these basic motions. Goldsmith
and Marlow [1] observed a rolling motion of the RBC in
which the axis of revolution of the RBC is oriented in the
vorticity direction of shear flow. Bitbol [5] and Yao et al.
[6] made very similar observations. Recently, Abkarian et al.
[7] reported a swinging motion in which the orientation of
the cell oscillates about a fixed angle while simultaneously
tank-treading. It has been shown by Dupire et al. [8,9] that
there are domains in the parameter space in which the RBC
dynamics is chaotic and dependent on the initial conditions.
They also showed that during motions such as tumbling
the cell is not necessarily reflection symmetric with respect
to the shear plane. The observation of this wide array of
motions even for an isolated particle in a simple flow field
raises serious challenges for computational and theoretical
approaches to the understanding of RBC dynamics in flow. The
aim of this work is to understand the dependence of dynamical
motion on the specifics of the membrane as well as the flow
properties.

Jeffery analyzed the motion of a rigid axisymmetric particle
in simple shear in the absence of fluid or particle inertia [10].
The particle will take on one of infinitely many periodic orbits,
depending on its initial orientation. Each orbit is characterized
by an orbit constant C that can take values in 0 � C < ∞;
when C = 0 the axis of revolution aligns with the vorticity
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direction for all time and the particle rolls, and when C = ∞
the axis of revolution traces out the unit circle on the shear
plane and the particle tumbles. For intermediate values of C,
the particle undergoes what is often called a kayaking motion
during which the axis of revolution of the particle rotates
about the vorticity axis. Some motions of RBCs are similar
to Jeffery orbits, but many, such as tank-treading or swinging
are not—further examples of motions that cannot be mapped
onto Jeffery orbits are described below. An important first
step in understanding the dynamics of fluid-filled deformable
particles such as capsules, vesicles, and cells was taken by
Keller and Skalak [11] (KS), who studied a model of a
fluid-filled ellipsoid in shear. For an ellipsoid of a given shape,
by equating the rate of work done by the external fluid with
the rate of energy dissipation in the internal fluid, they were
able to predict a transition between a tumbling motion (as
would happen for a rigid ellipsoid) to a tank-treading motion,
as the viscosity of the inner fluid was decreased. Skotheim and
Secomb [12] and Abkarian et al. [7] extended the KS theory
by introducing an elastic membrane to the ellipsoidal particle
model and were able to predict an additional “swinging”
motion, as well as intermittency during the transitions between
different motions. It should be noted that the KS theory and
its variants are two dimensional, so out-of-shear plane RBC
motions such as those observed by Dupire et al. [9] cannot be
predicted.

A number of efforts have been made to understand the
complex RBC dynamics in shear flow via detailed direct
simulations of the fluid and membrane dynamics. To model
the RBC appropriately, five key features need to be specified:
(i) the viscosity ratio λ between the inner and outer fluids,
(ii) the biconcave rest shape of the cell, (iii) viscoelasticity
[13,14] of the RBC membrane, (iv) the natural state of each
point on the RBC membrane, and (v) constitutive equations
for stretching (tangential) and bending (normal) elasticity.
Research over the past several decades has settled the first
two points; however, the last three are still under active study.
The present work focuses on the last two points.

1539-3755/2015/92(4)/042710(19) 042710-1 ©2015 American Physical Society

http://dx.doi.org/10.1073/pnas.1210236109
http://dx.doi.org/10.1073/pnas.1210236109
http://dx.doi.org/10.1073/pnas.1210236109
http://dx.doi.org/10.1073/pnas.1210236109
http://dx.doi.org/10.1103/PhysRevE.92.042710


KUSHAL SINHA AND MICHAEL D. GRAHAM PHYSICAL REVIEW E 92, 042710 (2015)

To help clarify nomenclature we pause at this point to
provide a number of definitions. In general a natural shape
or natural state for an element of an elastic material is one
from which any deformation would lead to elastic restoring
forces. For a complex structure such as an RBC membrane it
is possible that the natural shape for shear elasticity (tangential
deformations) may differ from that for bending elasticity
(normal deformations) so the overall natural shape of an
element results from the balance of bending and shear forces.
Consistent with usage in the vesicle literature as described
below, we denote the natural shape for bending elasticity as
the spontaneous curvature. Finally, the equilibrium shape or
rest shape of the RBC is determined by the interplay between
membrane area, enclosed volume, and membrane mechanics.
At rest, elements of the membrane could be under stress (i.e.,
not in their natural state), but the forces acting on all elements
are in equilibrium.

Early work of Goldsmith and Marlow [1] and recent
experiments of Dupire et al. [9] showed that the RBC
maintains its biconcave shape even during tank-treading and
hypothesized that this effect may come from anisotropic elastic
properties or an inhomogeneous natural shape. Similarly, it
had been noted earlier by Fischer [15] that RBCs have “shape
memory” after experimentally observing that the same part
of the membrane forms the dimple after constant shearing for
many hours. The return of material points to the same positions
relative to the equilibrium shape of the cell implies that
material elements at different positions have different natural
shapes. Shape memory could arise from spatial variations
in either the natural state for shear elasticity or for bending
elasticity or both.

In a first attempt to explain the biconcave shape of the
RBC, Canham [16] proposed that the minimization of bending
energy of the membrane would explain the stability of the
biconcave shape. However, starting from the same volume,
oblate and prolate spheroids will evolve into a biconcave
discoid and a dumbbell, respectively, as volume is reduced,
with a dumbbell shape having lower energy and thus being
a more stable shape; this is the opposite of what one is
looking for. Helfrich et al. [17–19] suggested the need for
a spontaneous curvature having a negative value such that
a biconcave shape is stable. In these and many subsequent
treatments, the spontaneous curvature was assumed to be
constant over the entire surface and treated as a free parameter
that can be chosen in order to fit the RBC shape. Zarda et al.
[20] studied both biconcave and spherical spontaneous shapes
and concluded that for a spherical shape, an unrealistically
high value of bending modulus would be required to explain
the experimentally observed shape of osmotically swollen
RBCs. A biconcave spontaneous shape on the other hand is
able to reproduce experimental swollen shapes in the range
of experimentally observed bending modulus. Fischer et al.
[21] concluded that neither proposal of sphere or biconcave
spontaneous shape explains all the shapes obtained in the
swelling experiment of the RBC but inclined toward the
biconcave shape as it reproduces shapes observed in swelling
experiment for the experimentally known shear and bending
moduli.

Using an area-difference-elasticity (ADE) model that, in
addition to including shear and bending elasticity also takes

account of the change in area of the inner and outer leaflets of
the cell membrane, Lim et al. [22] showed that the biconcave
equilibrium shape is reached starting from an oblate spheroid
having the same surface area A as the RBC and reduced volume
V0[= Vob/(A3/2/3

√
4π )] of 0.95, where Vob is the volume of

oblate spheroid. If an oblate spheroid is indeed the spontaneous
shape, then the resulting curvature would not be uniform over
the surface. Note that a spontaneous shape that is spatially
varying (like an oblate spheroid) but still close to a sphere leads
to a low energy barrier between dimple and rim due to weak
inhomogeneity, such that weak shear flow may generate tank
treading during which the biconcave shape is preserved. The
choice of spontaneous shape is still far from settled and future
experiments may shed some light on the issue. In this work,
we will address the issue of spatially varying spontaneous
membrane curvature and how it will affect the dynamics of the
RBC under simple shear flow.

Now we turn to a brief review of simulations of RBCs in
shear. Although attempts to understand the RBC dynamics
numerically spans the past two decades [23–30], most of these
works focused primarily on RBC dynamics in the case where
the RBC shape is symmetric across the shear plane (or the
dimple is centered on the shear plane). Recently, Dupont et al.
[31] showed that an elastic capsule with a prolate spheroid
rest shape with its axis of symmetry oriented off of the
shear plane will reach a unique final dynamical motion for
all initial orientations. Depending on Ca, they reported three
final dynamical states: (i) rolling for lower Ca, (ii) wobbling
in which capsule precesses around vorticity axis as Ca is
increased, and (iii) a swinging-oscillating motion in which
the long axis of capsule oscillates around the shear plane with
amplitude of oscillation decreasing with increase in Ca and
resulting in a in-plane swinging motion at high Ca. Wang
et al. [32] studied off-plane motion of oblate and prolate
capsules and concluded that the final dynamical state could
depend on the initial inclination angle. Similarly, Cordosco
and Bagchi [33] reported off-plane motion of oblate, prolate,
and biconcave capsules. Unlike Dupont et al. [31] and Wang
et al. [32], they included membrane bending stiffness in their
formulation and considered a spatially uniform spontaneous
curvature in case of biconcave capsules. They observed rolling
as a dominant mode in the physiological relevant viscosity
ratio case λ ∼ 5, tank-treading or wobbling mode at λ < 1 and
an intermittent regime at low Ca and low λ where dynamics
are dependent on initial orientation. It has to be noted that
both Bitbol [5] and Dupire et al. [9] experimentally observed
rolling dynamics in a dextran solution where the viscosity ratio
was less than unity. The discrepancy between simulation and
experiment may result from the use of a spatially uniform
spontaneous curvature that corresponds to a biconcave shape
[34]. In order to model the RBC membrane correctly, an
assumption of the spontaneous shape has to be made and
finding the appropriate shape has been a challenge for both
theoreticians and experimentalists.

Recently, attempts were made to understand the effect of
spontaneous shape on the final dynamics of the RBC. Peng
et al. [35] studied the effect of the nonbiconcave spontaneous
shape on the RBC dynamics and concluded that for a RBC
to retain its biconcave shape during tank-treading, as pointed
out by Dupire et al. [9], the spontaneous curvature has to be
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nonbiconcave. With a biconcave spontaneous curvature, under
no condition were they able to achieve tank-treading without
significantly disturbing the initial shape. Cordosco et al. [36]
also studied nonbiconcave spontaneous shapes and concluded
that the spontaneous shape makes a significant difference in
cell dynamics depending upon the viscosity ratio. They saw
the dimple in the RBC remain intact for both the biconcave and
oblate spontaneous shapes. Though Peng et al. and Cordasco
et al. explored RBC dynamics with nonbiconcave spontaneous
curvature, in both works, they imposed a spatially uniform
spontaneous curvature c0.

RBC membranes differ from model lipid bilayers in that
they have embedded proteins with an underlying spectrin
cytoskeleton and an asymmetric bilayer leaflet composition
[37]; all of these have been shown to modify c0 [38–41].
In particular, proteins have been shown to preferentially
bind via curvature-sensing mechanism [42]. Based on this
evidence, one may argue c0 will be spatially inhomogeneous.
Though shape memory originating from shear elastic energy
is expected to be dominant, we show that the shape memory
arising from the inhomogeneity in the spontaneous curvature
plays an important role as well.

One possible reason for this counterintuitive result is that all
the nontrivial dynamics of a deformable RBC in flow might be
viewed in the following light: The dynamics of a rigid RBC in
shear are highly degenerate, because there are infinitely many
possible Jeffery orbits for the cell to follow, each corresponding
to a different orbit constant. This degeneracy is a consequence
of the Stokes flow reversibility constraint for a rigid object in
flow, and deformability removes this constraint, breaking the
degeneracy. How this degeneracy is broken depends on the
specific details of the elasticity of the cell: evidently, different
elastic behavior can break the degeneracy in different ways.

In the present work we focus on how RBC dynamics in
shear depend on the specifics of the model, e.g., spontaneous
curvature as well as parameters such as Ca, λ, and initial
orientation. The rest of the paper is organized as follows:
in Sec. II, we present the RBC model and the numerical
algorithm. This is followed by the validation of our numerical
method for bending calculation and RBC model in Sec. III.
Next, in Sec. IV we present detailed results of single RBC
dynamics in simple shear flow. Concluding remarks are
presented in Sec. V.

II. MODEL FORMULATION

A. Red blood cell model

We consider an isolated fluid-filled deformable cell with
a biconcave discoid rest shape between two parallel plates
in linear shear flow as shown in Fig. 1. The plates are far
enough apart that the simulations essentially represent the
result for the unbounded domain. The discoid radius is a,
which for a human RBC is about 3.9 μm; further discussion
of how the rest shape of the cell is specified will be given
below. The undisturbed flow velocity in simple shear flow is
given as u = γ̇ y, where γ̇ is the wall shear rate. The interior
and suspending fluids are assumed to be incompressible
and Newtonian with viscosity λμ and μ, respectively. The
suspending fluid, blood plasma, is generally considered to

FIG. 1. (Color online) Schematic of the 3D orientation of an
RBC. The initial angle between the shortest principal axis of inertia
ψ3 of the RBC and the vorticity direction (z axis) is ξ0, and the angle
between the flow direction (x axis) and the projection of the axis of
revolution onto the shear plane is θ0.

have viscosity of about 1.10–1.35 mPa s [43] and the interior
cytoplasmic viscosity is 5.8–5.95 mPa s [44,45]. The RBC
membrane is a lipid bilayer with embedded lipids and proteins
and an underlying spectrin protein layer. It has a thickness
of about 4 nm [46] and can be considered as a thin and soft
shell. Its mechanical response can be split into in-plane shear
elasticity and out-of-plane bending elasticity. The membrane
in-plane shear elasticity modulus G ∼ 2.5–6 μN/m [47,48]
while its bending modulus KB ∼ 2.7–9 × 10−19 N m [49,50]
∼65–215 kBT , where kB is the Boltzmann constant and T

is the temperature. (Thus thermal fluctuations can usually
be neglected at room temperature.) The shear modulus of
the RBC will be expressed by the nondimensional capillary
number Ca = μγ̇ a/G. The bending modulus of the RBC
is expressed nondimensionally by κ̂B = KB/a2G, which is
O(10−3–10−2), so bending is often neglected in numerical
models. Nevertheless, there are several physical mechanisms
[51,52] for bending moments to develop over the RBC surface.
A number of studies have shown bending to affect shape
[53,54] and dynamics [55,56]; our goal is to systematically
examine the effect of the bending stresses and spontaneous
curvature on the RBC dynamics. Dynamical modes presented
in Sec. IV A show dependence on bending modulus κ̂B as
well. Furthermore, incorporation of bending is important
in simulations because it prevents numerical buckling and
wrinkling of the membrane [57]. Hence, bending energy
is included in our formulation. We take κ̂B = 0.03, which
corresponds to KB ∼ 11 × 10−19 Nm.

The total strain energy of the RBC membrane 	 can be
written as:

E = KB

2

∫
	

(2κH + c0)2dS + KB

∫
	

κGdS +
∫

	

WdS, (1)

where κH , κG are the mean and Gaussian curvature of the
surface, respectively; KB and KB are the bending moduli; c0
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FIG. 2. (Color online) The final rest shape of an RBC when
spontaneous shape is chosen to be either oblate spheroid or sphere
compared to Evans et al. [60]. The rest shape when a biconcave
discoid is the spontaneous shape is unchanged from its starting Evans
et al. shape.

is the spontaneous curvature, defined as c0 = −2H0, where
H0 is the mean curvature of the spontaneous shape; and W is
the shear strain energy density. In Eq. (1), the first two terms
come from the bending or Canham-Helfrich energy [16,17]
and the third term represents the shear strain energy stored in
the RBC membrane. Several models for W are studied, as we
discuss below. There is a strong energy penalty for local area
change in these models but a strict inextensibility constraint is
not imposed.

The first variation of total energy E gives the total
membrane strain force density f m,

f m = f b + f s , (2)

where f b and f s are bending and shear elastic force densities,
respectively. These are further discussed below and in the
Appendix. Note that the bending energy leads to forces both
normal and tangential to the membrane while the in-plane
strain energy leads only to a tangential force.

It should be noted that the equilibrium rest shape of the
membrane can differ from the spontaneous shape. In the case
where the natural shape for shear elasticity and the spon-
taneous shape for bending elasticity are not the same, the
membrane is under stress even at rest. Indeed, micropipette
and fluorescence imaging experiments [58] and subsequent
Monte Carlo simulations [59] suggest the presence of resid-
ual stress in the rest state. For our model, Fig. 2 shows
the equilibrium shape with an initial biconcave shape and
three different spontaneous shapes for the bending elasticity:
(i) sphere, (ii) oblate spheroid, and (iii) biconcave discoid. In
the biconcave discoid case, the expression of Evans and Fung
[60] is used:

y = a

2

√
1 − r2(C0 + C2r

2 + C4r
4), (3)

where r2 = x2 + z2 � 1, C0 = 0.2072, C1 = 2.0026, and
C2 = −1.1228. The biconcave discoid shape is used as natural
shape for shear elasticity in all the cases. The reduced volume
V0 for the oblate spheroid [case (ii)] is 0.95. The major axis
a of oblate spheroid is kept same as nominal radius of the

biconcave shape. As seen in Fig. 2, even when the spontaneous
shape is a sphere or oblate spheroid, the equilibrium rest shape
is still a biconcave discoid; the net effect of a nonbiconcave
spontaneous shape is a slightly more shallow dimple.

We now address the evaluation of bending force density,
f b. The Gauss-Bonnet theorem ensures that the second term in
Eq. (1) is a constant when no topological changes are involved.
Thus, there is no force density associated with that term. The
force density due to bending is thus given by first variation of
first term in Eq. (1). We have built on the previous work of
Zhong et al. [61] and Capovilla et al. [62] and extended their
result to include a spatially varying c0. The revised Zhong-
Helfrich expression in our formulation for the force density is
given as:

f b =KB

{[

s(2κH + c0) + (2κH + c0)

(
2κ2

H − 2κG − c0κH

)]
n

+ 1
2∇s(2κH + c0)2

}
, (4)

where 
s is the Laplace-Beltrami operator, n is the outward
normal to the surface, and ∇s is the surface gradient operator
(see the Appendix for derivation). The last term gives the
tangential force density coming from the Canham-Helfrich
Hamiltonian. An equivalent expression of force density for
the case of inhomogeneous c0 can be seen in the work of
Zhao [26] et al. where they chose biconcave discoid as the
spontaneous shape. Note that the bending energy leads to
forces both normal and tangential to the membrane while the
in-plane strain energy leads only to a tangential force.

This tangential term is absent in most studies of vesicle
and cell motion. In the case of perfectly incompressible
membranes, it can be absorbed into the Lagrange multiplier
that enforces the constant-area constraint (just as in the rotation
form of the incompressible Navier-Stokes equations the kinetic
energy density can be absorbed into the pressure [63]). In
the present formulation, where this constraint is not strictly
enforced, we find that nevertheless the tangential force arising
from the in-plane strain energy (described below) is completely
dominant over this term—whether we include it or not makes
no discernible difference to the dynamics.

In contrast, the normal force associated with the bending
energy has a non-negligible effect on the dynamics; recall
that the force resulting from the in-plane strain energy has
no normal component so even a small bending energy might
be expected to have noticeable effects. Specifically, as noted
above, if bending energy is neglected entirely, then membranes
will sometimes wrinkle at the scale of the mesh. Further,
we briefly illustrate in Sec. IV A that changes in KB can
qualitatively affect the dynamics.

Next, we describe the calculation of the in-plane shear
elastic force density, f s . We note that the strain-energy density
W of the membrane is a function of the principal stretch
ratios, λ1 and λ2. Three commonly used membrane models
will be studied: (i) the Skalak model, originally proposed for
the RBC membrane by Skalak et al. [64], which is strain
hardening and can be parametrized to yield a strong resistance
to area change relative to its resistance for shear deformation,
consistent with the area incompressibility of a lipid bilayer;
(ii) the neo-Hookean model, which mimics the behavior of the
cross-linked rubberlike materials and is strain softening, and
(iii) the Yeoh model, which was originally proposed for the
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vulcanized rubber and recently used for comparison with RBC
optical tweezer experimental data of Mills et al. [48,65]

The Skalak model [64] has the strain energy density given
by

WSK = G

4

[(
I 2

1 + 2I1 − 2I2
) + CI 2

2

]
. (5)

The two invariants, I1 and I2, are given by

I1 = λ2
1 + λ2

2 − 2, I2 = λ2
1λ

2
2 − 1. (6)

The parameter C characterizes the energy penalty for area
change. It has been shown that under a simple uniaxial
deformation, the results for the Skalak model reach an
asymptotic value [66] for C � 10. Following Barthes-Biesel
et al. [66], for a neo-Hookean model the strain energy density
function is given by

WNH = G

2

(
I1 − 1 + 1

I2 + 1

)
. (7)

For the Yeoh model, which can be viewed as a cubic extension
of the neo-Hookean model, the membrane strain energy
density is given as [48,67]

WYE = G

2

(
I1 − 1 + 1

I2 + 1

)
+ G

30

(
I1 − 1 + 1

I2 + 1

)3

.

(8)
The Yeoh model behaves like the neo-Hookean model at
small deformations but, due to the higher-order term, its
strain-hardening or strain-softening behavior varies with de-
formation depending on the coefficients of the higher-order
term. We use the Mills et al. [48] formulation, which is strain
softening at moderate deformations and strain hardening at
large deformations. The resultant force f s is calculated using
the principle of virtual work. We do this in the context of the
discretized surface as described in the following subsection.

B. Discretization

The surface is discretized into piecewise flat triangular
elements. As seen in Eq. (4), in order to calculate the bending
force, we require the knowledge of the curvatures and normal
of the surface, which must be approximated here based on the
piecewise flat discretization. To do so, we use an approach
given by Meyer et al. [68] which defines these properties of a
continuous surface as spatial averages. The averaging is done
within the immediately neighboring triangles, denoted the
one-ring neighborhood (see Fig. 3). We select a local surface
patch,AM , in the one-ring neighborhood whose contour passes
through the circumcenter (meeting point of perpendicular
bisectors of the sides of a triangle) of acute triangles or through
the midpoint of the side opposite to an obtuse angle of obtuse
triangles—see Fig. 3. Choosing the surface patch AM in this
way minimizes the error associated with the spatial averaging.
The area of this patch is denoted AMixed. An algorithm to
calculate AMixed is given by Meyer et al. [68].

The surface Laplacian of position along the surface is:

sx = 2κH n = K(x), where κH is the local mean curvature, n
is the normal to the surface, and K is the discretized curvature

FIG. 3. (Color online) Schematic of the one-ring neighborhood
of node xi used to calculate fb

i in Eq. (16). Here the solid boundary
represents the one-ring neighborhood of node xi while the shaded
region represents the mixed Voronoi patch AMi with contour ∂Si

represented by dashed curve. The area of shaded region is AMixed.
Note that for creating AMi , the circumcenter is chosen if it is an
acute-angled triangle and midpoint of the side opposite the obtuse
angle in an obtuse-angled triangle. αij ,βij are angles opposite to the
common shared edge (xi ,xj ) and θj is the angle subtended at node i

by face j . The normal to the contour ∂Si is ν.

vector. It has been shown [68] that K(xi) is given by:

K(xi) = 1

2AMixed

∑
j∈N1(i)

(cotαij + cotβij )(xi − xj ), (9)

where αij and βij are the two angles opposite to the edge in the
two triangles sharing the edge (xi ,xj ) and N1(i) is the set of
one-ring neighbor vertices of the vertex i. The normal vector
and mean curvature at a node on membrane surface are given,
respectively, by:

n(xi) = K(xi)

‖K(xi)‖ ,

(10)
〈κH i(xi)〉 = 1

2
‖K(xi)‖.

Here 〈·〉 represents an area averaged quantity. To calculate

sκH , we interpolate the nodal values of κH i over the
triangular element E. If ξ and η are the natural coordinates
of the element E, then its mean curvature can be written as:

κH
E(ξ,η) =

∑
n∈E

φE
i (ξ,η)κH i, (11)

where φE
i are basis functions associated with the nodes of

triangle and are given by φE
1 = ξ,φE

2 = η and φE
3 = 1 − ξ −

η. The surface gradient of mean curvature in E is

∇sκH
E = ∂κH

E

∂ξ
gξ + ∂κH

E

∂η
gη, (12)

where gξ and gη are the contravariant vectors for change
of basis. Following Boedec et al. [69], we also use surface
divergence theorem to get the mean value of the surface
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Laplacian for the mean curvature as:


sκH = 1

AMixed

∫
AMi


sκHdS

= 1

AMixed

∫
AMi

∇s · (∇sκH )dS

= 1

AMixed

∫
∂Si

∇sκH · νdl. (13)

Here the last expression is the contour integral over AMi and ν

is the tangent vector to the surface, normal to the contour ∂Si

of AMi (see Fig. 3). The discrete version of Eq. (13) is given
as:

〈
sκH 〉 = 1

AMixed

fv∑
j=1

∇sκH
Ej · νEj lj , (14)

where lj is the length of the j -th face of AMi and fv is the
total number of faces in Voronoi region AMi . We now need
the Gaussian curvature, κG, to be able to calculate the bending
force. A discrete version of Gauss-Bonnet theorem gives the
Gaussian curvature [68]:

〈κGi(xi)〉 = 1

AMixed

⎛
⎝2π −

fv∑
j=1

θj

⎞
⎠, (15)

where θj is the angle of the j -th face at vertex xi in the one-ring
neighborhood. It is noteworthy that Eq. (15) will return zero
for any flat surface or a roof-shaped one-ring neighborhood.
The discrete form of the bending force density at any node xi

on the surface is then given as:

f b
i = KB[〈
s(2κH + c0)〉 + (2〈κH 〉 + 〈c0〉)(2〈κH 〉2

− 2〈κG〉 − 〈c0〉〈κH 〉)]n. (16)

Next, we discuss our approach to compute in-plane shear
force density. To describe the membrane surface of the RBCs,
we adopt the finite-element method developed by Charrier
et al. [70]. In the Charrier et al. [70] approach, the membrane
forces are determined using the positions of the nodes in
the deformed state relative to their positions in the natural
state for shear elasticity by the application of the principal of
virtual work, such that the computed forces and the known
displacements are consistent with the strain energy stored in
the element. The deformation at any point inside the element
is calculated by interpolating linearly from the nodes. An
arbitrarily oriented deformed element and the corresponding
undeformed element are transformed to the same plane by
rigid body rotations, using a transformation matrix RE for each
element E. Note that the rigid body rotations and translations
have no effect on the strain energy and, consequently, the
forces. The principal stretch ratios then can be calculated from
the nodal displacements in the transformed plane. The local
elastic forces at node i are given [70] as:

f L
i =

(
∂W

∂λ1

∂λ1

∂ε
+ ∂W

∂λ2

∂λ2

∂ε

)
, (17)

Here f L
i is the nodal force on the RBC surface and ε

is the displacement from the undeformed state. The global
components of the nodal forces, f E

i , for an element are

calculated by transforming them back. The total shear elastic
force on a cell node is calculated as the sum of forces resulting
from the deformations of triangular elements surrounding that
node and is given by: f s

i = ∑
f E

i , where the summation is
over all triangular elements to which the node belongs.

The resultant membrane force density is the combination of
out-of-plane bending and in-plane tension as given in Eq. (2).
Here we assume that the entire shear elastic and bending
energy stored in cell membrane has been reassigned to the
vertices of the discretized triangular elements. In our boundary
integral formulation for solving fluid velocity, we need the
hydrodynamic traction jump 
 f across the interface. As we
neglect inertia and Brownian fluctuations of the membrane,
the membrane equilibrium condition states that the total
membrane force has to be balanced by the hydrodynamic
traction jump across the interface, which gives 
 f i = − f m

i .

C. Fluid velocity calculation

The radius a of the RBC is ∼3.9 μm, its velocity in the
microcirculation U ∼ 100–1000 μm/s, the viscosity of plasma
μ ∼ 1.38 mPa s, and its density ρ ∼ 103 kg/m3. These
parameters yield a Reynolds number of the order 10−3–10−2,
which we assume is sufficiently small that the fluid motion is
governed by the Stokes equation. Under these assumptions,
we can write the fluid velocity u at any point x0 in the problem
domain in boundary integral form [71,72] as

uj (x0) = u∞
j (x0) +

Np∑
n=1

∫
Sn

qi(x)Gji(x0,x)dS(x), (18)

where q(x0) is a single layer density that satisfies (for x0 ∈ Sn)

qj (x0) + λ − 1

4π (λ + 1)
nk(x0)

Np∑
n=1

∫
Sn

qi(x)Tjik(x0,x)dS(x)

= − 1

4πμ

[

fj (x0)

λ + 1
+ λ − 1

λ + 1
fj

∞(x0)

]
. (19)

Here u∞(x0) is the undisturbed fluid velocity at given point x0
while f ∞(x0) is the traction at a given point (computed with the
suspending fluid viscosity μ) due to the stress generated in the
fluid corresponding to the undisturbed flow u∞(x0), Sn denotes
the surface of the particle n and 
f (x) is the hydrodynamic
traction jump across the interface. The Green’s function and its
associated stress tensor for the Stokes equation in the geometry
of interest are G and T, respectively. The Green’s function G
and associated stress tensor T are taken to satisfy the boundary
conditions imposed at the system boundaries so the integrals
involved in this formulation are over the internal (interfacial)
boundaries only. The element nodes are taken to move with
the local fluid velocity as required by the no-slip boundary
condition. In the slit geometry, we have periodic boundary
conditions in flow and vorticity direction, i.e., the x and z

directions and the walls are in the y direction. We employ the
no-slip boundary condition at two walls at y = 0 and y = H .

This boundary integral formulation slightly differs from
the most commonly used approaches [71] but provides an
advantage in that the multiplicand q(x) of both G(x0,x) and
T (x0,x) is a function of the location of the source point x and
thus allows us to use an accelerated method [72] tailored for

042710-6



DYNAMICS OF A SINGLE RED BLOOD CELL IN SIMPLE . . . PHYSICAL REVIEW E 92, 042710 (2015)

nonperiodic geeometries [72]. This approach is based on the
general geometry Ewald-like method (GGEM) developed by
Hernandez-Ortiz et al. [73], in which the key idea is to split a
Dirac delta force density δ(r) into a smooth quasi-Gaussian
global density ρg(r) and a second local density ρl(r) given by
following expressions:

δ(r) = ρl(r) + ρg(r), (20a)

ρg(r) = α3

π3/2
e−α2r2

(
5

2
− α2r2

)
, (20b)

ρl(r) = δ(r) − ρg(r), (20c)

where α−1 is the length scale over which the global density
varies and r is the position vector relative to the pole of the
singularity. The solution associated with the local density
is short ranged and can be neglected beyond a length scale
of O(α−1) from its pole. It is obtained assuming free-space
boundary conditions while the solution associated with global
density is computed numerically ensuring that the boundary
condition associated with the overall problem is satisfied
[72,73]. In our implementation the periodic x and z directions
are represented using a Fourier series while a Chebyshev
spectral scheme is used for the y direction. Based on extensive
tests in Ref. [72], we set αhm = 0.5 to minimize numerical
error. Here hm is mean mesh spacing associated with the global
solution and α is taken as 4/a. Kumar et al. [72] have shown
that the computational cost associated with this method is
O(N log N ) for the slit geometry, where N is proportional to
the product of total number of particles in system, Np, and the
number of triangular elements N
 on the particle surface.

Our simulation domain is a cubic box of size 12.5a.
We verified that the RBC dynamics remain unchanged in
larger domains. Flow and vorticity directions are periodic and
walls are present in the flow gradient direction at y = 0 and
y = H = 12.5a. The RBC is placed at the center of box in
all simulations. The surface of the RBC is discretized into
N
 = 1280 triangular elements. The surface element nodes
are advanced in time using a second-order Adams-Bashforth
method with time step 
t = 0.01Cah, where h is the minimum
node-to-node distance. Time is nondimensionalized by the
wall shear rate, γ̇ , and length is nondimensionalized by
nominal radius of the RBC, a. All simulations reported here
were performed on a single processor.

III. VALIDATION OF METHODS AND MODELS

A. Bending resistance validation

The accelerated boundary integral method with GGEM
as well as the in-plane shear elasticity formulation have
been extensively tested in prior work [72]. We validate our
numerical algorithm for the effect of bending stiffness on
the deformation of spherical capsules in the shear flow by
comparison of results for spherical capsules for various κ̂B

with those of Le et al. [74]. In Fig. 4, we show steady-state
values of Taylor deformation parameter D as a function of
dimensionless shear rate Ca for λ = 1 and κ̂B = 0, 0.03, and
0.12; the closed symbols are the numerical results from Le
et al. with an immersed boundary method and a Catmull-Clark
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FIG. 4. (Color online) Steady-state Taylor deformation parame-
ter for a spherical capsule with κ̂B = 0,0.03,0.12 as function of Ca,
with λ = 1. Symbols are from Le et al. [74] and solid lines are our
numerical results.

subdivision scheme for surface discretization and the lines are
from our simulations. Good agreement is found.

B. Red blood cell model validation

In recent work, Dimitrakopoulos [75] showed that large
differences of shear modulus reported in various studies can
be explained based on the different membrane laws and
deformation regimes used to fit the experimental data. He
analyzed four commonly used membrane laws: Skalak (SK),
neo-Hookean (NH), Evans (EV), and Yeoh (YE). If one
imposes the local area-incompressibility constraint λ1λ2 = 1
and matches the local tension for each law at same stretch ratio,
then the shear modulus G of the RBC membrane calculated
using these different membrane laws at moderate deformations
(∼40% extension) are related to the modulus for the Skalak
model, GSK, as follows:

GNH ≈ 2GSK, GYE ≈ 1.90GSK, and GEV ≈ 2.67GSK.

For large deformations (∼100% extension), the shear modulus
calculated from different membrane laws are related as:

GNH ≈ 4GSK, GYE ≈ 1.99GSK, and GEV ≈ 6.4GSK.

We can see that to fit the observed deformation in a certain
range, a strain-softening law (like NH or EV) or strain-
softening or strain-hardening law (like YE) will predict a
higher value of shear modulus than a strain-hardening law (like
SK). In the linear regime, all laws will collapse to the same
value of G; the value G ≈ 2.5 μN/m has been reported by
Henon et al. [47], Waugh and Evans [76], and Wang et al. [77]
using optical tweezers, micro-pipette aspiration, and LORCA
ektacytometer, respectively. Dimitrakopoulos argued that the
discrepancy in the value of shear modulus reported using
different experimental methods or numerical models is due
to the choice of membrane law used to fit data. Additionally,
he showed that the Skalak law was the only model to satisfy
experimental results from ektacytometry and optical tweezers
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FIG. 5. (Color online) Comparison of numerical predictions for
axial and transverse lengths of the RBC against stretching force
with experimental optical tweezer results (♦) of Mills et al. [48].
(a) Comparison of three different membrane laws at the same shear
modulus G = 2.5 μN/m; the images show the RBC extension for
three different laws at stretching force of 70 pN. (b) Comparison of
Yeoh law results at two different shear values of G. (c) Comparison
of neo-Hookean law results at two different shear modulus G.
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FIG. 6. (Color online) Comparision of numerical variation of
axial and transverse lengths of a red blood cell against stretching
force with experimental results (♦) of Mills et al. [48]. (a) Effect of
area dilatational modulus C for the Skalak law at G = 2.5 μN/m.
(b) Effect of bending modulus κ̂B at G = 2.5 μN/m for Skalak
(C = 10) law. (c) Effect of spontaneous curvature at G = 2.5 μN/m
for the Skalak law.
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FIG. 7. (Color online) Phase diagram of red-blood-cell dynamics
in shear flow for three different spontaneous shapes: (a) biconcave,
(b) oblate spheroid, and (c) sphere. The dashed line represents the
critical Ca for the TU-TT transition curve from the experimental
data of Fischer et al. [78], while the solid line separating the two
regimes is an approximation based on this work. The values of Ca
for experimental data are estimated using G = 2.5 × 10−6 N/m as
suggested in Ref. [75] and the viscosity ratio is calculated using an
internal viscosity of 5.87 mPa s [44,45].

at moderate and large strains using the value of shear modulus
found in the linear regime, i.e., G = 2.5 μN/m.

FIG. 8. (Color online) Trajectory on the unit sphere of ψ3 of
the RBC. (a) shows a cell approaching TU motion with following
simulation conditions: λ = 5, Ca = 3.0, ξ0 = π/3, κ̂B = 0.03 and
biconcave spontaneous curvature. (b) shows a cell approaching rolling
motion for the time-lapse image shown in Fig. 9.

In order to validate our RBC model and to test the
Dimitrakopoulos analysis, we chose to reproduce the optical
tweezer experiment [48] numerically. For this study, the RBC
is discretized into 2562 nodes giving 5120 triangular elements.
The stretching force is applied to two patches of nodes (2%
of the total number of nodes) representing the contact areas
of the 2-μm-diameter silica beads used in the experiments.
The viscous properties do not affect the final stretching as
measurements are done on the final stretched state. Figure 5(a)
shows the final axial and transverse cross-sectional lengths
of the RBC as a function of applied force for three different
membrane laws we studied: Skalak, neo-Hookean, and Yeoh
law against the experimental values from Mills et al. [48].
The shear modulus for all three membrane laws is taken
to be constant value of 2.5 μN/m [47]. We observe that
Skalak law fits the experimental data within experimental
error for the entire range of applied force while the Yeoh
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FIG. 9. (Color online) Time sequence images of the RBC in rolling motion in the (a) top view (XZ plane) and (b) side view (XZ plane).
Conditions for the simulation were λ = 0.15, Ca = 1.5, ξ0 = π/6, κ̂B = 0.03 and biconcave spontaneous curvature. Here and in future images,
the blue marker dot started at the dimple while the green one started at the rim of the RBC. A brighter marker indicates that it is in front of the
cell while a fainter one indicates that it is behind the cell.

and neo-Hookean laws overpredict the RBC stretching due to
their strain-softening behavior.

If we apply the Dimitrakopoulos results, the Yeoh law
would fit the deformation data for the GYE ≈ 1.9GSK. Keeping
in mind that GSK = 2.5 μN/m fits the optical tweezer defor-
mation data, we report the result for GYE = 4.8 μN/m ≈
1.9GSK in Fig. 5(b). For this GYE value the numerical results

lie within the error bars of the physical experiment as expected
based on the Dimitrakopoulos analysis.

Finally, Fig. 5(c) shows the comparison of the predicted
behavior for the neo-Hookean model values of GNH in
comparison to the Skalak results with GSK = 2.5 μN/m
and the experimental data [48]. In the moderate deformation
regime, GNH = 4.8 μN/m ≈ 2GSK fits the experimental data
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FIG. 10. (Color online) (a) Trajectory of ψ3 on the unit sphere showing the effect of ξ0 (0, π/6,π/3,π/2) for λ = 3.5, Ca = 1.0, κ̂B = 0.03
and biconcave spheroidal spontaneous curvature. The mean membrane (b) elastic and (c) bending energy of the RBC for both rolling (at ξ0 = 0)
and TU (at ξ0 = π/2) for the case shown in (a).
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while at large deformation, GNH = 10 μN/m ≈ 4GSK fits
the experimental data. These observations agree well with the
analysis of Dimitrakopoulos [75].

From our comparative analysis of different membrane laws
with optical tweezer stretching experiment of Mills et al. [48],
we confirm not only our RBC model but also the analysis
given by Dimitrakopoulos [75] to explain variations in reported
values of shear modulus. Based on these results, we employ
the Skalak law in our further numerical study.

To assess the dependence of the Skalak law optical tweezer
response on the dilatational modulus C, Fig. 6(a) shows results
for GSK = 2.5 μN/m and C = 10 and C = 20 compared
against the experimental data [48]. We conclude that the results
are insensitive to area incompressibility modulus C for C �
10, in agreement with the conclusions of Barthes-Biesel et al.
[66].

We also explored the effect of κ̂B as shown in Fig. 6(b). The
membrane law used was Skalak with GSK = 2.5 μN/m. Value
of κ̂B is kept in the range of physiological value predicted in
experiments [50]. We notice that varying the bending modulus
κ̂B has negligible effect on these stretching results for the RBC
membrane.

Deformations in optical tweezer numerical experiments are
dominated by shear modulus and membrane laws. Finally,
we explored the effect of the spatially varying spontaneous
curvature on the optical tweezer results as shown in Fig. 6(c).
The Skalak law with GSK = 2.5 μN/m was used for three
different spontaneous curvatures: biconcave discoid, oblate
spheroid (V0 = 0.95), and sphere. The spontaneous curvature
has negligible effect on these stretching results.

IV. RESULTS

A. Effect of spontaneous shape

In this section, we explore the effect of the spontaneous
shape of the red blood cell keeping the natural shape for
shear elasticity as a biconcave discoid. The simulations were
done for viscosity ratio λ in the range of 0.1–5 and Ca
was varied between 0.05 and 6. We considered the three
cases of spontaneous curvature whose equilibrium shapes
are shown in Fig. 2: biconcave discoid, sphere, and oblate
spheroid. The constitutive relation for membrane is taken to
be the Skalak law with area dilatational modulus C = 10
and dimensionless bending modulus κ̂B = 0.03. Figure 7 is
a summary of the results of the remainder of the paper
and we elaborate on these results below: It shows a “phase
diagram” of the long-time dynamics of RBCs in shear as
a function of Ca and λ for the three different choices of
spontaneous curvature. The dashed curve in Fig. 7 represents
the experimental data taken from Fischer et al. [78] for
the critical Ca for TU-TT transition. There are regimes in
which the final dynamics depend on the initial off-shear
plane orientation. This supports the observation of hysteretic
transition regimes seen in experiments of Dupire et al. [9]
We report the most dominant dynamics (occurring at most ξ0)
in Fig. 7 and a detailed discussion of orientation-dependent
dynamics is presented later. We started our simulations at
multiple initial orientations ξ0 ∈ [0,π/2] to study the dynamics
of initially out-of-shear plane placed cells. When ξ0 = 0 the
axis of revolution is in the vorticity direction, corresponding

to the C = 0 Jeffery orbit while ξ0 = π/2 corresponds to the
C = ∞ Jeffery orbit where the axis of revolution lies in the
shear plane.

Figure 7(a) shows the dynamics of the RBC in λ-Ca
parameter space for biconcave spontaneous curvature. We
primarily see two dynamical modes here: rolling (see Ref. [79])
at small λ and high Ca and TU at high λ and high Ca.
Dynamical modes like swinging and breathing [29] (not shown
here) are observed depending on the initial off-shear plane
angle ξ0 and in Fig. 7(a) we have reported the most prevalent
dynamical mode at a particular Ca and λ. The attainment of
the final stable dynamics is slow and depending on ξ0 can end
up taking several shear time units [33].

We now examine the physiological relevant scenario where
λ ≈ 5 while we vary Ca. Here, even at high Ca (�5), TU is
observed. To illustrate the dynamics of an RBC in flow, we
calculate the principal axes of the inertia ψ1,ψ2, and ψ3 of
the RBC and report the trajectory of the shortest one, ψ3,
on the unit sphere in Fig. 8(a), which shows the approach of
an initially off-plane RBC towards TU motion at high Ca.
The transition between rolling and TU occurs at progressively
lower values of Ca with decreasing viscosity ratio λ. Below
a critical viscosity ratio, we find that rolling is the most
stable mode even at high Ca. With a biconcave spontaneous
shape, we never observe TT and we hypothesize that with this
spontaneous curvature, the bending energy required to break
away from the biconcave shape is too high even in strong

FIG. 11. (Color online) Trajectory of ψ3 on the unit sphere of the
RBC exhibiting flip-flopping motion. The gray curve shows the ψ3

trajectory for one flip-flopping event and notice that it crosses shear
plane unlike Jeffery orbits. RBC does a combination of off-plane TU
and flip-flopping. Conditions for simulation were λ = 1, Ca = 0.5,
ξ0 = π/2, κ̂B = 0.03 and oblate spheroidal spontaneous curvature.

042710-11



KUSHAL SINHA AND MICHAEL D. GRAHAM PHYSICAL REVIEW E 92, 042710 (2015)

FIG. 12. (Color online) Trajectory of ψ3 projected on a unit sphere for a tilted TT motion. Spontaneous shape is oblate spheroid, λ =
2.0, κ̂B = 0.03 and (a) Ca = 0.5, (b) Ca = 0.6, and (c) Ca = 0.75.

shear flow for TT regime to arise. The trajectory of ψ3 on the
unit sphere for a RBC approaching rolling motion is shown in
Fig. 8(b). Snapshots of rolling RBC are shown in Fig. 9: These
are in good agreement with the experimental results of Dupire
et al. [9] in which the rolling orbit is stable and the biconcave
shape is preserved.

In the transitional regime, we observe that both rolling and
TU are stable. Both of them preserve the biconcave shape.
One might argue that as shape deviation is minimum in
these cases, they minimize the bending energy and hence are
stable. However, minimization of energy does not predict the
dynamical mode; it is dependent on fluid-structure interactions
in a complex way [31,80]. To elaborate on this point, we
present the case for λ = 3.5,Ca = 1.0 in Fig. 10, where both
rolling (at ξ0 = 0) and TU (at ξ0 = π/2) are stable. Both rolling
and TU are attractors as a RBC starting at ξ0 = π/3 ends up
in the TU motion while a RBC starting at ξ0 = π/6 ends up in
the rolling motion as shown in Fig. 10(a). However, if we look
at the mean elastic and bending membrane energy of the RBC
in Figs. 10(b) and 10(c), rolling mode has lower membrane
bending energy while the TU mode has lower membrane
elastic energy.

Last, in Fig. 7(a), the solid curve shows the approximate
numerical critical Ca for the transition between rolling and

TU while the dashed curve is the experimental Ca for TU-TT
transition of the RBC from Fischer et al. [78] experiments.

We now turn to Fig. 7(b), which shows the phase diagram
for the RBC with oblate spheroidal spontaneous curvature.
We would first like to draw attention to a motion that we
describe as flip-flopping (see Ref. [79]). Figures 18(e) and
18(f) shows the front and side views, respectively, of a cell
going in flip-flopping dynamics. Dupire et al. [9] observed
the flip-flopping dynamics experimentally, which they called
flipping. Flip-flopping differs from TU as, in TU motion, ψ3 of
the RBC lies in shear plane all the time while in flip-flopping
it does a back-and-forth motion across the shear plane. Note
that a normal Jeffery orbit does not cross the shear plane.
However, in the side view (XY plane), TU and flip-flopping
will be difficult to distinguish as seen in Fig. 18(f). Figure 11
shows the trajectory of ψ3 on a unit sphere for a cell undergoing
a combination of TU and flip-flopping. One such flip-flopping
trajectory is shown in gray to highlight it.

As Ca is increased, flip-flopping is usually (i.e., at suf-
ficiently high λ) followed by tilted TT (see Ref. [79]), a
dynamical motion in which the membrane of the RBC is
undergoing TT but ψ3 is not in the shear plane but rather
is tilted at an angle to it. Snapshots of tilted TT are shown in
Figs. 18(c) and 18(d) in the front and side views, respectively.
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FIG. 13. (Color online) Trajectory of ψ3 on a unit sphere of a
RBC exhibiting (a) oscillating-swinging and (b) swinging. Trajectory
(a) is for the case in Fig. 14, while (b) is shown for λ = 0.75, Ca = 2.0,
ξ0 = 0, κ̂B = 0.03 and oblate spheroidal spontaneous curvature. Inset
shows a blown-up image of the trajectory near the shear plane.

Dupire et al. [9] also observed this motion, which they
characterized as a spinning Frisbee motion. They reported
it as a transient motion but we find that it is very stable and
occurs at small Ca. The detailed dynamics of tilted TT are
rather intricate: depending upon the Ca at a particular λ, we
see three distinct submotions. Right after the transition from
flip-flopping/TU, the cell is tilted at an angle and ψ3 rotates in a

small ellipsoidal orbit (which would appear as swinging in the
side view) while flipping occasionally as shown in Fig. 12(a).
As Ca is increased, flipping of the cell is no longer seen and
cell maintains small ellipsoidal orbit, tilted at an angle with
shear plane as seen in Fig. 12(b). At even higher Ca, neither
flipping nor ellipsoidal orbiting are seen and the RBC stays at
a constant angle with the shear plane as shown in Fig. 12(c).

As Ca is further increased, we observe an oscillating-
swinging motion in which ψ3 oscillates both in the shear
plane and off of it as shown in Fig. 13 and in the images
in Fig. 14 executing a “figure 8” trajectory that crosses back
and forth across the shear plane. A very similar wobbling
motion was first observed numerically by Dupont et al. [31]
for prolate spheroids and later by Cordasco et al. [33] in their
red blood cell simulations. Oscillating-swinging is followed by
swinging, as Ca is increased at a particular λ. In swinging, ψ3

oscillates only in the shear plane as characterized by Abkarian
et al. [7]. We point readers to this work for a detailed analysis
of swinging.

As Ca is further increased we generally observe the TT mo-
tion (see Ref. [79]), where ψ3 points toward wall-normal direc-
tion. In Fig. 15, we show images of a cell undergoing TT in both
the front and side views and one can observe the dimple while
the membrane is moving. Goldsmith and Marlow [1] observed
that the RBC retains its dimple even during TT, an observation
confirmed in recent experiments by Dupire et al. [9] as well. In
our simulations, neither biconcave nor spherical spontaneous
curvature leads to TT dynamics with a dimple. A very similar
conclusion was reached by Peng et al. [35] in their study of the
effect of nonbiconcave spontaneous curvature on RBC shape.
However, Cordasco et al. [36], in computations with a spatially
uniform spontaneous curvature, noted that they observe TT
motion with a dimple for both oblate spheroid and biconcave
spontaneous shapes. Nevertheless, given the Peng et al. [35]
results and our own, we are inclined towards the conclusion
that the biconcave spontaneous shape is not the spontaneous
shape of the RBC. Additionally, the presence of rich dynamics,
including flip-flopping, tilted TT, oscillating-swinging and
rolling, all observed in experiments, make oblate spheroid a
good candidate for the spontaneous shape of the RBC.

Now having described in detail the dynamics observed
with the oblate spheroidal curvature, we revisit Fig. 7(b) to
note where we have made some simplifications. We represent
TU and flip-flopping with the same symbol as experimentally

FIG. 14. (Color online) Time sequence images of a RBC performing oscillating-swinging motion in the (a) top view (XZ plane) and (b)
front view (YZ plane). Conditions for simulation were: λ = 0.75, Ca = 1.0, ξ0 = π/3, κ̂B = 0.03 and oblate spheroidal spontaneous curvature.
We observe membrane reorientation in oscillating-swinging.
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FIG. 15. (Color online) Time sequence images of a RBC performing TT motion in the (a) front view (YZ plane) and (b) side view (YZ

plane). Conditions for simulation were: λ = 0.75, Ca = 2.0, ξ0 = 0, κ̂B = 0.03 and oblate spheroidal spontaneous curvature. The front view is
kept translucent to allow the green material point to be seen, while, in the side view, the YZ plane is tilted by 4◦ to allow visualization of the
dimple.

it will be hard to distinguish between them, especially if
looking at them from the side [see Fig. 18(f)]. Furthermore,
we have placed oscillating-swinging, swinging, and TT above
our numerical TU-TT transition curve in Fig. 7(b) as all
three motions are closely related and will resemble TT in
experiments. We observe a good agreement with the TU-TT
experimental transition curve of Fischer et al. [78] for λ � 0.9,
while at higher λ, the transition in our case happened at a
smaller Ca than the one observed in Fischer experiments.
Fischer et al. [78] suggested that a value of KB ∼ 20 × 10−19

Nm collapses his experimental transition curve and Yazdani
et al. [29] numerical transition curve onto one curve. We used
KB ∼ 11 × 10−19 Nm, which is half of the value suggested by
Fischer et al. [78] and might be the reason for disagreement at
higher λ.

At low λ (0.12 � λ � 0.3), a condition often employed
in experiments [1,5–7,9], we see that transition between TU
and TT occurs at Ca ≈ 0.15. The associated critical shear
stress, η0γ̇ ∼ CaGs/a0 for the TU-TT transition turns out
to be ∼0.1 Pa, which matches well with the experimental
transition shear stress value reported by Bitbol [5] and Dupire
et al. [9].

Finally, Fig. 7(c) shows the phase diagram of the RBC
dynamics for the spherical spontaneous shape. The sphere has
been widely studied since the pioneering work of Canham [16]
and Helfrich et al. [17–19]. The phase diagram for spherical
spontaneous shape looks very similar to the phase diagram for
oblate spontaneous shape, so we will just point out the primary

differences. For the case of spherical spontaneous curvature,
in the TU regime, flip-flopping is never observed. However,
we do observe kayaking motion, a classical Jeffery orbit with
0 < C < ∞, which has been recently reported in numerical
work for RBCs [36] and vesicles [81,82] dynamics but has
not yet been observed experimentally. The kayaking orbits
we observed in our numerical simulation were either close
to TU or rolling orbits. In Fig. 16, we show the snapshots
of kayaking motion in both front and top view and Fig. 17
shows the trajectory of ψ3 of the RBC performing kayaking
motion. The motion here is similar to TU. In the other extreme,
kayaking looks very similar to rolling or precessing and can
be characterized as rolling, unless one looks closely into the
trajectory of ψ3. This may be why kayaking has not yet been
reported in the experiments.

The other major departure from the oblate spheroidal case
is the absence of dimple on the RBC membrane in motions
like oscillating-swinging, swinging, and TT. As experiments
[1,9] have shown that the cell maintains its biconcave shape,
even during TT, the absence of a dimple during TT indicates
that a sphere is not likely the spontaneous shape.

In summary, to point out the differences in the final
dynamical motion with the choice of spontaneous curvature,
we report comparative time-lapse images in Fig. 18 at the
same λ and Ca with differing spontaneous curvatures. It is
interesting to note that while the biconcave spontaneous shape
leads to rolling, the spherical spontaneous shape leads to tilted
TT and the oblate spheroidal spontaneous curvature leads to

FIG. 16. (Color online) Time sequence images of a RBC in kayaking motion from the (a) top view (XZ plane) and (b) front view (YZ

plane), respectively. Conditions for simulation were λ = 5, Ca = 1.0, ξ0 = π/3, κ̂B = 0.03 and spherical spontaneous curvature. Notice that
the membrane reorientation does not happen in kayaking motion.
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FIG. 17. (Color online) Trajectory of ψ3 on a unit sphere of a
RBC performing kayaking motion. Conditions for simulation were
identical to those in Fig. 16.

flip-flopping. Figure 18 clearly shows that the choice of
the spontaneous shape can strongly affect the final stable
dynamics of the RBC. In the light of experimental results of
Dupire et al. [9], we suggest that the oblate spheroidal shape
is the best candidate.

To conclude the section we briefly illustrate the effect of
the bending modulus on RBC dynamics. Figure 19 shows the
trajectory of ψ3 on the unit sphere of the RBC at three different
values of κ̂B at Ca = 0.5,λ = 1,ξ0 = π/2 with a Skalak law
membrane (C = 10) and oblate spontaneous shape. At κ̂B =
0.002, the RBC performs a swinging motion. With an increase
in κ̂B to 0.02, the RBC tumbles, and at κ̂B = 0.1 it flip-flops.
With increasing κ̂B , the penalty for shape change increases, so
motions such as swinging that have large bending deformations
become increasingly restricted.

B. Membrane reorientation

Finally, we briefly describe an interesting and counterintu-
itive phenomenon, membrane reorientation, that is observed

FIG. 18. (Color online) Comparison of cell dynamics at λ = 1, Ca = 0.5, κ̂B = 0.03, and ξ0 = π/3 for three different spontaneous shapes.
[(a) and (b)] Rolling dynamics from front and side view respectively for biconcave spontaneous shape. [(c) and (d)] Tilted tank treading
dynamics from the front and side views, respectively, for spherical spontaneous shape. [(e) and (f)] Flip-flopping dynamics from the front and
side views, respectively, for oblate spheroidal spontaneous shape.
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FIG. 19. (Color online) Trajectory of ψ3 on the unit sphere of the
RBC showing the effect of κ̂B . Conditions for simulation were λ = 1,
Ca = 0.5, ξ0 = π/2 with SK law (C = 10) and oblate spheroidal
spontaneous curvature.

in experiments and simulations. Consider a tracer particle
attached to the equator of an RBC at rest and another attached
to one of the poles. By membrane reorientation, we mean that
during flow the one initially at the pole will go to the equator
and vice versa. Omori et al. [83] showed with simulations
that this reorientation occurred for both oblate spheroids and
RBCs irrespective of the choice of membrane law and Ca.
Other studies have also reported the reorientation phenomena
[31,33,36]. In the present work, we also observe reorientation
in many situations. For the sake of simplicity, we will classify
the observed dynamics into two categories: a nonreorientation
regime, which includes TU, rolling, kayaking, and flip-
flopping, and a reorientation regime, which includes tilted
TT, oscillating-swinging, swinging, and TT. Dupire et al. [9]
characterized what we call the reorientation regime as the
“fluidized” regime. In all RBC images shown here the blue and
green dots represent a material point on the RBC membrane
initially placed at the dimple and the rim, respectively. If we
look at the tilted TT dynamics on Figs. 18(c) and 18(d) or
at oscillating-swinging on Fig. 14 or TT on Fig. 15, we can
clearly see that the blue dot starting from at dimple moves to
the rim while the green dot starting at the rim moves to dimple.
In contrast, looking at flip-flopping on Figs. 18(e) and 18(f)
or at rolling on Fig. 9 or kayaking in Fig. 16, one can observe
that the blue dot stays in the dimple region and the green dot
stays at the rim.

V. CONCLUSION

We have investigated the dynamics of an RBC subjected to
simple shear flow using a membrane bending rigidity model
that allows for spatially varying spontaneous curvature, in
accordance with experimental observations [15]. The primary
aim of this study has been to examine the effect of the varying
spontaneous curvature on the dynamical response of the cell
in simple shear flow.

To benchmark our RBC model, we computationally re-
produced the optical tweezer experiment of Mills et al. [48].
Two key findings emerged from this exercise: The first is that

the relationship predicted by Dimitrakopoulos [75] between
the elastic shear modulus given by different membrane law
holds well; the second is that the Skalak strain energy yields
good agreement with optical tweezer experimental data using
the value of shear modulus that is found in linear regime
of stress-strain relation. Additionally, this model is strain
hardening and has strong resistance to changes in area as does
an RBC membrane. Accordingly, we conclude that is is a good
model for use in detailed studies.

Using the Skalak model, we explored the effect of spatially
varying nonbiconcave spontaneous curvature on the dynamics
of the RBC at capillary scale. Our analysis suggests that oblate
spheroid spontaneous shape with the same surface area as the
RBC and reduced volume in the range of 0.95–0.989 results
in the dynamical motions seen in experiments in the same
parameter regime and leads to small deformation from the
initial biconcave rest shape. This spontaneous shape leads to
better agreement than either a spherical or a biconcave rest
shape.

Apart from reporting the effect of spontaneous curvature,
we note four other key facts about the RBC dynamics in shear:
(i) the net effect of the nonbiconcave spontaneous shape for
bending was to make the dimple of the RBC slightly shallower
in its rest state than the shape proposed by Evans and Fung
[60], as shown in Fig. 2; (ii) there are regions in parameter
space where multiple dynamical motions are stable as shown in
Fig. 10(a); (iii) during the flip-flopping regime, ψ3 of the RBC
crosses the shear plane as shown in Fig. 11, a behavior that
differs considerably from a Jeffery orbit; and (iv) the different
dynamics can be categorized broadly into two regimes, (a) a
nonreorientation regime where membrane elements originally
at the rim of the cell remain there and (b) a reorientation
regime, where the part of membrane forming the dimple goes
to the rim and vice versa.
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APPENDIX

We will apply the tools of differential geometry in order
to derive Eq. (4) from Eq. (1). The membrane 	 of the
RBC can be represented as a closed surface in Euclidean
three-dimensional space; position on the membrane is given by
the vector R(u,v), where (u,v) are curvilinear coordinates on
the surface. We recall the principal definitions of differential
geometry to introduce the following quantities and refer to
Refs. [61,62,84] for details:

Ri = ∂i R, Rij = ∂i∂j R, gij = Ri · Rj ,

gij = (gij )−1, g = det(gij ), Lij = Rij · n,

Lij = (Lij )−1, L = det(Lij ) (i,j = 1,2),

(A1)

where ∂1 = ∂u, ∂2 = ∂v , Ri is the tangent vector to the surface
and gij and Lij are the induced metric and extrinsic curvature
associated with the first and second fundamental forms of the
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surface, respectively. Repeated indices imply summation. The
normal vector n and the Christoffel symbols 	k

ij are defined as

n = (R1 × R2)/
√

g,Rij = 	k
ij Rk + Lij n. (A2)

The mean and Gaussian curvature are written, respectively, as

κH = −1

2
(c1 + c2) = 1

2
gijLij ,κG = c1c2 = L/g. (A3)

Here c1 and c2 are the two principal curvatures. The Canham-
Helfrich Hamiltonian H [first term in Eq. (1)] is given as

H = KB

2

∫
	

(2κH + c0)2dS =
∫

	

hdS, (A4)

where the scalar h = KB

2 (2κH + c0)2 is constructed locally
from the geometry of surface and dS = √

g du dv. The stress
(force density) f associated with H is determined from the
knowledge of the response of the Hamiltonian δH to an
arbitrary infinitesimal deformation δR using the principle of
virtual work:

δH =
∫

	

f · δRdS. (A5)

We can decompose δR into its tangential and normal parts
[62],

δR = ζ i Ri + �n. (A6)

Likewise, infinitesimal change in the Hamiltonian can be
decomposed into its tangential and normal parts [62],

δH = δ‖H + δ⊥H. (A7)

We will first look into the tangential part. For any scalar func-
tion f (u,v) defined on 	, δ‖f = ζ i∂if , and under tangential
deformation, the induced metric on 	 transforms as a Lie
derivative, δ‖

√
g = ∂i(

√
gζ i). Using the above definitions, the

tangential component of Hamiltonian is

δ‖H =
∫

	

{√g(δ‖h) + (δ‖
√

g)h} du dv

=
∫

	

{√g(ζ i∂ih) + h∂i(
√

gζ i)} du dv

=
∫

	

ζ i∂ih
√

g du dv =
∫

	

ζ i∂ih dS. (A8)

The integrand in the last equation is simply the surface gradient
of scalar h. Thus, the tangential component of the stress can
be given as

f ‖ = ∇sh = KB

2
∇s{(2κH + c0)2}. (A9)

For the normal term, we note from Ref. [61]

δ⊥
∫

	

dS = −
∫

	

2�κHdS

δ⊥κH = �(2κH
2 − κG) + 1

2
gij

(
�ij − 	k

ij�k

)
,

(A10)

where �i = ∂i�. The normal variation in Hamiltonian is given
as

δ⊥H = KB

2
δ⊥

∫
	

(2κH + c0)2dS

= KB

2

∫
	

[(2κH + c0)2δ⊥dS + 4(2κH + c0)δ⊥κH ]dS

= KB

∫
	

�
[
(2κH + c0)

(
2κ2

H − 2κG − c0κH

) + {
(1/

√
g)

(
∂i∂j + ∂k	

k
ij

)
gij√g

}
(2κH + c0)

]
dS

= KB

∫
	

�
[
(2κH + c0)

(
2κ2

H − 2κG − c0κH

) + (1/
√

g)∂i(g
ij√g∂j )(2κH + c0)

]
dS

= KB

∫
	

�
[
(2κH + c0)

(
2κ2

H − 2κG − c0κH

) + 
s(2κH + c0)
]
dS, (A11)

where we have used Eq. (A10) and the following identities
[61]:

∂i[(∂jg
ij√g)f ] = −∂k(	k

ijg
ij√gf )

(A12)

s = (1/

√
g)∂i(g

ij√g∂j ).

Thus the normal component of the force is

f ⊥ = KB

[
(2κH + c0)

(
2κ2

H − 2κG − c0κH

)
+
s(2κH + c0)

]
n. (A13)
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