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Integrin-mediated adhesion as self-sustained waves of enzymatic activation
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Integrin receptors mediate interaction between the cellular actin-cytoskeleton and extracellular matrix. Based
on their activation properties, we propose a reaction-diffusion model where the kinetics of the two-state receptors
is modulated by their lipidic environment. This environment serves as an activator variable, while a second
variable plays the role of a scaffold protein and controls the self-sustained activation of the receptors. Due to
receptor diffusion which couples dynamically the activator and the inhibitor, our model connects major classes
of reaction diffusion systems for excitable media. Spot and rosette solutions, characterized by receptor clustering
into localized static or dynamic structures, are organized into a phase diagram. It is shown that diffusion and
kinetics of receptors determines the dynamics and the stability of these structures. We discuss this model as a
precursor model for cell signaling in the context of podosomes forming actoadhesive metastructures, and we
study how generic signaling defects influence their organization.
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I. INTRODUCTION

Cellular signal processing takes place through a sequence
of patterning events in which initially homogeneous con-
centration fields differentiate in activation patterns coordi-
nated in space and in time [1]. Examples of such out-of-
equilibrium patterns are numerous in actin wave remod-
eling systems [2] and include, for example, dorsal ruffles
[3] and podosomes [4–7]. In contrast to other actin struc-
tures, podosomes in Src-transformed cells are actoadhesive
complexes [8] primary controlled by β1 integrin receptor
signaling [6] cycling between two conformational states [9].
Podosomes form in domains with intense phosphoinositide
signaling [10,11], and they exhibit remarkable spatiotemporal
metaorganization such as granulation of space by clusters
of many individual podosomes, static or expanding annular
ring called rosettes, or incomplete rosettes with spiraling
shapes [12–17]. Cellular imaging shows these metastructures
are dynamic. They can fragment, fuse, repel each other,
or annihilate. Such patterns of activation are characteristic
features of different classes of reaction-diffusion systems
of the activator-inhibitor type [18,19] which describe lo-
calized out-of-equilibrium structures. An attractive problem
is to relate these abstract systems serving as paradigms
for pattern formation with key biochemical functional
modules.

In what follows, we will mainly concentrate on rosette and
spotlike solutions as generic solutions of a two-dimensional
diffusion-reaction system. Localized solutions in excitable
media such as spots or annular ring solutions have been
studied in many very different problems related, for example,
to signal propagation [19], actin waves [2,20–24], domain
wall dynamics [25–27], and mathematical analysis of pattern
formation due to chemical autocatalysis [28–32]. In addition
to spatially localized solutions specific to large diffusion
constant of the inhibitor compared to the activator, these
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models possess generally many other solutions [18,33,34]
when the inhibitor and the activator have comparable diffusion
lengths. This plethora of solutions, and how these systems
bifurcate when parameters are sightly varied, render difficult
comparison with experimental observations. In this paper,
we will introduce a coupling mechanism related to receptor
diffusion.

To keep the problem amenable to analysis, we will focus on
signaling events which initiate pattern formations in podosome
systems. Local changes in membrane composition with local
increase of PIP2(4,5) concentration [35,36] coupled to receptor
activation [9,37,38], to receptor recruitment and to PIP2(4,5)
production [39,40] are known to regulate podosome structures
[41]. By analogies with these mechanisms governing integrin
signaling [42], we consider the model of Fig. 1; see also
Ref. [43] for a different approach. We focus on a diffusing
two-state receptor coupled to two functional modules. One
is for receptor activation through concentration changes u

in the membrane, while the other v plays the role of
controller regulator. In the language of pattern formation,
this concentration change u plays the role of the activator,
while the so-called inhibitor v controls and regulates the
production of u by binding to the receptors. Nonlinearities
in our reaction-diffusion system, characteristic of different
classes of systems describing localized excited states, appear
naturally in the model through the kinetics between the
conformational states of the receptors modulated by u. The key
properties of this model are that receptor diffusion modulates
the two-variable activator-inhibitor system by introducing a
global coupling through a diffusing field. This leads to a
crossover between different classes of models, limits the
number of solutions, and is crucial for their stability when the
controller variable is not necessarily long range with respect
to the activator. Therefore, receptor diffusion is essential
to get stationary structures with the property that they get
smaller with excitability. As a result, both diffusion and
kinetics properties of these receptors influence the stability of
theses structures, their dynamics, and their response to local
perturbations.
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FIG. 1. (Color online) Schematic representation of the model.
Left panel: Integrin receptors have two conformational states. Unac-
tivated integrins are represented by down triangles and activated ones
by up triangles. Changing membrane composition with increasing u

as indicated by the color code of the bar drives integrin receptors from
their unactivated to their activated state where they are immobilized
by ligation to an extracellular ligand (⊥). Right panel: Activated
integrins bind reversibly a controller protein represented as a pink
circle with the symbol v. A covalent modification of v on the integrin
site leads to the inert molecule ∅ represented as a yellow circle.
Changes in affinity between integrins and v or ∅ are represented by
right-left arrows. The complex v · nl synthesizes u and thus favors
the activated phase by a feedback loop.

II. THE MODEL

In the simplest case, an activator-inhibitor reaction-
diffusion system takes on the form

∂tu = Du�u + f (u,v,nl), (1)

∂tv = Dv�v + g(u,v,nl), (2)

where u = u(x,t), v = v(x,t), and nl(x,t) are local coverage
functions of the space-time coordinates. � is the two-
dimensional Laplacian, f, g are nonlinear functions depending
on bifurcation parameters, and ε is a parameter which controls
the excitability of the system. By definition, nl is the fraction
of activated receptors ligated to an external ligand. In standard
two-variable models, nl is a given function of u or v and enters
as a functional parameter in the model. In marked contrast, nl

in the present work is a dynamic variable adjusting itself to u

and v. As a result, the coupling between the activator and the
controller variable depends on receptor diffusion biased by the
production of u.

Let nf be the fraction of unactivated receptors, free to
diffuse within the membrane. First, we derive the equation
of motion for (nf ,nl). The kinetics between these two states
controls the formation of adhesive complexes. Introducing
the reaction rate constants kon(u),koff(u) between the two
populations nf (u), nl(u), the equations of motion for the
receptors are

∂tnf = Dn�nf − kon(u)nf + koff(u)nl, (3a)

∂tnl = kon(u)nf − koff(u)nl. (3b)

In general, adhesive complexes grow and stabilize for kon(u) >

koff(u). As seen later, the ratio kon(u)/koff(u) can be interpreted

as an affinity constant modulated by the membrane concentra-
tion u.

To derive the equations of motion (1) of the activator u

and of the controller v, we consider the formation of the
complex v · nl . For a general activator-inhibitor system, there
is a positive feedback between v and u. This means that u is
produced at a rate proportional to the complex v · nl , while it
is degraded at a rate proportional to u. Therefore,

f (u,v,nl) = 1

ε
(−bu + v · nl), (4)

where b and ε gives characteristic time scales. If the equi-
librium between the complex v · nl is sufficiently fast, the
dimensional reduction v · nl ∝ vnl gives the desired result,
since v increases the rate of production of u.

Regulation of the spatial and temporal binding of the
controller v is represented symbolically as

nl(u) + v
k+

GGGGGGBF GGGGGG

k−
v · nl(u)

1/τ
GGGGGGGGA nl(u) + ∅, (5)

where ∅ corresponds to inert molecules and where the
dots represent other intermediate states that we will neglect
by concentrating on only one effective state. Equation (5)
corresponds to a biologically pertinent case where covalent
modifications of an adaptator protein occur on integrin sites
and favor the disassembling of the adhesive structure. For
simplicity, we assume in the last step of Eq. (5) that the
unbinding rate is much larger that the binding rate so that
the reverse step can be neglected.

Under general conditions, we can set dv · nl(u)/dt = 0 in
(5). We find

v · nl = k+
k− + 1/τ

vnl (6)

and v has a positive feedback on u. The same stationary
approximation shows that −1/τvnl couples u to v in the
equation of motion of v. Thus, u is the negative feedback on v,
since nl(u) increases with u. In general, the controller variable
is also activated, and the most simple equation of v is obtained
when v is in equilibrium with a reservoir of concentration vc

g(u,v,nl) = h(vc − v) − 1/τvnl, (7)

where v is produced at a rate hvc to compensate its modification
at a rate −1/τvnl . Since τ sets the reference time scale, we
set τ = 1 and rescale the time coordinate in the equations of
motion (1) for u and v to write

∂tu = Du�u + 1

ε
[−bu + vnl(u)], (8)

∂tv = Dv�v + h(vc − v) − vnl(u), (9)

where, to keep the notations as simple as possible, ε as been
redefined as

1

ε′ = k+
k− + 1/τ

τ

ε
(10)

with ε′ = ε. By appropriate rescaling, the parameters b and h

stands for b(k− + 1/τ )/k+ and hτ , respectively. Since nl(u) is
known from (3), Eqs. (3), (8), and (9) form a closed system and
generalize the classical two-variable activator-inhibitor system
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to the case of receptors with two conformational states. As a
first result, Eqs. (8) and (9) are of the general form (1) with ε

being the ratio of a rate of production to the rate of regulation.
In the limit of small down-regulation, τ � 1, Eq. (7) shows

that the variations of the activator u are almost decoupled from
the variations of v and one can take v = vc in (6). In this case,
the equation of motion for u follows a variational principle. For
k−τ � 1, it is not possible to write the equations of motions
under a variational form. The smallness of the parameter
τ represents, therefore, the departure from equilibrium. The
dimensionless ratio k+τ/ε must, however, be sufficiently small
to encode the strength of the activation process.

Equations (3a), (3b), (8), and (9) are general and do not
depend on the exact functional form chosen for kon(u), koff(u).
These are defined as follows. From Eq. (3), the relative fraction
nl(u)/nf (u) in the stationary limit is given by the ratio of the
two kinetic constants kon(u)/koff(u). We assume the simple
ansatz

koff(u)

kon(u)
= K−1

e exp [−βu/(1 + u/c)] (11)

with K−1
e = koff(0)/kon(0) The two constants β and c are

positive, and the effect of c > 0 is to limit the fraction of
activated integrins at large u. The constant c is not necessary
for what follows but can be kept for generality. The choice of
the exponential function in (11) is suggested by analogies with
known thermodynamic principles for proteins. A differential
shift in the chemical potential between the two conformational
states influences the relative population of theses states. In our
case, we assume that this shift depends on the concentration
u with a factor β > 0 encoding the strength of the interaction
between a receptor and its scaffold proteins. This ansatz is also
consistent with Bell’s law generally assumed to describe the
life time of a bond subjected to a force [44].

Equation (11) determines kon(u) and koff(u) within a com-
mon multiplicative factor εint. This factor scales how fast or
slow is integrin receptor kinetics. Stationary solutions depend
only on the ratio kon(u)/koff(u), and homogeneous solutions
of Eqs. (3) depend only on the combination kon(u) + koff(u).
For simplicity, we define a reference scale parameter εint and
set:

kon = 1/εint, (12)

koff = 1/εintK
−1
e exp [−βu/(1 + u/c)], (13)

where c is some positive constant. Physically this choice corre-
sponds to the case where a change in membrane concentration
stabilizes the activated state and thus increases the time during
which an immobilized receptor signals. Varying εint changes
the residence time of the receptors in their activated state as
well as their diffusion length at constant ratio koff/kon.

Baseline values for the parameters area as follows [43,45].
For membrane proteins, Brownian diffusion constants are of
the order of Dn ≈ 0.1 μm2 s−1. The average integrin density
is of the order of 1000 μm−2, and, due to their size ≈9–12 nm
[46], their area coverage is much larger than the one of
PIP2 which is a low abundance phospholipid. A typical
value of the base level of u is, therefore, of the order of
1%. We take the intrinsic on-rate of an integrin as 0.1 s−1

with an intrinsic off-rate of 10 s−1. This gives Ke = 0.01
with a characteristic surface coverage for excited regions of
uc = 4.6% when β = 100 and n∞ = 1. Taking b = 1 and
ε = 1 gives a diffusion length for u on the order of 300 nm. The
parameter α = εh/b gives the ratio of the characteristic times
for the activator u and the controller v near their unperturbed
values. Typical values for α used in this work give α < 1, so
that u respond faster than v, since regulation is slower than
activation. Finally, mobile membrane proteins have almost
equal diffusion constants. The ratio of the activator to the
inhibitor diffusion lengths μ = (εhDu/bDv)1/2 is smaller than
1, but it is not infinitesimally small in contrast to standard
activator-inhibitor systems [2,25,27,29].

III. TWO LIMIT CASES: FAST AND SLOW INTEGRIN
ADAPTATION DYNAMIC

A. Equations of motion

To understand how this homogeneous state can be desta-
bilized by local excited structures, it is instructive to consider
first the limits of (a) slow and (b) fast reinforcement of the
adhesive complex by integrin diffusion. For the sake clarity,
the dimensionless parametrization of the model is introduced
in Appendix A.

Case a corresponds to zero receptor diffusion and very
fast receptor kinetics, εint � 1. Since integrin receptors do not
diffuse, the total surface density of integrins can be considered
as homogeneous and constant, nf + nl = n∞. Rescaling the
spacial coordinates, we renormalize the diffusion constants
with d = Dv/Du. If integrin kinetics between the two states is
fast enough, Eq. (3) gives nl(u) = kon(u)/koff(u)nf (u).

The equations of motion for u and v become

∂tu = �u + 1

ε
[−bu + n∞v�a(u)], (14)

∂tv = d�v + h(vc − v) − n∞v�a(u) (15)

with

�a(u) = 1

1 + K−1
e exp [−βu/(1 + u/c)]

. (16)

If Ke depends on other factors such as mechanical stresses,
we can Taylor expand (16) and recover the functional form
studied in Ref. [23].

In case b, diffusion takes place instantaneously. The
distribution of unactivated integrins is homogeneous and is
fixed by the boundary conditions for nf . We find nf =
n∞/(1 + Ke), where Ke ≈ Ke exp [βuh] for uh � 1. In this
case, the equations for u and v are

∂tu = �u + 1

ε
[−bu + n0v�b(u)], (17)

∂tv = d�v + h(vc − v) − n0v�b(u), (18)

where

�b(u) = exp [+βu/(1 + u/c)] (19)

with

n0 = Ke

1 + Ke

n∞. (20)
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FIG. 2. (Color online) Parameter space in the limit of fast adap-
tation of the integrin field (b case). Typical null clines for regions I,
II, and II are shown as insets. Region I, with one stable fixed point,
corresponds to the monostable case studied in this paper. Solutions
u(t) and v(t) in region II are oscillatory. In region III, the null clines
correspond to a bistable system with three fixed points.

Comparing the slow versus fast adaptive case shows that the
equations of motions for u differ markedly, since the two
functions �a(u) and �b(u) introduce very different nonlin-
earities and thus encode patterns with different properties. In
the slow limit of case a, the dynamics of (14) corresponds to a
cubic nonlinearity and the model is equivalent to a generalized
FitzHugh-Nagumo model. In this case, ε sets the width of
the interface between the rich and poor phases corresponding
to the zeros of (14). In the fast adaptive limit, the equation
of motion (17) has only two fixed points for c = 0 and three
for c > 0. This model, for c > 0, has been first studied in
Ref. [47], and we shall see that it has similar properties
to autosolitons [25] with ε setting the width of the excited
structures. Such structures have been thoroughly studied in
Ref. [29] for the Gray-Scott model, which is approximately
related to our model; see Appendix B.

In both cases, the controller variable v must be sufficiently
large for the production of u by v · nl(u), proportional to
v, to compete with its irreversible degradation by the term
−bu. As shown in Appendix A for the fast-adaptive case
b, the ratio βvch/b the relative contribution. On the other
hand, activated receptor are down-regulated at rate 1 so that v

must be constantly activated by h(1 − v) to maintain adhesive
structures. As a result, the parameter space of Fig. 2 is the
plane (K−1

e h,βvch/b) with one or three fixed points.
For parameters chosen in region III of Fig. 2, the system

exhibits bistability, with two attracting points, with a low and
a large (u,v) level, or the reverse, that essentially compete for
the trajectory in the (u,v) plane. This region of the parameter
space can describe alternate phases of fixed low and large u

domains separated by domain walls with a width set by ε. In
what follows, we will be primarily interested in the monostable
case with only one fixed point (uh,vh); see region I. The reason
for this is that, in contrast to region III, the homogeneous phase
can be destabilized by local structure of arbitrary large u and
low v for sufficiently small ε. In region II, the fixed point is
still a stable focus when uh is small and can generate a limit

FIG. 3. (Color online) Generic trajectories (rainbow) in the (u,v)
phase space with null clines (red, blue) in the case of slow adaptation
of the integrin field (b case). The trajectory approaches the null cline
v = bu/nl(u) (red curve) and u is bounded from above when ε → 0
before returning to the homogeneous fixed point. The inset shows
the variations of u(t) as a function of time (h = 0.05,ε = 1,b = 1,

vc = 0.5).

cycle through a supercritical Hopf bifurcation at larger values.
For simplicity reasons, we will concentrate on region I.

B. Phase portrait analysis

To mark the difference between the two limits, it is useful
to consider a phase portrait analysis of the equivalent two-
variable system. The reduced system

du/dt = f (u,v), (21)

dv/dt = g(u,v) (22)

for (14)–(15) and (17)–(18) gives the null clines v =
u/nl(u), v = hvc/[h + nl(u)]. As shown in Figs. 3 and 4,
these null clines are very different in the two limits. In
the slow adaptive case, v = u/nl(u) is S-shaped. We have
nl(u) < n∞ and v ∝ u in the large u limit. In the fast limit,
however, the concentration of receptors increases very fast
with the activator, and the null cline v = u/nl(u) decreases
exponentially with u. Both systems are excitable, since a
perturbation of the homogeneous fixed point triggers a strong
excursion in the large u limit before returning the fixed
point. For a large ensemble of parameters, this behavior is
independent of the stationary approximation leading to (6).

The geometry of the null clines imposes, however, that
cases a and b have very different behaviors as ε goes to zero.
In case a, u is bounded from above as ε goes to zero, since the
maximum value of u for a trajectory is where the null cline
intersects a parallel to the u axis from the starting point. In
case b, however, the null cline is almost parallel to the u axis,
and the excitation u diverges in the same limit. This implies
that the maximum of u can be made as large as desired by
letting ε go to zero. As stated in Refs. [25,29], models for
interfaces and domain walls dynamics fall generally in case a,
but models for large self-sustained excitation spots correspond
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FIG. 4. (Color online) Generic trajectories (rainbow) in the (u,v)
phase space with null clines (red, blue) in the extreme cases of
instantaneous adaptation of the integrin field (b case). The inset shows
the variations of u(t) as a function of time in the cases where a constant
c limit the production of u (c � 1, dashed, brown) and in the case
where there is little saturation (c = 0.1, blue). Note that there is a
strong separation of time scales between the fast increase of u(t) and
its slow return to the fixed point (h = 0.05,ε = 1,b = 1,vc = 0.5).

to case b. Following Ref. [25], diffusion does not change this
fundamental difference between the two limits, which will turn
out to be essential to localize receptors.

IV. STATIC LOCALIZED STRUCTURES

On the numerical side, solutions are be obtained from the
evolution of a pointlike excitation in u with fixed boundary
conditions, all other fields being initially at their quiescent
homogeneous state values. Following this initial condition,
one observes a rapid adaptation of the dynamical variables
with their eventual convergence to a stationary solution
characterized by a constant density of unactivated receptors
nf . Nontrivial solutions, either stationary or not, are found for
all values of the parameters near the I-II and I-III boundary
lines of Fig. 2.

Figures 5 and 6 correspond to two generic stationary
solutions with radial symmetry. These solutions are obtained
in a regime where the pure kinetic case with Dn = 0 has only
expanding ring solutions and where the limit Dn � 1 gives
transient expanding solutions. Taking into account receptor
diffusion is therefore crucial to obtain localized structures.
Excited regions localized in the neighborhood of the maxima
of u correspond to large concentration of receptors surrounded
by a larger cloud with small concentration of the controller v.
During convergence of the numerical solution, the receptors
diffuse from the quiescent outside regions and get activated
and immobilized where the density of ligated integrins is
maximum. Numerically, immobilization of activated receptors
is crucial for localized solutions to be stable. Otherwise,
localized solutions fad away after their transient excitation.

Because 2D solutions can only be computed numerically,
comparisons of our numerical results with the 1D solutions in
the static case give useful trends. Assuming d = Du/Dv � 1,
the asymptotic analysis of Ref. [25] can be reproduced in

FIG. 5. (Color online) Example of a static spike obtained from
a pointlike excitation. The density of free integrins (a) shown in
green has almost converged to n∞ = 1. Ligated integrins (b) are
shown in red. The blue dotted line represents the variations of u

(c) (normalized by its asymptotic value in one dimension; see (23).
The dashed magenta line (d) corresponds to v/vh. The distance r to
the symmetry axis has been normalized by the diffusion length lu =√

Duε/b (≈ lv) of u (Du,v = 1,h = 0.1,b = 2,vc = 0.75,ε = 5.75).
The scale where v varies is slightly larger than the characteristic scale
of u with lu � lv .

our case and demonstrates that homoclinic orbits for u(x)
possesses a maximum u1d [48]:

u1d = 2/
√

π [dh/(bε)]1/2vh (23)

on a characteristic length scale lu = √
Duε/b, while v(x) is

a minimum in the spike and behaves exponentially outside
on a characteristic length scale lv = √

Dv/h. Since nl(x)
behaves as a delta in (18), the distribution of v(x) is also
exponential in two dimensions. This calculation shows that
localized solutions in our model behave as autosolitons [25]
with a maximum which increases and a characteristic spatial
length scale which decreases as ε approaches zero.

FIG. 6. (Color online) Example of a static radially symmetric
rosette obtained from a pointlike excitation. Compared with the
solution of Fig. 5, the excitability parameter ε is slightly decreased
so that the the solution has the shape of a radially symmetric rosette
(Du,v = 1,h = 0.1,b = 2,vc = 0.75,ε = 3.65). The color code is the
same as in Fig. 5: (a) nf , (b) nl , (c) u/u1d , (d) v/vh.
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FIG. 7. (Color online) Phase diagram for 2D localized structures
(case b with c = 0). D, S, and H correspond to nonstationary
(expanding rosettes), static (stable), and homogeneous solutions. The
insets show snapshots of u(x). From left to right: Radially symmetric
expanding rosettes, static rosettes near the left boundary line D-S,
spike near the right boundary line S-H. Nonstationary solutions exist
only on the left of the D-S line. Static solutions are obtained after
convergence of the integrin field to 1 (h = 0.1,b = 2, vc = 0.75).
Note that expanding rings can be unstable and fragment in the vicinity
of the D-S line as shown in Fig. 12. Dashed lines have been traced by
hand.

Typical phase diagrams in the (ε,Dv/Du) plane are pre-
sented in Figs. 7 and 8 and, to be more general, in Fig. 10.
They correspond to different sets of parameters βvch/b and
K−1

e h of Fig. 2 and are generic for region I. As a general rule,

FIG. 8. (Color online) Phase diagram in the small βhvc/b limit
(h = 0.05,vc = 0.5,b = 1). The shaded area corresponds to the
domain of stationary localized solutions (inset D). This domain is
bounded from below by a minimum value of the diffusion constant
Dv below which stationary solutions cannot be found. Only transient
spikes fading away can be excited on the down right side of the
shaded area (inset C). Going left from inset C to inset B, only transient
expanding rings can be excited. Between the shaded area and the left
dotted line traced by hand, the only solutions found are expanding
rings which rapidly fragment into self-replicating spots as in Fig. 12
for a wide range of integrin diffusion constants. On the left of this
dotted line, we find stable radially symmetric expanding rosettes.

FIG. 9. (Color online) Values of ε at the S-D (εsd, lower curve)
and at the H-S boundary line (εhs, upper curve) at fixed d = Dv/Du =
1. Static solutions exist only in the colored region. The width of this
region, εsd − εhs, decreases with vc when βvch/b approaches a critical
value below which no localized solution exists (h = 0.1,b = 2).

moving from the left to the right hand side of the parameter
space of Fig. 2 at Dv/Du constant decreases the characteristic
length for the spatial variations of the controller v with respect
to the activator u. All phase diagrams exhibit the same generic
topology with a domain of existence of stationary solutions.
This domain is bounded on the right-hand side along the
stationary-homogeneous line (S-H line), for large ε, by the
trivial homogeneous phase and on the left-hand side, for small
ε, by nonstationary solutions, such as expanding rosettes, along
the dynamic-stationary line (D-S line). As shown in the insets
of the first phase diagram, stationary solutions of the PDE
system (3) and (8) near the S-H line have the shape of a single
radially symmetric spike, but solutions near the D-S boundary
line are rosettes with axial symmetry.

Stationary solutions exist if the rate of irreversible reg-
ulation of v is exactly compensated by the diffusion of v.
Physically the problem is equivalent to the classical problem of
equilibrating the rate of supply of the substance v with the rate
of consumption of v in the excited regions. This rate depends
on the excitability parameter ε fixing the rate of production of
u. Integrin receptors are recruited through the increase of the

FIG. 10. (Color online) Example of a phase diagram for c > 0 in
(11). Taking c > 0 limits the relative fraction of activated receptors
which saturates for large u. Comparing with the phase diagram of
Fig. 7, all phases are shifted to lower excitability parameter ε, but the
general topology is unchanged (h = 0.44,b = 2,c = 0.05).
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FIG. 11. (Color online) Density plot for u when an radially
symmetric rosette experiences breathing oscillations near the D-S
bifurcation line. The shape oscillates with time between the two
shapes shown in the insets. For the values of the parameters used
in this simulation (Dv = Du = 0.5Dn = 1, c = 25), the D-S and the
S-H bifurcation points almost coincide and the shape finally collapses.

production of u with ε and, in turn, this rate determines the rate
of consumption of v via the product vnl(u). The shape of the

excited domains depends on the spatial distribution of integrin
receptors. Since these are recruited from the homogeneous
phase through diffusion, they prefer to localize at the periphery
of the rosette which expands as ε decreases. In the same way,
increasing the diffusion constant Dv of v at fixed ε increases
the rate of consumption of v which can only be achieved by
recruiting new receptors at the periphery.

The rate of supply of v depends not only on the diffusion
constant Dv but also on how v is produced from a reservoir at
concentration vc and at rate h. When the parameter hvc/b is
small, diffusion of v is not always able to maintain stationary
localized structures. Figure 8 shows a phase diagram for
smaller h. The domain where stationary localized solutions
are found does not extend to small ratio Dv/Du. This shows
that the diffusion constant Dv should be large enough to obtain
stationary solutions. The role of this diffusion constant can
be better understood in the (βvch/b,ε) plane at fixed ratio
Dv/Du. When Dv is fixed and for a given hvc/b, the domain for
static stationary solutions is an interval for ε from a minimum
value, εsd, corresponding the static-dynamic boundary line, to a
maximum value, εhs, corresponding to the static-homogeneous
boundary line. As done in Fig. 9, decreasing vc at fixed h

and Dv measures the width of the interval, εhs − εsd, where
stationary solutions are found as one goes down parallel to the
βhvc/b axis of Fig. 2. In this plane, the domain of existence
of stationary solution has the shape of a tongue ending at a
point below which no stationary solution can be found. This

FIG. 12. (Color online) Density plots of the activator u at successive times for an expanding rosette when parameters are chosen on the
left-hand side vicinity of the D-S boundary line of Fig. 7 (ε = 3.50, Dv/Du = 1.0,Dn = 2). The rosette starts expanding with radial symmetry
in 1 and thereafter fragments into self-replicating spots in panels 2, 3, and 4. For larger integrin diffusion constant, Dn = 10Du, the radially
symmetric rosette is stable. In this case, it stops expanding due to boundary conditions and adopts a square shape.
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FIG. 13. (Color online) Density plots of the activator u. A collision between two expanding rosettes induces four characteristic different
shape instabilities depending on receptor kinetics and diffusion constant. Case (a) is an annihilation of rosettes which initially expanded in the
kinetic dominant regime where the recruitment of integrin receptors is small (Du = Dv = Dn,εint = 0.5,ε = 0.5). Scaling down both kon and
koff induces a zig-zag instability in case (b) followed by budding of self-replicating small spots granulating the space, εint = 0.7. For different
excitation, ε = 1, and faster receptor kinetics, εint = 0.15, the rosettes exhibit in case (c) a pearling instability which propagates from the point
of contact between the two rosettes. For much larger diffusion length of the receptors, Dn = 10Du,v,ε = 1,εint = 1, the two rosettes repel each
other without fusing or splitting into spots (h = 0.05,b = 1,vc = 0.5).

point defines a minimum value of vc which decreases with
increasing Dv . We conclude that for each value of diffusion
coefficient Dv , there exists a critical value of the parameter
βhvc/b where no stationary solutions can be found. Similar
conclusions apply for more complicated models such as the
one of Fig. 10 for which the constant c in (11) is such that
koff(u) saturates at large u (c > 0).

Finally, oscillating structures are found in the immediate
vicinity of the D-S line. Figure 11 is an example of a fluctuating
radially symmetric rosette exhibiting breathing deformations
and collapsing after a few periods. These oscillations indicate

that static rosettes are destabilized through a breathing mode
when the excitability parameter ε is decreased.

V. EXPANDING ROSETTES, INSTABILITY TOWARDS
GRANULATION OF SPACE, AND SPIRALING ROSETTES

A. Large inhibitor diffusion length (lv � lu)

On the left-hand side of the D-S line, one finds expanding
rosettes. When the diffusion length of v is slightly larger
than the one of u, the dynamics of the integrin receptors is
crucial and determines how receptors are distributed. For fast

FIG. 14. (Color online) Expanding rosette in the case of a small controller diffusion length. The left panel represents the density map for the
activator u. The right panel is for ligated integrin receptors nl . Starting with a noncircular initial condition the rosette recovers asymptotically
a radially symmetrical shape. As shown by comparison between the figures, this regime is characterized by strong gradients in signaling
components across the rosette, nl being maximal at the intrados.
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FIG. 15. (Color online) Density map of the activator u when the activator and the controller variable have comparable diffusion lengths.
The two panels correspond to successive snapshots of spiral waves. Starting from a noncircular initial condition, the rosette started expanding
to recover a circular shape. At later time, a dynamic ablation defect was numerically simulated by stetting the concentration fields of integrin
receptors to zero in a small spot. Subsequent diffusion of integrin receptors towards this spot immediately destabilized the rosette, and the tip
started to trace an involute shape (left panel). As shown in Fig. 16, the tips of the spirals are highly excited regions. They recover by fusion
and expel receptors in excess to an inside double spiral (right panel). The outside rosette started again to expand while the inside spirals circle
around their core (h = 0.1,b = 1,Du = Dn,Dv = 0.1Du,ε = 0.1).

kinetics, i.e., large kon,off with εint sufficiently small, solutions
are characterized by a large density of activated receptors
binding at the extrados of the rosette. On the other hand, for
smaller kinetics with larger εint, both the density of ligated
integrins and the radial speed decrease. In general, increasing
the integrin diffusion constant Dn increases the radial speed,
and, during expansion, this speed decreases with curvature.

Depending on the receptor kinetics, rosettes can expand
radially or split into spots which later self-replicate and fill
the space. Figure 12 is an example of a solution which started
expanding with radial symmetry and breaks into spots above
a given radius; see Ref. [49] for digital movies. Such solutions
are also observed on the left of the D-S boundary line of
Fig. 8 and are common when the initial point like excitation
for u deviates sufficiently from a circular shape. For Dv � Du

and larger excitability, i.e., smaller ε, rosettes expand with
radial symmetry for slight perturbation of the circular initial
excitation spot.

Still in the regime where the diffusion length is larger
that the one of the activator, receptor diffusion and kinetics
determine how solutions are sensitive to boundary conditions.
As shown in Fig. 13, this parameter governs the shape
evolution of expanding rosettes as they come into contact.
Depending on integrin dynamics, four scenarios are possible.
When the receptor diffusion constant is small, the two rosettes
annihilate each other and form a unique expanding rosette
with asymptotic radial symmetry (case a). This annihilation
property is generally presented as the signature of excitable
systems, as first demonstrated in Ref. [47]. In the intermediate
regime, where the receptor diffusion length is comparable but
larger than the controller diffusion length, Dv , the rosettes stop
expanding at some distance and stay almost circular for a long
time. This pause in expansion is followed by a slow adaptation
of the integrin field, which, in turn, perturbs the rosettes out
of their circular shape. Two cases are possible. In case b, one
observes a zig-zag instability along the entire rosette followed
by budding of spots towards the interior and the exterior of the
rosettes. For case c, however, starting from the contact zone,
the rosette breaks step by step into spots which granulate the

space though self-replication as in case 4 of Fig. 12. In case
d, the diffusion constant for interns is much larger than Dv .
The two rosettes deform and form two parallel lines while
expanding. Because calculations are necessarily done on a
finite domain, we cannot assert that no granulation of space
takes place in this case, but they have not been observed for
different systems sizes.

B. Small inhibitor diffusion length (lv � lu)

For smaller inhibitor diffusion length, one enters a dif-
ferent regime. In this limit, rosettes expand and become
asymptotically circular even if the initial condition deviates
strongly from a circular spot. This regime is characterized by
strong gradients in signaling components (see Fig. 14) and
by annihilation of rosettes as in case a of Fig. 13. As before,
expanding rosettes can be strongly perturbed by defects. As

FIG. 16. (Color online) Distribution of ligated integrin receptors
in the spiral wave of Fig. 15. The tips of the spirals having
small curvature radii are the most excited regions where receptors
concentrate. Note that ligated integrins are preferentially concentrated
in the intrados of the rosette in the outside circular regions.
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FIG. 17. (Color online) Density map of the controller v, left panel, and of the density of ligated integrins, nl , for an expanding rosette
colliding with a defect. The defect is simulated by taking vc = 0 inside the left blue circle, so that v cannot be activated within the circle. While
expanding, the rosette encircles the defect at right angle as shown in the right panel for the distributions of ligated integrins. The rosette will
resume asymptotically its circular shape after passing over the defect and fusing the two arms together. Parameters are those of Fig. 15.

an example, Fig. 15 represents the evolution of a nonradially
expanding rosette perturbed by numerical depletion of inte-
grins within a spot in the course of the simulation. Mimicking
optogenetic methods for light stimulated ablation of integrins
[15], we set nl = 0 in a small localized spot and let the
integrin field adjust itself dynamically afterward. The shape
dynamics is sensitive to this perturbation and traces a spiral
which is usually interpreted as a characteristic feature of a slow
short-range inhibitor. The curvature at the tip of the spirals
being small, the excitation in this region is very strong with a
large concentration of receptors; see Fig. 16. In all simulations,
the rosette recovers its circular shape by fusing lines of excited
domains and expelling an excess of activated receptors forming
two spirals in the inside.

Other defects in signaling can be simulated in the same
way. Since the controller v is activated from vc through the
term h(vc − v) in the equation of motion of v, one can also
pattern the space to make vc space dependent. Figure 17 is
an example of an expanding rosette colliding with a circular
defect where vc = 0 inside a spot. While the rosette is still
expanding, the defect breaks the circular symmetry all along
the rosette, the rosette encircles the defect at right angle as
the involute of a circle and resumes asymptotically its circular
shape.

VI. STOCHASTIC SIMULATIONS

The stability of static and dynamic structures can be studied
using the stochastic version in the 2D simulation. To mimic
the effects of a number of chemical reactions which have been
neglected so far in the model, we have studied the following
model where ηl,f (x,t), ηv(x,t),ηu(x,t) are random Gaussian
variables uncorrelated in space and in time with variance
Rn,Ru, Rv:

∂tnf = Dn�nf − kon(u)nf + koff(u)nl

+1/τn(nr − nf ) + ηf (x,t), (24)

∂tnl = kon(u)nf − koff(u)nl + ηl(x,t), (25)

∂tu = Du�u + 1

ε
{−b[1 + ηu(x,t)]u + vnl(u)}, (26)

∂tv = Dv�v + h(vc − v) − vnl(u) + ηv(x,t). (27)

The first equation introduces a reservoir of density nr for
unbound integrins and mimics random cellular integrin traffic.
The second adds a stochastic noise for bound integrins. This
term can be scaled by the product nl(u)v and adding a stochas-
tic noise mimics the general interaction of bound integrins

FIG. 18. (Color online) Cut of u(x,y) and v(x,y) along the the y = 0 axis for a 2 − d fluctuating spike for Rn = Ru = Rv = 1 in
Eq. (24). Despite the strong fluctuations, the shape of the spike fluctuates around its mean position without breaking into multiple spots,
ε = 2, h = 0.1, vc = 0.35, 1/τn = 0.1).
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with their environment. The third and fourth equations are
equivalent to the previous model but with random b and vc

terms. Even for Rn = Ru = Rv = O(1), we find that static
structures are remarkably stable and fluctuate in time when
they have the shape of a spike see Fig. 18. Static rosettes
with a centered minimum, however, tend to break and to form
moving interacting fragments and self-replicating spots.

VII. DISCUSSION AND CONCLUSION

In comparison with other existing models for cellular
signaling waves, our model takes into account the effect of
receptor diffusion for an activator-inhibitor model. Its aim is
to describe in a minimal way signaling events as precursors
of actoadhesive structures. Receptor diffusion modulates the
coupling between the activator and the inhibitor field in an
other way than the spatial averaged coupling studied before
see Ref. [28]. It allows one to crossover from front solutions
to pulse solutions in excitable media. Here front solutions
are characteristic features of very slow diffusive receptors
which can adapt only though the kinetics between their
two states. Pulse solutions, however, behave very differently.
These solutions, known in the literature as autosolitons [25],
have the characteristic property that the region of excitation
gets smaller with the excitability of the system. Depending
on parameter ε controlling the excitability by continuous
turn over of a controller variable, these solutions can form
either stationary standing solutions or traveling waves of
self-sustained structures. These receptors being the source of
the coupling between the activator and the controller variables,
the recruitment followed by the adaptation of these receptors
in the regions of high excitation is crucial for the structural
stability of expanding ring solutions which can transform
into interacting spots. These instabilities have been previously
studied in Refs. [30–32,47,50] for the exact Gray-Scott model
in the asymptotic regime of a very large inhibitor diffusion
length. In our model, these solutions appear in the regime
of almost equal diffusion lengths for the activator and the
inhibitor.

Receptor diffusion determines also the experimental sig-
natures of the model for nascent structures [17,51,52]. First,
our model can be used to investigate mechano-sensitivity as
receptor recruitment is a central process in the early events
of mechano-transduction. The use of biosensors has shown
space and time modulation of signaling [53], a consequence
of integrin activation, and this modulation amounts to taking
different effective excitability parameters ε defined in (10).
As seen in experiments, this leads to different self-organized
structures. In the model, this parameter is controlled by an
effective rate of disassembly τ [cf. (5)], with the property
that signaling platforms are less active if they are down-
regulated fast, so that ε decreases with increasing τ . Using
this parameter, our model correlates the shape, the size and
and the intensity of nascent adhesive structures with the rule
that strongly activated structures have small spatial dimensions
[54]. Second, our model shows that there exist two kinds
of traveling waves in excitable media depending on whether
receptors diffuse or not. In general, receptor diffusion slows
down traveling waves and lead to stationary structures. In
a typical numerical simulation, rosettes expand at a speed

1 activator diffusion length per minute, a value consistent
with the observations. Expanding rosettes do not necessarily
annihilate as in canonical models reviewed in Ref. [2], and
more complex behaviors are possible. For podosomes, live cell
imaging of rosettes shows that they can fuse, or annihilate, or
granulate into spots which disappear. Our model demonstrates
that adaptation and regulation of receptors have a major
influence on interacting localized structures. Third, our model
goes one step beyond conventional temporal signaling models
and suggests that both the spatial and temporal activities of
signaling components are crucial. It correlates characteristic
times and length scales with shape dynamics, which may
be useful for experiments probing shape responses to local
photoablation [55].
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APPENDIX A: REDUCTION TO DIMENSIONLESS
EQUATIONS

To define the parameter space of Fig. 2, it is useful to
simplify the model by introducing dimensionless variables.
Table I gives the appropriate change of variables where

n0 = n∞
Ke

1 + Ke

� n∞ (A1)

since Ke is small.
In the fast adaptive limit of integrin receptors, the equation

of motions are therefore written in their dimensionless form
as

ε̃dũ/dt̃ = ε̃

d
�ũ − b̃ũ + ṽeũ, (A2)

dṽ/dt̃ = �ṽ + h̃(1 − ṽ) − ṽeũ. (A3)

To find the fixed point (ũh,ṽh) of the associated homoge-
neous system, we solve

h̃

b̃
= ũh(h̃e−ũh + 1) (A4)

with ṽh = bũhe
−ũh . This shows that (h̃,h̃/b̃) are the natural

parameters. Graphical analysis of (A4) gives the parameter
space of Fig. 2. From Eqs. (A2) and (A3), we find that ε̃ sets

TABLE I. Normalized parameters in the limit of slow and fast
adaptation.

ũ ṽ h̃ b̃ ε̃ t̃

Case a βu v/vc h/n∞ b/(n∞vcβ) ε/(βvc) t/n∞
Case b βu v/vc h/n0 b/(n0vcβ) ε/(βvc) t/n0
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the ratio of two characteristic time scales. For typical values
of parameters used in this paper, ε̃ is a small number so that
the activator u is fast with respect to the slow inhibitor v.

APPENDIX B: RELATIONSHIP WITH THE GRAY-SCOTT
MODEL IN THE FAST-ADAPTIVE REGIME

To relate our model with the Gray-Scott model, it is
instructive to substitute eũ by ũ2 in (A2) and (A3). After
appropriate time and space rescaling, this gives

α
du

dt
= μ2�u − u + Avu2, (B1)

dv

dt
= (1 − v) − vu2 (B2)

with α = ε̃h̃/b̃, μ =
√

ε̃h̃/(b̃d), A =
√

h̃/b̃. The two param-
eters α and μ are the ratio for the characteristic time and

length scales, respectively, for the activator and inhibitor.
When Ke is small, one finds h̃ � 1 with h̃/b̃ fixed, so that
the homogeneous fixed point and the relevant time and length
scales agree for both models in this limit. The parameter A

couples the activator and the inhibitor, and the rescaling made
to obtain Eqs. (B1) and (B2) is possible only for the square
nonlinearity of the Gray-Scott model. For A < 2, the Gray-
Scott has only one fixed point with null clines intersecting
on the u = 0 axis. The natural smallness of our parameter ε̃

corresponds to the well-studied limit α ≈ μ � 1 with A small
where self-replication instabilities for large A, oscillatory
instabilities for small α and competition instabilities for very
small μ have been studied in Refs. [29–32,50,57]. According
to Ref. [29] the characteristic speed of traveling waves in
the Gray-Scott model is set by the product Aα−1/2, which is
much larger than the dimensional parameter

√
Dub/ε and the

characteristic speed observed when receptor adaptation is not
immediate.
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