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Anomalous neuronal responses to fluctuated inputs
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The irregular firing of a cortical neuron is thought to result from a highly fluctuating drive that is generated by
the balance of excitatory and inhibitory synaptic inputs. A previous study reported anomalous responses of the
Hodgkin-Huxley neuron to the fluctuated inputs where an irregularity of spike trains is inversely proportional
to an input irregularity. In the current study, we investigated the origin of these anomalous responses with the
Hindmarsh-Rose neuron model, map-based models, and a simple mixture of interspike interval distributions. First,
we specified the parameter regions for the bifurcations in the Hindmarsh-Rose model, and we confirmed that the
model reproduced the anomalous responses in the dynamics of the saddle-node and subcritical Hopf bifurcations.
For both bifurcations, the Hindmarsh-Rose model shows bistability in the resting state and the repetitive firing
state, which indicated that the bistability was the origin of the anomalous input-output relationship. Similarly, the
map-based model that contained bistability reproduced the anomalous responses, while the model without bista-
bility did not. These results were supported by additional findings that the anomalous responses were reproduced
by mimicking the bistable firing with a mixture of two different interspike interval distributions. Decorrelation of
spike trains is important for neural information processing. For such spike train decorrelation, irregular firing is
key. Our results indicated that irregular firing can emerge from fluctuating drives, even weak ones, under conditions
involving bistability. The anomalous responses, therefore, contribute to efficient processing in the brain.
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I. INTRODUCTION

Cortical neurons generate irregular spike trains, including
highly variable intervals [1–3]. Irregular spiking has received
much attention because it plays functionally important roles in
neural information processing [4–7]. The origins of these irreg-
ularities are intrinsic noise, such as synaptic unreliability [8]
and ion-channel noise [9], and highly fluctuating drives that
are generated by the balance of the excitatory and inhibitory
synaptic inputs to the neurons [10–15]. Neuronal responses
have traditionally been characterized by their frequency-
current relationship [16,17]. However, the frequency-current
relationship is not sufficient for understanding the neuronal
responses to fluctuated inputs. Several studies have described
the responses of neurons to fluctuated inputs, and reactive dif-
ferences have been reported among neuron models [15,18–25].

Regarding the response to the fluctuated inputs, an inter-
esting phenomenon has been reported [26]: “The variability
of output spike trains of the Hodgkin-Huxley (HH) neuron
model decreases as the input variance increases.” This inverse
relationship between input and output variances is seemingly
counterintuitive. Thus, we call it an anomalous response.
A schematic representation of an anomalous response is
shown in Fig. 1. Sakai et al. suggested that the underlying
mechanism of the anomalous responses of HH neurons may
originate from the subthreshold oscillations of the membrane
potential. In fact, the input-output (I-O) relationship of a
leaky integrate-and-fire (LIF) neuron model, which does not
contain subthreshold oscillations, is proportional [Fig. 1(b)]. A
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similar phenomenon has also been observed in an experimental
study [27].

Although their findings were important and fundamental,
further analyses are required because the comparison was
performed with models with dynamics that were very different
from each other. The HH and LIF models differ in a number of
ways, including the complexity of their dynamics, the number
of variables, and the number of parameters. Moreover, the
HH model is too complicated to use to determine the origin
of the anomalous responses. Therefore, we have been unable
to verify that subthreshold oscillations are the origin of the
anomalous responses as Sakai et al. concluded. In addition,
other components may cause or contribute to the anomalous
responses. Thus, the purpose of this study was to reveal the
origin of the anomalous responses.

The two major differences between the HH and LIF models
are the subthreshold oscillations of the membrane potential and
the bistability of the attractors (resting and repetitive firing).
The HH model has both, while the LIF model has neither.
To examine the origins of the anomalous responses, a neuron
model that can separate the subthreshold oscillations and the
bistability should be used. One plausible choice is the Morris-
Lecar model, which consists of three coupled differential
equations that incorporate only two essential ionic currents,
namely the potassium current and the calcium current [28].
Although this model contains both subthreshold oscillations
and bistability, it is not appropriate because it requires large
parameter alterations to switch behaviors. In the current study,
we employed the Hindmarsh-Rose (HR) neuron model [29].
The HR model is a neuron model that is described by only
two variables, and it has fewer parameters than the HH model.
The HR model exhibits both subthreshold oscillations and
bistability by controlling only two parameters.
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FIG. 1. Schematic representation of the anomalous responses
in the Hodgkin-Huxley neuron model [26]. (a) The neuron model
receives the uncorrelated fluctuation that mimics the balancing of
synaptic inputs and generates an output spike train. (b) The variability
of the spike train is shown as a function of the variance of the
input fluctuation. For a leaky integrate-and-fire neuron model, the
variability of the spike train increases as the input variance increases.
(c) For the Hodgkin-Huxley neuron model, the variability of the spike
train decreases as the input variance increases.

First, we demonstrated that the HR model separated the
subthreshold oscillations and bistability and that the origin
of the anomalous responses was the bistability and not the
subthreshold oscillations. We then found that the same results
were obtained with map-based models. A map-based model
that contained bistability reproduced the anomalous responses,
while the map-based model that did not contain bistability did
not. These results were further supported by the findings that
the anomalous responses were reproduced by a simple mixture
of two interspike interval (ISI) distributions.

II. METHODS

A. The Hindmarsh-Rose model

The HR model is described as follows:

ẋ = x − x3/3 − y + I (t), (1)
τ ẏ = (x2 + dx + a)/b − y, (2)

where ẋ represents a temporal derivative of x, and τ corre-
sponds to a membrane time constant. Unless otherwise stated,
32/b was the value of τ . When x exceeds a threshold of 0.5,
the neuron generates an action potential. I (t) describes an
external input that is applied to the model (Sec. II C). One of
the fixed points in the HR model mimics the resting potential.
The fixed point becomes unstable through one of the following
four types of bifurcation forms: saddle-node bifurcation on the
invariant circle (SNonIC), saddle-node bifurcation not on the
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FIG. 2. (Color online) Parameter regions of the Hindmarsh-Rose
(HR) model of the bifurcations. The solid black lines indicate the
boundaries between the bifurcations. The dashed black line indicates
the boundary between the saddle node on the invariant circle
(SNonIC) and the saddle node not on the invariant circle (SNnoIC)
bifurcations when the time constant of the membrane potential τ

is 32/b. The solid red line indicates the boundary when τ tends to
positive infinity (see Appendix A).

invariant circle (SNnoIC), supercritical Andronov-Hopf bifur-
cation (SupAH), and subcritical Andronov-Hopf bifurcation
(SubAH) [30]. These four bifurcations correspond to different
combinations of the subthreshold oscillations and bistabilities.
The correspondence is summarized in Table I [31]. The HR
model can exhibit the four bifurcations by operating the
two parameters (b,d) [29,30]. The parameter region for each
bifurcation is depicted in Fig. 2. We provide the derivations
of the parameter regions in Appendix A. Note that the HR
model exhibits many other bifurcations in addition to the
above four bifurcations [30]. The following (b,d) values were
used as the typical parameter values for each bifurcation:
(1.0,1.8) for the SNonIC bifurcation, (0.6,1.8) for the SNnoIC
bifurcation, (1.0,2.2) for the SupAH bifurcation, and (1.3,2.2)
for the SubAH bifurcation. To make the bifurcations occur
at I (t) = 0, parameter a was 0.073 705 for the SNonIC
bifurcation, −0.126 226 for the SNnoIC bifurcation, 0.521 833
for the SupAH bifurcation, and 0.319 832 for the SubAH
bifurcation. The nullclines and stable attractors are depicted
in Fig. 3. The stable fixed point of the SNnoIC bifurcation
was located outside the stable limit cycle, whereas that of the
SubAH bifurcation was located inside the stable limit cycle.
The current-frequency relationships are provided in Fig. 4.

TABLE I. The four types of behaviors and their corresponding bifurcations.

Subthreshold oscillation

no yes

Monostable Saddle-node on invariant circle Supercritical Andronov-Hopf
(SNonIC) (SupAH)

Bistable Saddle-node not on invariant circle Subcritical Andronov-Hopf
(SNnoIC) (SubAH)
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FIG. 3. (Color online) Nullclines and stable attractors of the HR
model with (a) SNonIC, (b) SNnoIC, (c) supercritical Andronov-Hopf
(SupAH), and (d) subcritical Andronov-Hopf (SubAH) bifurcations.
The green and blue curves are the x-nullcline and y-nullcline,
respectively. The red lines are the stable limit cycle. The red closed
circles in (b) and (d) are the stable fixed points. Parameter I is 0.1
for the SNonIC and SupAH bifurcations and 0 for the SNnoIC and
SubAH bifurcations.

B. The map-based models

1. The subcritical Rulkov model

The discrete-time dynamical systems that are valid phe-
nomenological models of neurons are known as map-based
models [32]. The Rulkov model is a map-based model
that replicates spiking-bursting neural activity [33]. The
bifurcation of the fixed point in this model is the SubAH
bifurcation [34]. This model is therefore capable of containing
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FIG. 4. Frequency-current relationship of the HR model with
(a) SNonIC, (b) SNnoIC, (c) SupAH, and (d) SubAH bifurcations.
The input is a constant current, I (t) = μ. The gray regions in (b) and
(d) indicate the bistable conditions.

bistability [32]. We will refer to this model as the subcritical
Rulkov model for clarity. The subcritical Rulkov model is
described as follows:

xn+1 = Fsub(xn,yn), (3)
yn+1 = yn + (−xn + s + In)/τ, (4)

where xn is the fast and yn is the slow dynamical variable.
The slow time evolution of yn is due to the large value of the
parameter τ , and τ = 100 in this study. In describes an external
input that is applied to the model (Sec. II C). s is the control
parameter that is used to select the regimen of individual

behavior, and s was set to 1 −
√

α
1−1/τ

in order to make the

bifurcation occur at In = 0. The subcritical Rulkov model
uses s ′ = s + 1 in its original formulation [33]. Fsub(x,y) is
a function that represents the subthreshold behavior of the
membrane potential, and it includes a threshold and reset
mechanism to produce spikes:

Fsub(x,y) =

⎧⎪⎨
⎪⎩

α
(1−x) + y if x � 0,

α + y if 0 < x < α + y,

−1 if x � α + y,

where α = 4 in this study.

2. The supercritical Rulkov model

For the map-based model that did not exhibit bistability,
the model that was proposed by Shilnikov and Rulkov was
employed [35]. We refer to this map-based model as the
supercritical Rulkov model because the bifurcation of the fixed
point in this model is the SupAH bifurcation [35]. This model
is described as follows:

xn+1 = Fsup(xn,yn), (5)

yn+1 = yn + (−xn + s + In)/τ, (6)

where

Fsup(x,y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−α2

4 − α + y if x < −1 − α/2,

αx + (x + 1)2 + y if − 1 − α/2 � x � 0,

1 + y if 0 < x < 1 + y,

−1 if x � 1 + y,

where τ = 100 and α = 1 in this study. s was set to
−{1 + 1/τ + α}/2 to make the bifurcation occur at In = 0.
In describes an external input that is applied to the model
(Sec. II C). This model exhibits a small-amplitude subthresh-
old oscillation, which is the same as the HR model with the
SupAH bifurcation.

C. Input fluctuation

The inward current to a cell body, I (t) in Eq. (1) and In in
Eqs. (4) and (6), is described by the form

I (t) = μ + σξ (t),

In = μ + σξn,

where ξ (t) and ξn are white Gaussian noise. The parameters
μ and σ control the mean and fluctuation of the inputs,
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respectively. This fluctuated input was based on the following
assumption: a cortical neuron receives thousands of synaptic
contacts; if the incoming synaptic inputs are assumed to be
independent, then the sum of a large number of independent
excitatory and inhibitory inputs can be approximated to an
uncorrelated fluctuation [36].

D. Interspike interval statistics

The output spike trains were evaluated with two ISI
statistics: the mean ISI (T ) and the coefficient of variation
(Cv), which were defined as

T = 1

n

n∑
i=1

Ti,

Cv =
√

(Ti − T )2/T ,

where Ti represents the ISI. Cv evaluates the irregularity of
the spike trains. If the spike train is completely regular, that
is, if all of the ISIs are constant, then Cv corresponds to 0.
If the spike train is completely random, which indicates a
Poisson process, then Cv corresponds to 1. Because Cv is
a dimensionless quantity, we can directly compare Cv in the
various models. In contrast, T is not a dimensionless value. We
therefore used the ratio of T to the membrane time constant,
T /τ , for comparison. We estimated (T /τ , Cv) from a finite
ISI sequence consisting of 10 000 ISIs that were obtained with
a numerical simulation.

E. The Markov transition bistability model

As a simple model of bistability, a mixture of two types of
ISIs was introduced. In the repetitive firing state, the neuron
emits spikes at a constant ISI. In the resting state, the spikes
occur accidentally due to the large fluctuations of the external
inputs, which result in variable ISIs. Thus, a mixture of
constant ISIs and variable ISIs was used. Although this ISI
mixture can be described in several ways, one plausible option
is the introduction of a Markov switching mechanism. Namely,
the ISIs were produced randomly with a Markov process of
current mode switching between the constant mode and the
variable mode [Fig. 9(a)].

In the constant mode, every ISI was equal to the constant
value r: spikes occurred regularly at a constant interval r . In
the variable mode, every ISI was produced randomly through
the sampling of the distributions F0(T ). The next mode was
chosen independently with a probability p for the variable
mode and 1 − p for the constant mode. In the mixture of
constant ISIs and variable ISIs, Fp is expressed with F0 and p

as follows:

Fp(T ) = (1 − p)δ(T − r) + pF0(T ),

where δ is the Dirac delta function and T is an ISI. The
statistical quantity (T ,Cv) is easily obtained from the moments
of the ISI distribution F0(T ) (Appendix B).

We assumed three distributions for F0(T ): the exponential
distribution,

Fe(T |λ) = λe−λT ; (7)
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FIG. 5. (Color online) Relationship between input variance σ

and output variance Cv for the HR model with (a) SNonIC,
(b) SNnoIC, (c) SupAH, and (d) SubAH bifurcations.

the exponential distribution with an absolute refractory period
R,

FR(T |λ,R) = λe−λT + R; (8)

and the � distribution,

Fγ (T |λ,α) = λα

�(α)
e−λT T α−1, (9)

where �(α) is the Gamma function. We set the constant
ISI to r = 2.5τ . Changing the input parameter values (μ,σ )
corresponded to changing λ and p in this model.

III. RESULTS

A. The Hindmarsh-Rose model

1. The HR model with the SubAH bifurcation reproduced
the anomalous responses

We first investigated whether the HR model reproduced the
anomalous I-O relationship that was observed with the HH
model. Figure 5 shows the dependence of Cv on the input
variance σ under each bifurcation condition, where the input
mean μ was altered so that T /τ was constant.

The HR model with the SNonIC bifurcation did not exhibit
subthreshold oscillations or bistability (Table I), which was
similar to the LIF model. Cv of this model increased as σ

increased [Fig. 5(a)], which indicated that the irregularity of
the output spike trains was proportional to the magnitude of the
input fluctuations. This was true regardless of the T /τ value.
A similar orbit of Cv was observed in the LIF model [26].

The HR model with the SubAH bifurcation exhibited both
subthreshold oscillations and bistability (Table I), which was
similar to the HH model. As shown in Fig. 5(d), when
T /τ � 10, Cv of this model was proportional to σ , and it
resembled that of the SNonIC bifurcation.

When T /τ > 20, Cv took on a different appearance: Cv was
inversely proportional to σ , especially when 0.001 < σ < 0.1.
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FIG. 6. (Color online) The largest Cv value for the spike trains
with T /τ = 50 for each parameter (b, d). The solid and dashed lines
are the boundary between the bifurcations, as in Fig. 2.

When T /τ = 50, Cv exceeded 1 for σ < 0.01, and it decreased
as σ increased. This inverse relationship was similar to that
observed in the HH model [26], which suggested that the HR
model was sufficiently complex to reproduce the anomalous
responses and that the subthreshold oscillations and bistability
were candidates for the origin of the anomalous responses.

2. The origin of the anomalous responses: Subthreshold
oscillations or bistability

To clarify the origin of the anomalous responses, the
subthreshold oscillations, or bistability, we calculated Cv

values for the HR model with the SupAH bifurcation and
the HR model with the SNnoIC bifurcation. The HR model
with the SupAH bifurcation showed subthreshold oscillations
but no bistability (Table I). In contrast, the HR model with the
SNnoIC bifurcation showed bistability but no subthreshold
oscillations (Table I).

Figure 5(c) depicts Cv values of the HR model with the
SupAH bifurcation. The orbits of Cv on T /τ � 10 were similar
to those of the SubAH bifurcation [Fig. 5(d)]. However, the
orbits of Cv on T /τ � 15 differed from those of the SubAH
bifurcation: below σ � 0.1, Cv remained constant even as
σ increased. These results indicated that the subthreshold
oscillations were not an origin of the anomalous responses.

Figure 5(b) depicts Cv values of the HR model with the
SNnoIC bifurcation. When T /τ � 20, Cv was larger than 2
for σ < 2. As σ increased, Cv declined and converged to 1,
which indicated that the bistability might be the origin of the
anomalous responses. Cv of T /τ = 3 was proportional to σ .
Cv of T /τ = 6 and 7 showed intermediate behavior between
the anomalous responses and proportional relationships: Cv

was almost 0 for small σ , and it increased as σ increased until
σ reached 1; Cv then began to decrease and finally converged
to 1.

To evaluate the anomalous responses in the entire parameter
space, the largest Cv value for the spike trains with T /τ = 50
was calculated by sweeping the (b, d) parameter space (Fig. 6).
For the anomalous responses, the largest Cv value should be
larger than 1, and it is typically larger than 2. Otherwise,
the largest Cv should be lower than 2. The largest value
of Cv exceeded 2 with the parameters of the SubAH (right
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FIG. 7. (Color online) Relationship between input variance σ

and output variance Cv for the map-based models: (a) the subcritical
Rulkov model and (b) the supercritical Rulkov model.

upper region of Fig. 6) and SNnoIC (left region of Fig. 6)
bifurcations. Based on these results, the bistability of the
resting states and repetitive firing, and not the subthreshold
oscillations, was determined to be the origin of the anomalous
responses.

B. The map-based models

If the anomalous responses depended only on the bistability,
the same could be predicted for the map-based neuron models.
The subcritical Rulkov model shows bistability with the
appropriate parameters (Sec. II B 1) [33]. The ISI statistics of
the subcritical Rulkov model were calculated [Fig. 7(a)]. The
subcritical Rulkov model reproduced the anomalous responses
regardless of the value of T /τ : Cv was larger than 2 for
σ < 0.04; as σ increased, Cv declined and converged to 1.

To investigate if the map-based model without bistability
failed to reproduce the anomalous responses, the ISI statistics
of the supercritical Rulkov model were calculated [Sec. II B 2,
Fig. 7(b)]. The supercritical Rulkov model did not reproduce
the anomalous responses: regardless of the value of T /τ , Cv

was almost constant, and it ranged between 1 and 1.5 for any
value of σ .

C. Spike trains with large Cv values

To clarify how the bistability produces the highly irregular
spike trains, the spike trains of the map-based models are
depicted in Fig. 8. For the subcritical Rulkov model, spike
trains with large Cv values (Cv = 2) contained burstlike spikes,
which were a successive occurrence of spikes [Fig. 8(a),
enlargement]. The mean ISI of this spike train was small due
to the burstlike spikes, while the variance of the ISIs was large
due to a composite of short ISIs inside the burst and long ISIs
outside the burst. Therefore, the large Cv values were realized
by the burstlike spikes that were formed by the bistability.
As σ increased, the number of spikes that were included in
a single burst gradually decreased, and the spike train settled
eventually into a Poisson spike train [Fig. 8(b), Cv = 1].

The burstlike spike train did not emerge in the supercritical
Rulkov model. Only small clusters of spikes were included
in the spike trains with the largest Cv values [Fig. 8(c),
Cv = 1.4]. As σ decreased, the probability of the occurrence
of the clusters of spikes decreased. For small σ , the spikes
were more likely to occur at the top of the subthreshold
oscillations [Fig. 8(d), enlargement]. The probability of spike
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FIG. 8. (Color online) Example spike trains of (a),(b) the sub-
critical and (c),(d) supercritical Rulkov models in which T /τ = 15.
The middle panels (σ−Cv planes) indicate (σ , Cv) of each example
spike train. (a) The spike train of Cv = 2. An enlargement of one of
the burstlike spikes is depicted in the upper red box. (b) The spike
train with Cv = 1. (c) The spike train with Cv = 1.4. Three of the
clustering spikes are enlarged in the upper red box. (d) The spike train
with Cv = 1. An enlargement in the lower red box shows the spikes
being phase-locked to the top of the subthreshold oscillation.

generation was stochastic due to the input fluctuation. This
spike train corresponded to a discrete Poisson spike train, in
which Cv = 1.

D. The Markov transition bistability model

1. Heterogeneous ISI distributions

To confirm the above findings in a more simplified model,
we examined a simple mixture of the two types of ISIs.
Namely, the ISIs were produced randomly with current mode
switching between the constant mode and the variable mode
in a Markov process [Fig. 9(a)]. This is one of the simplest
models of bistable firing.

We first considered a case in which the spike times followed
a Poisson process in the variable mode. In this case, the ISIs
exhibited an exponential distribution, Eq. (7). We obtained
(T ,Cv) with Fe(T |λ) for the variable ISIs F0(T ). Figure 9(b)
depicts the T /τ contour lines in the p-Cv plane that was
obtained by sweeping λ of Fe(T |λ). The model showed the
anomalous responses, regardless of the statistics used for T /τ :
Cv was large for p ∼ 0, and it decreased and converged to 1
as p increased.

We then considered a case with spike trains that followed
the Poisson process with an absolute refractory period. In this
case, the ISIs exhibited an exponential distribution with a
positive temporal shift due to the refractory period, Eq. (8).
The refractory period R was set to τ . Figure 9(c) depicts the
T /τ contour lines by sweeping λ of FR(T |λ,R). The model
showed the anomalous responses: Cv was large for p ∼ 0, and
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FIG. 9. (Color online) The Markov transition bistability model.
(a) Schematic of the mixture of constant interspike intervals (ISIs)
and variable ISIs. The ISI mixture can be produced with a Markov
switching mechanism. The spiking mode switches between the
constant and variable ISI modes with probability p. (b)–(d) The lines
indicate Cv contours with T /τ = 3, 4, 5, 6, 8, 10, 20, 50, and 100
from bottom to top, respectively. The inset shows the distribution that
was used for the variable ISIs.

it decreased to T /(T + R) as p increased. Cv of T /τ = 3 for
p < 0.2 could not be obtained because such fast spike trains
could not be reproduced with these parameters.

We finally examined more general spike trains in which the
ISIs exhibited a � distribution, Eq. (9). Figure 9(d) shows the
case in which α = 2. As in the previous two models, this model
showed the anomalous responses: Cv was large for p ∼ 0, and
it decreased to 1/

√
α as p increased. Quantitatively, the same

contour lines were obtained for other α values (α = 3, 4, 5,
and 10; not shown).

2. Homogeneous ISI distributions

The questions of whether the mixture of two types of
variable ISIs reproduced the anomalous responses or whether
the bistability of the two types of constant ISIs produced the
anomalous responses arose. To answer these questions, we
first investigated a case in which both modes were variable
ISIs [Fig. 10(a), insets]. In this study, both distributions
were assumed to be the � distributions, Fγ1 (T |λ1,α1) and
Fγ2 (T |λ2,α2). The parameters α1 and α2 were set to 2.
Figure 10(a) depicts the T /τ contour lines in the p-Cv plane
that were obtained by sweeping λ1, while λ2 was fixed to
α2/2.5τ . This model reproduced the anomalous responses: Cv

decreased as p increased and converged to 1/
√

α2 for p = 1.
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FIG. 10. (Color online) The mixture of (a) two types of variable
ISIs and (b) two types of constant ISIs. The insets show the
distributions that were used for the two modes. The basic display
format is the same as that described in Fig. 9.

We then investigated the case in which both modes were
composed of constant ISIs [Fig. 10(b), insets]. Every ISI in one
mode was the constant value r1; every ISI in the other mode
was the constant value r2. Figure 10(b) depicts the T /τ contour
lines that were obtained by sweeping r1, while r2 was fixed
to 2.5τ . This model reproduced the anomalous responses: Cv

decreased as p increased and converged to 0 for p = 1.

IV. DISCUSSION

We demonstrated that the HR model reproduced anomalous
I-O relationships under SNnoIC and SubAH conditions. Under
both bifurcations, the HR model exhibited bistability of
the resting and repetitive firing states. These results were
consistent with the ISI statistics of the map-based models
and the simple mixture of the two types of ISI distributions.
Therefore, the origin of the anomalous I-O relationship was
the bistability of the resting state and the repetitive firing
state. Spike correlations in recurrent neural networks are
considerably smaller than expected based on the amount of
shared presynaptic inputs [37,38], and the decorrelation of the
spike trains is important for information processing [39]. Our
results indicated that bistability enables the irregular neuronal
spike trains, even with small fluctuations of the inputs. Thus,
the bistability contributed to efficient neural processing.

The bistability of the resting state and the repetitive
firing state has been observed in biological neurons in the
entorhinal cortex of the brain [40]. In these neurons, the
activity-dependent changes of the Ca2+-sensitive cationic
current play a critical role. The entorhinal cortex, which is
the main interface between the hippocampus and the cortex, is
known as the substrate of conscious memory. The anomalous
responses may play some role in memory formation in the
entorhinal cortex.

In this study, the bistability of the resting states and the
repetitive firing state was realized with an intrinsic bifurcation
mechanism in the models. However, bistability can be realized
based on the Up/Down states of the membrane potential [41].
The Up/Down states consist of two distinct levels of membrane
potentials of neurons. In cortical neurons, the membrane
potential stays around −65 mV in Down states and −45 mV in
Up states. The firing probability in the Up state is much higher
than that in the Down state. Cortical neurons often exhibit
spontaneous transitions between the Up and Down states. The

Up/Down states can be considered the bistability of attractors.
The anomalous responses due to the Up/Down states may be
observed in the whole neocortex.

Cv values of the HR model with the SNnoIC and SubAH
bifurcations showed different orbits, despite both bifurcations
containing bistability (Fig. 5). The relative positions of the
stable fixed point are different between the two bifurcations:
the stable fixed point of the SNnoIC bifurcation is located
outside the stable limit cycle, whereas that of the SubAH
bifurcation is located inside the limit cycle (Fig. 3). For
the SubAH bifurcation, even small fluctuations of input can
prompt the transition between two attractors. However, for
the SNnoIC bifurcation, a large fluctuation is required to
transit between two attractors. This would therefore cause
the different orbits of Cv for the SNnoIC and SubAH
bifurcations.
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APPENDIX A: BIFURCATION CONDITIONS

1. Condition for the Andronov-Hopf bifurcation

A Jacobian matrix around fixed point x0 is
( 1 − x2

0 −1
(2x0 + d)/bτ −1/τ

), and its eigenequation becomes

λ2 + λ{1/τ + x2
0 − 1} + (bx2

0 − b + 2x0 + d)/bτ = 0. Since
eigenvalues of the Andronov-Hopf bifurcation point
are complex conjugates, 1/τ + x2

0 − 1 = 0 and
(bx2

0 − b + 2x0 + d)/bτ > 0. From them and bτ = 32 > 0,
the condition for the Andronov-Hopf bifurcation is

x0 = ±
√

1 − 1/τ ,
(A1)

d > −bx2
0 − 2x0 + b.

We set x0 < 0 in this study.

2. Boundary between SupAH and SubAH

Let f (x) := x − x3/3 and g(x) := (x2 + dx + a)/b. A
criterion to distinguish SupAH and SubAH is given by D :=
{g′(x0) − 1/τ }f ′′′(x0) − f ′′(x0){g′′(x0) − f ′′(x0)}, D > 0 for
SupAH and D < 0 for SubAH [42]. Thus, D = 0 gives a
boundary between SupAH and SubAH:

d = b/τ + 2bx2
0 .

3. Condition for the saddle-node bifurcation

Since the fixed point (x0,f (x0)) corresponds to the crossing
point of f (x) and g(x), x0 satisfies

x0 − x3
0/3 = (

x2
0 + dx0 + a

)
/b. (A2)

For the saddle-node bifurcation, Eq. (A2) has one independent
root and one multiple root, indicating that Eq. (A2) has
two independent inflection points. The inflection points are
solutions of first-order derivative of Eq. (A2),

bx2
0 + 2x0 + d − b = 0, (A3)

042705-7



RYOSUKE HOSAKA AND YUTAKA SAKAI PHYSICAL REVIEW E 92, 042705 (2015)

and its solutions are x0 = {−1 ± √
1 − b(d − b)}/b. Equa-

tion (A3) must not have a multiple root, resulting in 1 − b(d −
b) > 0. This gives a condition for the saddle-node bifurcation:

d < 1/b + b.

4. Boundary between SNonIC and SNnoIC

For τ → ∞, we can analytically calculate the boundary
between SNonIC and SNnoIC (the red line in Fig. 2). Given the
extremal values of f (x) as (xfex1,f (xfex1)) and (xfex2,f (xfex2)),
where f (xfex1) < f (xfex2), the boundary satisfies

f (xSN) = f (xfex2),

where (xSN,f (xSN)) is the saddle-node bifurcation point. In this
case, xSN = {−1 − √

1 − b(d − b)}/b and f (xfex2) = 2/3.
Otherwise, the following numerical procedure gives a rough

boundary (the dashed line in Fig. 2 for τ = 32/b). Given that
a limit cycle and its reunion point to f (x) (xre,f (xre)), the
boundary satisfies

f (xSN) = f (xre).

APPENDIX B: T AND Cv OF THE MARKOV
SWITCHING MODEL

By using first and second cumulants, ψ1 and ψ2, respec-
tively, T and Cv are calculated as follows:

T = ψ1,

Cv =
√

ψ2/ψ1.

These cumulants are obtained from the first and second
moments, φ1 and φ2, respectively, as ψ1 = φ1, ψ2 = φ2 − φ2

1 .
The first and second moments of the Mixture model are
calculated as follows:

φ1 = (1 − p)φc1 + pφv1,

φ2 = (1 − p)φc2 + pφv2,

where φc1 = r and φc2 = r2 are moments of the constant ISI,
φv1 and φv2 are moments of the variable ISIs, and p is the
transition probability. For the � distribution, φv1 = α/λ and
φv2 = α(α + 1)/λ2.
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