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Autonomous movement of a chemically powered vesicle
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We investigate the diffusio-phoretic motion of a deformable vesicle. A vesicle is built from the linked
catalytic and noncatalytic vertices that consumes fuel in the environment and utilize the resulting self-generated
concentration gradient to exhibit propulsive motion. Under nonequilibrium conditions it is found that the
self-propulsion velocity of the vesicle depends on its shape, which in turn is controlled by the bending rigidity of
the membrane and solvent density around it. The self-propulsion velocity of the vesicle for different shapes has
been calculated and the factors which affect the velocity are identified.
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I. INTRODUCTION

Nondiffusive transport of biological objects such as vesicles
and molecular motors as well as nonbiological entities like
colloids and aggregates are widely studied both experimentally
and theoretically [1–6]. What is most important for these
small length scale objects for motility is some degree of
spacial or temporal asymmetry. In the biological context, a
significant amount of work has been done on cell motility
with the motivation to understand the mechanism of cell
propulsion, which could then lead to motility modification,
i.e., to make it move slower or faster. Chemotaxis and
hapotaxis are the widely known mechanisms of cell migration,
where the organism exhibits a directed motion with the
help of the chemical concentration gradient and adhesive
molecules, respectively [1,7]. Modeling cell motility and
shape changes is an extremely challenging task due to
its inherent complexity, and hence a simpler model for a
membranous object, a vesicle, has been adopted for such
studies.

In this spirit we study the propulsion of a model vesicle,
which is driven by a chemical reaction on its surface.
Simplicity of the model makes it feasible for its realization
in experiments, and the correlation of the shape change
and migration speeds can be probed easily in terms of the
physico-chemical parameter.

Inspired by nature, synthetic structures have been designed
that use chemical, light, or other forms of energy to perform
directed motion [5]. Among the various strategies that are
followed for designing such motors, one route is where
the propulsion relies on asymmetric chemical reactivity on
the surface of the motor, be it bimetallic nanorods [8,9],
Janus particles [10,11], or sphere dimer motors [12,13]. The
above cited example of asymmetric self-propelled objects
assumes that the particle shape is unchanged during the
motion. However, in reality many self-propelled objects may
change their shape depending on the velocity, environment,
or interaction with other objects. Recently there have been
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reports of autonomous propulsion for deformable objects
with a propulsive effect created by the physical asymme-
try [14–16]. Ohta and coworkers have theoretically inves-
tigated the individual and collective motion of deformable
objects exhibiting self-propulsion [15,17] and showed a
bifurcation from a straight line to a circular motion for
an isolated particle. A very recent and interesting work by
Wilson and colleagues has experimentally demonstrated the
autonomous movement of platinum-loaded stomatocytes [14].
These polymeric analogs of liposomes are created by the
diblock copolymers and exhibit a remarkably high average
directed velocity even in the presence of a small amount of
fuel, which is why they can be seen as ideal drug delivery
devices.

Here we illustrate the self-propulsion of a chemo-
mechanically active vesicle with self-diffusiophoresis as
the underlying mechanism and investigate the effect of
shape change on the propulsion of such a deformable object.
The chemically powered propulsive motion was obtained
by the discrete surface model of a vesicle with localized
asymmetric catalytic reactions. The vesicle consists of linked
catalytic (C) and noncatalytic (N ) vertices, which then are
immersed in a solvent containing reactive A species. An
irreversible reaction A + C → B + C takes place at all the
catalytic vertices, which in turn gives rise to the nonequilibrium
gradient of the B species. The combination of nonequilibrium
gradients and potential asymmetry gives rise to the directed
motion, similar to nanodimers [13]. We show that at short
times, the vesicle moves predominantly in a directed way
which then changes to a random walk at longer times. Here we
discuss the factors that control the vesicle motility and discuss
the shapes of vesicles which will lead to sufficiently large
directed velocities. Such directed motion is essential for the
applications where propelled vesicles may possibly be used as
a carrier of targeted drug delivery or to perform a specific task
in the cellular environment.

The paper is organized as follows. In Sec. II we describe
the particle-based mesoscopic model for the vesicle motors
and solvent. Section III presents various shapes of vesicles
obtained in our model and their propulsion behavior. The
efficiency of the vesicle motors of different shapes is discussed
in Sec. IV. Finally, the conclusions of our study are presented
in Sec. V.
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II. SIMULATION MODEL

Self-propulsion of the fluid vesicle is simulated using a
mesoscopic approach, which combines a particle-based hydro-
dynamic model for solvent [18–21] and a mesoscale [22], dy-
namically triangulated surface model for the membrane [23]. A
similar model has been used previously to study the dynamics
of fluid vesicle in capillary and shear flows [24,25].

A. Triangulated-surface model for the vesicle

The vesicular membrane is modeled using a dynamic
triangulation method [23] in which the continuum surface is
replaced by a discretized surface defined by vertices, triangles,
and links. A vesicle with spherical topology thus consists of
Nv vertices connected by NL = 3(Nv − 2) links and NT =
2(Nv − 2) triangles. Such a description of the membrane is
extremely useful when only the gross features of the structure
and interactions are important. The shape deformations of a
vesicle is well explored using the curvature elastic energy given
by the Canham Helfrich model [26]:

Hc = κ

2

∫
(c1 + c2)2 da, (1)

where c1 and c2 denote the two principle curvatures and κ is
the bending stiffness of the membrane. For the triangulated
surface model of vesicle a discretized form of this Helfrich
Hamiltonian is used [27].

Unlike in the Monte Carlo simulations of triangulated
membrane, vertex points interact through a Stillinger-Weber–
type potential [25,28] for bonding the vertices (Ub) and
excluded volume interaction (Uex). The attractive bonding
potential between the connected vertices is given by

Ub(r) =
{

γ exp[1/(rc0−r)]
rmax−r

, if r > rc0

0 if r � rc0
, (2)

where r = |rij| is the bond length between vertices i and j .
The repulsive excluded volume interaction is incorporated by

Uex(r) =
{

γ exp[1/(r−rc1)]
r−rmin

, if r < rc1

0 if r � rc1
. (3)

We use rmin = 0.67a0 and rmax = 1.33a0 as the minimum and
maximum possible distance between vertices, respectively.

The triangulated membrane acquires its lateral fluidity from
the bond flip mechanism, where the tethers can be flipped
between the two possible diagonals of two adjacent triangles
at time interval τBF [25]. Flipping between the catalytic and
noncatalytic part of the vesicle is not allowed.

B. Multiparticle collision dynamics of the solvent

To bridge the large length and timescale gaps in the vesicle
dynamics a mesoscopic model for the solvent is required. In
multiparticle collision dynamics, the solvent is described by
Ns pointlike particles of mass m, moving in the simulation
box of size Lx × Ly × Lz. In this scheme, the evolution
consists of a series of streaming and multiparticle collision
steps. In the streaming step, the dynamics is evolved by
Newton’s equations of motion governed by forces determined
from the total potential energy V (rNv ,rNs ) of the system [29].

In the collision steps, which occur at time intervals τ , the
pointlike solvent particles are sorted into cubic cells with
cell size a0. The choice of cell size is such that the mean
free path λ < a0. Multiparticle collisions among the solvent
molecules are performed independently in each cell, which
results in the postcollision velocity of solvent particle i in
cell ξ being given by v′

i = Vξ + ω̂ξ (vi − Vξ ), where Vξ is
the center-of-mass velocity of particles in cell ξ and ω̂ξ is
a rotation matrix. In order to ensure Galilean invariance for
systems with small λ, a random grid shift is applied in each
direction of the simulation box [30]. The method described
above conserves mass, momentum, and energy and accounts
for the hydrodynamic interactions and fluid flow fields [18,19],
which are important for the dynamics of the active fluid vesicle.

C. Membrane and solvent interaction

Theoretical descriptions of the vesicle motion arise from
self-diffusiophoresis [2,13,31], which in this case is based on
phoretic motion of the vesicle in an external inhomogeneous
chemical field. To model this, initially the vesicle is immersed
in a fluid with Ns solvent particles of kind A. We randomly pick
a patch of membrane with connected vertices which are labeled
catalytic (C), and these vertices are chemically active. The rest
of the membrane vertices are considered to be noncatalytic (N )
or chemically inactive. We start with a catalytic patch that is
nearly circular in shape, and this shape can fluctuate as the
patch diffuses on the vesicle surface. Since the flip move at
the boundary of the patch is restricted, single catalytic vertices
cannot be detached from the patch, and the diffusion of the
entire patch is only possible.

A chemical reaction A + C → B + C takes place only
on the catalytic vertices C whenever the solvent A comes
within the Lennard-Jones (LJ) cutoff distance. This localized
reaction produces an inhomogeneous concentration of solute
molecules around the vesicle, which in turn is responsible for
the propulsion of vesicle (see Fig. 1). However, the fluid inside
the vesicle consists of only A-type particles, and no chemical

FIG. 1. (Color online) A chemically active vesicle composed of
catalytic (yellow) and noncatalytic (blue) vertices. The figure depicts
the chemical reaction that leads to conversion of fuel A (orange)
to product B (green) molecule within the boundary layer, hence
producing the inhomogeneous distribution of chemical species. The
boundary layer around the vesicle within which the intermolecular
forces act is also shown.
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FIG. 2. (Color online) Shapes of membrane vesicle with the corresponding reduced volume v; (a) sphere, (b) ellipsoid, and (c) discoid.

reaction takes place for inside fluid. The A and B solvent
molecular species interact with all the vesicle vertices through
repulsive LJ potentials,

VβS(r) = 4εβ

[(
σ

r

)12

−
(

σ

r

)6

+ 1

4

]
, r � rc, (4)

with the cutoff distance rc = 21/6σ . We use the notation VβS ,
where S = C,N and β = A,B to denote various interac-
tions between solvent and membrane. In particular, we take
VAC = VBC = VAN , characterized by the energy and distance
parameters εA and σ , respectively; however, interactions
between the N vertex and B molecules, VBN , have energy
parameter εB . Hence the B molecules produced in the reaction
on a catalytic sphere react differently with catalytic and
noncatalytic monomers, and this asymmetry is an important
element in the self-propulsion mechanism for the vesicle [13].
The above mentioned potential ensures that the fluid particles
will not escape or enter the vesicle in the time scale of interest.
In order to mimic the fluxes of reactive species into and
out of the system to drive it out of equilibrium and lead to
establishment of a nonequilibrium steady state, B molecules
are converted back to A molecules when they diffuse far away
from the vesicle.

The time evolution of the system is governed by hybrid
molecular dynamics-multiparticle collision dynamics [18].

D. Simulation parameters

Other simulation details are as follows: all quantities are
reported in dimensionless LJ units based on energy εA, mass
m, and distance σ parameters and σ = a0. The vesicle moves in
a solvent of A and B molecules within a cubic box of volume V

and linear dimension 30a0 with periodic boundary conditions.
The MPC rotation angle was fixed at φ = 90◦. The average
number density of the solvent outside the vesicle was kept at
ρout ≈ 10, whereas the inside solvent number density ρin was
varied from 1 to 10 to vary the shape of the vesicle. The masses
of both A and B species are m = 1, and the masses of the
membrane vertices were adjusted according to their diameters,
dv = 2a0, to ensure the density matching between vertex and
solvent. The system temperature was fixed at kBT = 0.26εA.
Newton’s equation of motion is integrated using the velocity
Verlet algorithm, with the MD time step t = 0.005. The MPC
time interval is τ = 0.25, and the time interval for the bond
flip is τBF = 0.1. We have probed various sizes of the vesicle
where Nv varies from 110 to 677. Unless specified, the value

of κ = 5εA, γ = 80εA, and the LJ parameter εB = 0.01εA. For
the bond and excluded volume interaction, we use the cutoff
lengths rc0 = 1.15a0 and rc1 = 0.85a0.

III. MEMBRANE VESICLE PROPULSION

We investigate the self-propulsion of vesicle of different
shapes: spherical, ellipsoidal, and discoidal vesicles. These
various shapes are generated by changing the number of
the solvent particle density enclosed by the vesicle, which
in turn affect the area-to-volume ratio leading to a shape
transformation [32]. The shapes of the vesicle described in
the study and the corresponding reduce volumes v are shown
in Fig. 2, where v = Vves

4πR3
0/3

, R0 being the radius of a sphere

with the same surface area as that of the vesicle and Vves is
the volume of the vesicle. We obtain a spherical vesicle with
v = 1 when the density of the solvent inside and outside of the
vesicle are equal. On reducing the inside solvent density we get
the prolate or ellipsoidal shape with reduced volume v = 0.85,
and further reduction results in discocytes with v = 0.65.

A. Spherical vesicle

The self-propulsion of a membrane vesicle occurs as a result
of the nonequilibrium concentration gradient produced by the
chemical reaction at the catalytic vertices of the vesicle, in
conjunction with the different intermolecular forces between
the A and B chemical species and the vertices. See Movie 1
in Ref. [33] for the dynamics of a propelling spherical vesicle.
The ability of the self-propelled vesicle to execute directed
motion is determined by monitoring the mean value of the
center of mass velocity of the vesicle motor, projected along
the axis between the center of mass of the vesicle to the center
of mass of catalytic vertices: Vz = 〈〈V(t) · R̂(t)〉〉, where the
double angular bracket denotes the average over time and
realizations. R̂(t) is the unit vector along this axis. An isolated
vesicle motor undergoes self-propelled motion in the given
direction with average directed velocity 〈Vz〉; however, such
small motors are also subjected to strong thermal fluctuation
that lead to a distribution of propagation velocities. This
distribution has been shown to be closely approximated by
a Boltzmann distribution [13] with mean 〈Vz〉. The magnitude
and nature of the directed motion is strongly influenced by the
vesicle solvent interactions and the percentage fraction of total
vertex that is catalytic (Cf ). Figure 3 shows the normalized

042703-3



SHIVAM GUPTA, K. K. SREEJA, AND SNIGDHA THAKUR PHYSICAL REVIEW E 92, 042703 (2015)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.01  0.02  0.03

εB=0.1

εB=0.01

B

B

P
(V

z
)

Vz

FIG. 3. (Color online) Plot of P (Vz), the probability density of
Vz for vesicle with Nv = 302 and εA = 1.0. Solid lines represent
Maxwell Boltzmann fit to data, and dashed lines correspond to the
mean value of the distribution showing 〈Vz〉 = 0.0085 for εB = 0.1
and 〈Vz〉 = 0.0176 for εB = 0.01.

probability distribution P (Vz) for the system with Nv = 302
with Cf = 25% for different values of energy parameter εB .

As stated before asymmetry is a crucial component for the
self-propulsion for the vesicle, and in this case asymmetry
is supplied by the existence of a strong product molecule B

concentration gradient and difference in interaction potential
of the product B molecule with catalytic and noncatalytic
vertex. In Fig. 3 we calculate the average directed velocity of
the vesicle 〈Vz〉 for interaction potential strength εB = 0.01
and 0.1 keeping εA = 1.0. The figure clearly illustrates better
propulsion for a larger difference of the interaction strength,
i.e., for higher asymmetry.

Another important element for vesicle propulsion is the
local steady state concentration of species B in the vicinity
of the catalytic C vertices. In order to have a vesicle with
maximum possible directed movement it is important to have
an optimum number of catalytic vertices on it. Having too
many or too less catalytic vertices will not be able to establish a
sufficient nonequilibrium B concentration gradient around the
vesicle; hence, directed vesicle propulsion will not be possible.
Figure 4(a) shows the average velocity of vesicle 〈Vz〉 as a
function of Cf . From the figure it is clear that Cf ≈ 25%
catalytic gives maximum directed velocity 〈Vz〉 ≈ 0.018 for
Nv = 302, comparable to the previously reported sphere dimer
motors [34]. This is further supported by higher strength of
the local steady state concentration gradient of species B in
the vicinity of the catalytic vertices shown in Fig. 4(b), for
Cf = 25% and 50%. In the figure r is the distance of solvent
B molecules from the center of mass of catalytic vertices.

The nanoscale objects will not move ballistically in a
given direction due to strong fluctuations from surrounding
medium [10]. Instead, the motion will be ballistic at short
times, but at longer times, the motion will change to a
random walk, in which the spans of directed motion will be
interrupted by a random change in direction. The effective
diffusion coefficient can then be calculated by the velocity
autocorrelation function as

De = 1

d

∫ ∞

0
dt〈V(t) · V(0)〉, (5)
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FIG. 4. (Color online) (a) Variation of average directed velocity
of the vesicle 〈Vz〉 as a function of percentage of catalytic vertices Cf

for Nv = 302 and Nv = 677. (b) The local steady state concentration
of B particles around the catalytic center of mass, nB (r), showing
larger nB (r) for Cf = 25% when compared to Cf = 50%.

where V(0) is the center of mass velocity of the vesicle motor in
d dimensions. The center of mass velocity can be decomposed
to the averaged directed velocity in the R̂(t) direction and
fluctutations as V = R̂(t)〈Vz〉 + δ, giving

De = D0 + 1

d
〈Vz〉2τR. (6)

The first term on the right-hand side is the diffusion coef-
ficient in absence of any propulsion, and the second term
is characterized by the decay of the orientational correlation
function with an orientational relaxation time τR . The diffusion
coefficient can equivalently be determined from the mean
square displacement (MSD) L2(t) = 〈|rCM(t) − rCM(0)|2〉
as De = limt→∞ L2(t)/dt . There are two relevant character-
istic time scales in the system [35]. First is the characteristic
diffusion time of the product solvent particles around the
vesicle given by τD = Rv/D, where D is the diffusion
coefficient of solvent molecules and Rv is the vesicle size.
This time scale sets the relaxation time of the redistribution of
the particles around the vesicle when it changes orientation.
Second is the orientational relaxation time τR which controls
the changes in the orientation of the spherical vesicle and is
defined via the orientational autocorrelation function: Cθ (t) =
〈R̂(t) · R̂(0)〉 ∼ e−(t/τR ). The solvent transport coefficient can
be calculated analytically for MPC dynamics [36], giving
τD ≈ 600 for a vesicle with Nv = 110.
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FIG. 5. (Color online) (a) Mean square displacement L2(t) for
different sized vesicles having Cf = 25% depicting the ballistic
motion ∼ t2 at short times and diffusive motion ∼ t at long times. (b)
Orientational autocorrelation function for two vesicles. The dashed
line is an exponential fit to data. Time is in units of MD steps.

For short times (t 
 τD) MSD is shown to exhibit a
ballistic regime [35] where L2(t) ∼ 〈Vz〉2t2, while for long
times t � τR it exhibits a linear behavior as L2(t) ∼
6(D0 + 〈Vz〉2τR/d)t . Figure 5(a) shows the MSD for the
vesicle of different sizes Nv = 110 and 302. For a smaller
vesicle, fitting of the short and long time of this plot is
comparable with the theoretical expression given above to
estimate the average vesicle propagation velocity 〈Vz〉 and
reorientation time τR and enhanced diffusion coefficient.
However, for a larger vesicle with Nv = 302 perfect scaling
of t has not been observed in the our simulation time scale,
but a deviation from t2 at a longer time is clearly visible.
Figure 5(b) shows the orientation autocorrelation function for
a differently sized vesicle. The corresponding relaxation times
along with diffusion coefficients (De) and 〈Vz〉 are given in
Table I.

For most of the vesicle sizes reported in Table I we find the
diffusion coefficient in the absence of propulsion to be D0 ∼
10−3, whereas the contribution from self-propulsion in De is
much higher. Consequently the dynamics for these vesicles
are dominated by the directed motion. However, as the vesicle
size decreases, the directed motion contribution given by
1
3 〈Vz〉2τR keeps decreasing and D0 starts to play an important
role.

TABLE I. The average directed velocity, orientational relaxation
time (in units of MD steps), and enhanced diffusion coefficients,
obtained from the mean square displacement and orientation auto-
correlation function for different sizes of spherical vesicles.

Nv 〈Vz〉 τR De

29 0.021 175 0.020
110 0.019 1100 0.132
194 0.018 2500 0.270
302 0.017 6000 0.578
434 0.016 11500 0.981

B. Prolate or ellipsoidal vesicle

Vesicles are highly adaptive structures having a rich
diversity of shapes which mainly depends on the temperature,
pressure, and bending stiffness [32]. In order to get an
insight into the propulsion efficiency of vesicles in various
shapes, we induce the shape change either by changing the
number density of solvent inside the vesicle, which in turn
changes the solvent pressure inside and hence the shape of
the vesicle [37], or by varying the bending elasticity and thus
the curvature. To evaluate the morphological changes of the
vesicle in a quantitative manner, we calculated asphericity
α as an order parameter that reflects the deviation from the
spherical shape [25]. Asphericity α is obtained from the three
eigenvalues (λ1,λ2,λ3) of the moment-of-inertia tensor given
as α = (λ1−λ2)2+(λ2−λ3)2+(λ3−λ1)2

2R4
g

, where R2
g = λ1 + λ2 + λ3.

Figure 6(a) shows the increase in asphericity on reducing
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FIG. 6. (Color online) (a) Variation of asphericity α and the
average directed velocity 〈Vz〉 as a function of bending rigidity κ

keeping ρin = 1. The fluctuations in the shapes are represented by
the error bars shown for α. (b) The propulsion and reorientation of a
prolate vesicle.
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FIG. 7. (Color online) Plot of P (Vz), the probability density of
Vz for vesicle with Nv = 302 with prolate and spherical shapes. Solid
lines are fitted to the Maxwell Boltzmann distribution.

the bending rigidity κ of the vesicle. The observed shape
transition in this case is from spherical vesicle to prolate or
ellipsoidal vesicle. The surface undulations can cause minor
shape fluctuations in vesicles, and this can be seen from the
error bars shown for α in Fig. 6(a), with smaller κ having larger
fluctuations. It should be noted that unlike the significant shape
transition in the case of vesicles under shear flow [25], in the
present case of a static fluid we hardly observe any shape
transition at a given κ and inside solvent density.

The shape changes in vesicles are accompanied with a
strong change in dynamical behavior of the vesicle. See Movie
2 in Ref. [33] for the dynamics of a prolate vesicle. Figure 6(b)
shows a motile prolate vesicle which reorients in the course of
time due to thermal fluctuation. Figure 7 shows the comparison
of the probability distribution of directed propulsive velocity
for a spherical and ellipsoidal vesicle. It is quite evident that
the prolate or ellipsoidal vesicle has enhanced propulsion
velocity, 〈Vz〉 = 0.023, as compared to the spherical shape,
〈Vz〉 = 0.017. It must be noted here the motion of the elliptical
vesicle is such that the catalytic vertices are around the tip of the
ellipse, and movement is along the long axis. This orientation
can be explained in terms of bending energy, which allows
the solvent interactions to deform the vesicle such that the its
movement is carried out with least possible drag.

The strength of the drag force depends not only on the
viscosity at low speeds, but also on the cross-sectional shape
that is presented to the fluid by the object in its direction
of motion. For a rigid spherical object of radius R the drag
coefficient is given by Stoke’s law as ft = 6πηR, where η is
the viscosity of the medium, whereas for an ellipsoidal case the
drag coefficient changes to ft = 4πηa

ln(2a/b)−1/2 for motion at low
speed parallel to the long axis of the ellipsoid [38], where a and
b are the semimajor and semiminor axis, respectively. Despite
the fact that vesicles are not very rigid objects, we can use the
above mentioned drag coefficients in our calculation, because
once the directional motion is established, the fluctuations
about the mean shape are much less. The calculated drag
coefficient for the vesicle having Nv = 302 in prolate and
spherical shapes is found to be ≈98 and 125, respectively.

Does the increased directed velocity of the ellipsoidal vesi-
cle guarantee it to be a better candidate for microscale swim-
mers than a spherical vesicle? To answer this, next we probed
the mean square displacement and orientational angular cor-
relation for the prolate shape and compared it with the sphere.
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FIG. 8. (Color online) (a) Orientational autocorrelation function
as a function of time for ellipsoidal and spherical vesicles having
Nv = 302. (b) Mean square displacement L2(t) for ellipsoidal and
spherical vesicles having Nv = 302. MSD for the ellipsoidal shape
depicts the ballistic motion ∼ t2 at short times and diffusive motion
∼ t at long times. Time is in units of MD steps.

Figure 8(a) compares the orientational autocorrelation
function Cθ (t) for the two different shapes discussed so far,
which can be used to calculate the orientational relaxation time
τR . The faster decay of the autocorrelation function in the case
of ellipsoidal vesicles clearly depicts the faster reorientation
of the vesicle in a prolate shape. The relaxation time τR for
the prolate shape is found to be 1700 MD steps, which is
much smaller than the spherical vesicle having same number
of vertices. Table I shows the spherical vesicle of Nv = 302
has τR = 6000 MD steps. Further, the change in directed
motion to a random walk at a time scale of τR is also shown
in Fig. 8(b). The reduction in the reorientation time for an
ellipsoidal shape can be explained in terms of the nonrigid
nature of the membrane. In the case where the prolate vesicle
is a rigid object, the concentration gradient produced by the
vesicle which is responsible for the self propulsion would
be along the vector R̂(t) and would be symmetric normal
to the vector. However, presence of floppiness breaks this
symmetry and induces a force that will lead to reorientation of
the vesicle. This symmetry breaking is easier in a prolate shape
as compared to a spherical shape, hence it reorients faster.

C. Discocyte vesicle

Here we investigate the propulsion of vesicles having a
discocyte shape. See Movie 3 in Ref. [33], which was obtained

042703-6



AUTONOMOUS MOVEMENT OF A CHEMICALLY POWERED . . . PHYSICAL REVIEW E 92, 042703 (2015)

(a) (b)

 0

0.04

0.08

0.12

0.16

 0.005  0.01  0.015  0.02  0.025  0.03

Discocyte
Spherical

P
(V

z
)

Vz

FIG. 9. (Color online) (a) Comparison of P (Vz), the probability
density of Vz for vesicle with Nv = 677 in a discocyte and spherical
shape. (b) Instantaneous configuration of moving discocytes in the
face-on and edge-on mode. Arrow shows the direction of movement
of the vesicle.

by reducing the number density of the solvent inside the vesicle
to ρin = 2. Unlike the case of ellipsoids, where we have a
unique mode of propulsion with the velocity direction along
its long axis, here we obtain two different modes of propulsion:
in one the discocyte moves with its face on, and in the other
it moves with its edge at the propelling front. Figure 9(a)
shows both propulsion configurations. We observe a lower
〈Vz〉 for the face-on configuration as compared to the edge-on
configuration of the discocyte.

Figure 9(b) compares the directed velocity Vz for the
discocyte moving in the edge-on configuration with a spherical
vesicle having the same number of vertices Nv = 677. It
is evident from the plot that the discocytes have higher
propulsion with 〈Vz〉 = 0.019 than their spherical counterpart
with 〈Vz〉 = 0.014.

IV. VESICLE MOTOR EFFICIENCY

Chemically powered vesicle motors convert chemical en-
ergy into mechanical work, driving the self-propelled motion
while working in an environment where viscous drag is
important. The efficiency ηs of a chemically powered motor,
which measures the effectiveness of mechanochemical energy
transduction, can be defined as [9]

ηs = Pmech

Pchem
, (7)

where Pmech is the mechanical power output of the motor and
Pchem is the total chemical power input to the motor. Pmech

and Pchem are further defined as Pmech = ζ 〈Vz〉2 and Pchem =
μR, where ζ is the drag coefficient of the vesicle motor, 〈Vz〉
is the directed propulsion velocity of the vesicle, R is the net
chemical reaction rate, and μ is the change in the chemical
potential in the reaction. To determine the efficiency from
above equation, the net chemical reaction rate R was calculated
by counting the number of A → B reactive events that take
place at the catalytic vertices per unit time. In the MPC-MD
simulations the change in the chemical potential is given by

μ = μB − μA = −kBT ln
nB

n
eq
B

n
eq
A

nA

, (8)

TABLE II. Comparison of the average directed velocity and
Stoke’s efficiency for a vesicle motor of various size and shapes.
The LJ energy parameter εA = 1.0.

Nv Shape εB 〈Vz〉 ηs

110 Spherical 0.01 0.019 0.0027
302 Spherical 0.01 0.017 0.0020
302 Spherical 0.1 0.008 0.0004
302 Ellipsoidal 0.01 0.023 0.0030
677 Discocyte 0.01 0.019 0.0015
677 Spherical 0.01 0.014 0.0012

where n
eq
A and n

eq
B denote the equilibrium number densities of

A and B species, respectively, and nA and nB are the steady
state densities [39]. The drag coefficient depends not only
on the viscosity, but also on the cross-sectional shape that is
presented to the fluid by the vesicle in its direction of motion.
Again to estimate the drag coefficient, we approximate the
vesicle to be nearly rigid and hence, for spheres, ζ = 6πηR,
for ellipsoids moving along its long axis ζ = 4πηa

ln(2a/b)−1/2 and

for disks moving edge on ζ = 32
3 ηp, where p is the radius of

the disk [38]. We compare the Stokes efficiency of the various
sizes and shapes of the vesicle in Table II.

It is evident from the above calculation that the power
associated with the mechanical work of the motor is larger
for smaller vesicles of the same shape, as the Stokes efficiency
for the spherical vesicle of Nv = 110 is 0.27% and that of
a vesicle with Nv = 302 is 0.20%. On changing the shape
of the vesicle its efficiency also changes. Table II shows that
the ellipsoidal motor with Nv = 302 is more efficient with
ηs = 0.30% than its spherical counterpart with ηs = 0.20%.
Similarly, comparison of spherical and discocyte shapes
shows enhancement of efficiency in the discocyte shape. The
maximum efficiency achieved in our simulations is about
0.30%, which is similar to the other chemically powered
motors [9,39]; however, this efficiency is much less than that
of most nano- and micromotors in biology.

V. CONCLUSION

Investigations of the dynamics of soft deformable self-
propelled particles are at an early stage of development.
Here we have studied the diffusio-phoretic motion of a
chemically powered vesicle, which acquires the motility by
creating a gradient of surrounding product solvent molecules.
The mesoscopic model for vesicle dynamics discussed in
this article provides insight into the factors that control the
propulsion.

We show that depending on the bending rigidity and solvent
density around the vesicle, different shapes of vesicle can be
obtained, and all these shapes exhibit very different dynamical
behavior. Our calculations conclude that the directed velocity
of the vesicle is maximum for an optimum fraction of catalytic
vertices; more or less than that would slow down the dynamics.
For a given fraction of catalytic surface, the velocity of
the vesicle depends on its shape. We find that a prolate as
well as discocyte vesicle exhibit higher directed velocity as
compared to a spherical vesicle of same size. However, the
the prolate shape of the vesicle makes it more prone to the
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reorientation due to thermal fluctuation as compared to its
spherical counterpart. Having investigated the dynamics of a
single vesicle, the natural extension of our study would be to
consider the collective dynamics of such deformable objects.

Our approach should be useful for investigation of a
biological cell as well as recently studied polymeric vesi-
cles [14]. The potential applications of such vesicle motors
will involve launching them to perform a given task, such
as cargo transport, and further investigations of interaction
between them can provide the information needed to design

motors that can cooperate with each other to perform such
tasks.
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