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Role of topology in complex functional networks of beta cells
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The activity of pancreatic β cells can be described by biological networks of coupled nonlinear oscillators that,
via electrochemical synchronization, release insulin in response to augmented glucose levels. In this work, we
analyze the emergent behavior of regular and percolated β-cells clusters through a stochastic mathematical model
where “functional” networks arise. We show that the emergence and robustness of the synchronized dynamics
depend both on intrinsic and extrinsic parameters. In particular, cellular noise level, glucose concentration,
network spatial architecture, and cell-to-cell coupling strength are the key factors for the generation of a rhythmic
and robust activity. Their role in the functional network topology associated with β-cells clusters is analyzed and
discussed.

DOI: 10.1103/PhysRevE.92.042702 PACS number(s): 87.18.Hf, 64.60.ah, 05.45.Xt, 64.60.aq

I. INTRODUCTION

The function of many biological systems underlies an in-
trinsic rhythmic activity [1–3]. These systems are not isolated
but interact with the environment and other systems and
show collective dynamics that emerges from a communicating
network. Communication is the basis for the occurrence
of synchronization or phase-locked dynamics of separate
components in complex dynamical systems. Specifically, the
role of structural and physical connections versus functional
connectivity is currently investigated to understand and cat-
egorize the observed emerging behavior. In particular, the
role of local heterogeneities [4], the spatial organization of
the connectivity [5], and the inverse problem of extracting
structural information from functional one [6] all aim at
unveiling the key mechanisms responsible for synchronization
and desynchronization in highly interconnected networks.

The β cells (BCs), in the endocrine islets of the pancreas,
are an example of coupled nonlinear oscillators that show
such a coordinated rhythmic activity. Pancreatic islets are
ellipsoidal cells’ aggregates characterized by a complex
architecture. The islet contains at least three other types of
cells other than BCs, i.e., α cells (ACs), δ cells (DCs), and
pancreatic-polypeptide (PP) cells [7]. Several studies show
that cells within the islet communicate both by autocrine and
paracrine signaling, and by ultrastructural connections [7–9].
These communications finely control cells function, smooth
cells heterogeneity, synchronize cells, etc. Specifically, BCs
modify their electrical activity in response to changes in blood
glycemic levels, triggering intracellular calcium oscillations
and insulin secretion. The typical membrane voltage pattern
observed in BCs is a “bursting” oscillation [7]. A key concept
for this characteristic behavior is the interaction of fast and
slow dynamics. The fast subsystem shows a bistability, i.e.,
the coexistence of two stable states, a periodic high-voltage
solution, and a silent low-voltage steady state. Changes in the
slow variable drive the fast subsystem between these two states,
achieving a pattern of sustained high-voltage oscillations
separated by quiescent phases. In this context, glucose acts
like a control parameter that regulates the dynamics of the
network itself. Glucose, in addition, exerts a crucial feedback
on β-cell proliferation in vitro and in vivo [10].

In association with intrinsic biological noise and hetero-
geneity, the network topology strongly affects the single-
node dynamics [5,11]. In fact, isolated BCs exhibit irregular
spiking, but electrically coupled BCs in compact clusters
show regular synchronous bursting leading to pulsatile insulin
release [12,13]. In between these opposite behaviors, several
emergent spatiotemporal patterns of electrical activity can
arise from different network structures in terms of nodes
number and connectivity. This aspect has a great relevance
if one considers the dramatic topological effects that some
pathological conditions can induce in BCs networks. Irregular
behaviors caused by loss of coupling and degeneration of BCs
is an example [14–16]. For instance, in type-1 diabetes, the
loss of β-cell mass and communication leads to an insufficient
insulin secretion and impaired pulsatility. This unstable phase
can last from a few months up to several years [17], because
β-cell populations larger than a critical size can still maintain
the blood glycemic level in a physiological range [18,19].
Additionally, the islet architecture and composition, and hence
the BCs networks, differ from species to species. In rodents,
about 75% of islet cells are BCs and form a compact central
core surrounded by ACs and DCs. In humans, BCs are
about 54% of the islet cells and are organized in a sparse
configuration [20–22]. These structural differences can play
a key role in the generation of robust rhythmic behavior
and the onset of local and/or global synchronous states. This
thesis is corroborated by experimental evidences of (i) faster
bursting [23] and (ii) spatially limited synchronization of
intracellular calcium oscillations [21] in human BCs compared
to rodents. Moreover, differences between mouse and human
BCs in terms of ion currents also play a role in bursting
oscillations.

In this work, bursting activity in BCs networks is studied
via a stochastic mathematical model fine-tuned to reproduce
mouse bursting activity [24]. The model is built through a per-
colation approach mimicking the physiological architecture of
the islet. Emergent dynamics of BCs clusters are investigated
by analyzing temporal correlations of cells’ electrical activity
and by deriving and constructing a functional network linking
the BCs cluster structure to the emergent behavior. Through
such an analysis, we provide a complete and quantitative
description of the spatiotemporal synchronization properties
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and their relation with experimental evidences. We show that
very simple communication rules can give rise to complex
functional coupling patterns within a stochastic framework
and that the topology of these functional networks is very
sensitive to changes in specific control parameters, i.e., the
coupling conductance strength, the glucose concentration, and
the noise strength. Such an approach, usually adopted to
study the functional structure of the brain in physiological
and pathological states [25–27], has been experimentally used
to analyze the activity of BCs in islets from mouse pancreas
tissue slices [28].

The paper is organized as follows. In Sec. II, the adopted
stochastic mathematical model is presented. Glucose feedback
and topological and functional networks architectures are
described. In Sec. III, numerical simulations and results
are presented. In Sec. IV, outcomes, limitations, and future
perspectives are discussed. Conclusions are drawn in Sec. V.

II. MATHEMATICAL MODELING

In this section, we introduce a modified version of the
minimal electrophysiological murine model SRK [24,29]
that grasps many quantitative features of β-cells ensembles.
The original model was designed to study isopotential cell
populations and not fully synchronized cubic clusters in fixed
normoglycemic conditions. As said before, the generalized
version of the model here presented takes into account a
fine-tuned glucose feedback and network structure based on
cytoarchitecture evidences [20–22,30]. We finally explain how
construct functional networks from the computed dynamics of
these coupled oscillators.

A. SRK multicell model

SRK model equations are based on a Hodgkin-Huxley-
type formulation [31], where a fast and a slow dynamics
are nonlinearly coupled. Via this minimal modeling, it is
possible to reproduce both the behaviors of isolated cells
and the typical bursting electrical activity of cell clusters,
thanks to the noise-filtering effect of BCs network. Each cell
is described by three ordinary differential equations (ODE)
and is coupled to other contiguous cells (see Appendix for
details). The membrane potential and the potassium channels
characterize the fast dynamics while the intracellular calcium
concentration represents the slow variable that turns the cell
in a silent or bursting regime. Several stochastic processes
were implemented to model the gating of calcium-dependent
potassium channels (K-Ca). This choice is originally due to
the high conductance of this type of ion channels. Because
of this, its stochastic gating leads to stronger perturbations of
the membrane potential compared to K+ and Ca2+ channels.
Following Portuesi et al. [11] and Loppini et al. [32],
glucose feedback was modeled tuning the calcium removal
rate parameter as a linear function of glycemic states. Het-
erogeneity is another important biological evidence. However,
considering the intrinsic noise due to the stochastic gating
of K-Ca channels, simulations performed on heterogeneous
cells populations did not show significant differences from
the activity observed in clusters of identical cells. Although,
alternative approaches have been proposed in the literature [5],

noise itself induces local heterogeneities [33] that overcome
the effect of heterogeneity in cells parameters. For these
reasons, in the following we consider homogeneous cells
populations.

B. Numerical implementation

We have adopted the SRK model in order to simulate the
BCs activity of different networks architectures. The numerical
algorithm (see Appendix) for the integration of the network
dynamics was implemented in C++ language. The Gephi
software [34] and Matlab numerical environment were used
for networks and data analysis, respectively. The R statistical
tool was used for graphical purposes.

C. β-cell networks topology

The architectural organization of β cells in the islets
differs from species to species [20]. BCs in murine islets
are usually confined in a central core with a surrounding
mantle of ACs and DCs. For the horse is exactly the opposite.
Human islets instead are characterized by apparently random
distributions of β, α, and δ cells, resulting in more complex
islet structures [20]. In addition, also the islet composition is
variable. As anticipated, the percentage of BCs in murine and
human islets is about 75% and 54% [20–22], respectively.
Another important architectural feature is that not all the
adjacent BCs are coupled. In particular in mouse, about 33%
of adjacent cells are not coupled [30]. Assuming a similar
coupling distribution in human islets, we developed a β-cell
insular geometry with a site-bond percolation [35] performed
on a compact cubic cluster with a site occupancy probability
of 54% (ps = 0.54) and with a bond occupancy probability of
67% (pb = 0.67). This procedure has been recently adopted
in the context of pancreatic islet cellular networks [5]. In
particular, phase transitions of BCs networks under different
percolation conditions with the onset of type-1 diabetes have
been related there. In this study, our aim is different. We
fix the topological architecture of the network upon a given
site-bond percolation and explore cells synchronization and
emergent bursting, investigating the influence of architecture
and parameters’ changes on BCs functions.

The bond percolation effect has been experimentally stud-
ied in the literature [36,37], modeling the emergent dynamics
with the use of deterministic BCs clusters. In particular
it has been observed that: (1) in physiological conditions
not all adjacent BCs are coupled; (2) inhibition or genetic
knockout of gap junctions compromises synchronized cell
activity; (3) cell aggregates size seems to be correlated
with coordinated cells activity. We address this particular
aspect with a complex network perspective, combined with
stochastic dynamics and comparing and contrasting different
representative architectures in terms of emergent behaviors for
linear chains, compact clusters, and percolated structures.

D. Functional network analysis: A synchronization measure

Synchronization phenomena have been investigated com-
puting the correlation index between all pairs of BCs
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membrane potential signals [28,38]:

Rij = 〈 (Vi(t) − 〈Vi(t)〉)(Vj (t) − 〈Vj (t)〉) 〉
σiσj

, (1)

where σi is the standard deviation of Vi(t). In the functional
network approach, a new network, different from the structural
physical cluster, is constructed on the basis of the correlation
matrix obtained. Specifically, we add a link between separate
cells if the temporal correlation of their electrical signals is
greater than a threshold value. Following Stožer et al. [28],
and filtering the stronger correlations, this value in our analysis
is set to 0.8. From the functional network, one can achieve
qualitative and quantitative information on the BCs emergent
dynamics in terms of synchronized activity. In particular, the
presence of synchronized subpopulations, the quantification
of the temporal correlation of the global oscillatory activity,
and several features of the emergent behavior can be derived.

For the sake of clarity, we list the observables specifically
used in this study (see Refs. [39,40]): (i) the degree of the ith
node ki = ∑

j aij , where aij is the adjacency matrix associated
to the network; (ii) the degree distribution P (k) and the
cumulative degree distribution Pcum(k) = ∑∞

k′=k P (k′); (iii)
the average nearest neighbors degree as a function of k, i.e.,
knn(k) = 1

Nk

∑
i,ki=k knn,i , where knn,i = 1

ki

∑
j aij kj , that is the

average nearest-neighbors degree for the node i, and Nk is the
node number of degree k; (iv) the average clustering coefficient
C = 1

N

∑
i ci = 1

N

∑
i

2ei

ki (ki−1) , where ei are the edges in the
subgraph of the neighbors of the ith node and ki(ki − 1)/2 is
the maximum number of edges in the subgraph.

As anticipated, the functional network topology is driven
by cells synchronization, and we move from totally uncorre-
lated electrical activity to almost full synchronized behavior.
Because of this, at least if the standard definition of the
observables hold, we will also consider nodes of degree 0 (the
isolated nodes) in the computation of the networks’ statistics.

III. RESULTS

With the use of the site-bond percolation described
above [35], a human-like insular structure was constructed
from a compact cubic lattice of 1000 β cells. This procedure
led to a fragmentation of the original architecture into separate
components characterized by structural networks of different
sizes and connectivities. The numerical study focuses on the
analysis of the biggest component obtained, extracted from the
percolated architecture, and formed by 260 cells (see Fig. 1).
Two other simple topologies were constructed taking into

FIG. 1. (Color online) Construction of the percolated topology.
Starting from a compact cubic cluster (left) a human-like architecture
is obtained via a site-bond percolation (center) and the biggest
connected component is extracted (right).

FIG. 2. (Color online) Different network topologies: linear chain
(left), percolated architecture (center), compact structure (right).

account the same number of nodes: a linear 1D chain and
a 3D compact cluster. In the latter case, a 7 × 7 × 7 grid was
sequentially filled with cells, stopping the cluster construction
once the desired number of units was reached. A representation
of the different topologies is shown in Fig. 2.

In Fig. 3 the voltage time series computed for the stochastic
SRK model is shown for a representative cell of any of the
three simulated topologies. For these simulations a glucose
concentration slightly above the BCs activation threshold was
imposed ([G] = 7.1 mM, i.e., kCa = 0.03 ms−1), setting the
coupling conductance between cells at a physiological value
(gc = 215 pS). Clearly, network topology strongly affects
voltage oscillations. This effect is due to the different filtering
properties induced by the “channel sharing” mechanism [24]
with respect to the noise produced by stochastic channel gating.
More organized structures give rise to longer bursting periods
with lower variability of the interburst interval.

In order to extract information on the synchronization
properties, in Fig. 4 we provide the correlation matrix, the
computed functional network, and the space-time plots of
voltage signals for each simulated structure. Bursting activity
in the linear chain, Fig. 4(a), presents a short-range synchro-
nization with excitation waves arising from different points
in space and time, occasionally colliding. These evidences
are supported by the structure of the functional network,
which presents a mean node degree equal to 4 for the central
cells of the chain. The opposite emergent behavior can be
seen in the compact cluster, Fig. 4(c): the appearance of
quasihorizontal bands in the voltage space-time plot highlights
a long-range synchronization of the bursting. In this case, the

FIG. 3. (Color online) Membrane potential time series for a
representative cell in: linear chain (top), percolated structure (middle),
compact cluster (bottom).
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FIG. 4. (Color online) Correlation matrix (top row), reconstructed functional network (central row), and space-time plot of membrane
voltage (bottom row) for each topology. (a) Left column: linear chain. (b) Central column: percolated topology. (c) Right column: compact
structure. Physiological conditions are considered: gc = 215 pS and [G] = 7.1 mM. The color code of the percolated functional network
identifies the subpopulations in the space-time plot.

x axis of the plot is a one-dimensional ordering of the cells
obtained with a sequential indexing from the bottom to the
top of the cluster. Functional network in such a situation is
a fully connected network. The percolated topology shows
instead an intermediate and very interesting behavior, Fig. 4(b).
From the correlation matrix and the reconstructed functional
network, four subpopulations with different bursting regimes
can be identified (highlighted with different colors). The
spatial coordinates of the space-time plot in this case were
reordered on the basis of the macro subpopulations leading
to the appearance of different out-of-phase bands of bursting
activity. Each subpopulation is identified along the x axis by
the same color used in the corresponding functional network.

A. Fixed glucose and variable gap junction conductance

Different functional networks were constructed analyz-
ing the electrical activity of the BCs structures previously
described, by varying the coupling strength (link strength
of the structural network) and keeping fixed the glucose
concentration ([G] = 7.1 mM). Figure 5 shows three func-
tional networks sequences for the linear chain, the percolated
network, and the compact cluster, respectively. The analysis
shows that lowering gc below a specific threshold causes the
functional disconnection of the network. In this scenario,
BCs do not show correlated activities nor robust bursting.

Increasing the coupling conductance gives rise, instead, to
functional connections that reveal a much more complex
organization compared to the bare physical topology of the
BCs cluster. Strongly interconnected functional communities
appear from a limited number of junctional connections for
the linear, the percolated, and the compact topology. The
compact cluster gives rise to a fully connected functional
network for all the coupling strengths considered, losing just
a few connections at gc = 100 pS, thus exhibiting a robust
and synchronized bursting. The linear and the percolated
cases, instead, do not reach a complete functional connectivity,
even by increasing coupling strength. However, the study
of the “functional” clustering coefficient computed for each
operating condition highlights a similar trend in the network
synchronization, as reported in Table I.

In order to further explore the emergent dynamics on
the percolated topology, the degree distributions P (k) of
the functional networks are computed and shown in Fig. 6.
Numerical results highlights that for a coupling conductance
close to the physiological value (gc = 215 pS), the distribution
seems to match similar trends with respect to log-normal
density functions and power-law decays. In order to better
analyze this aspect, cumulative degree distributions were also
computed for different coupling strengths. Log-Log plots of
Pcum(k) are also reported together with a log-normal and a
power law fit (straight line) of the data. Linear fitting seems
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(a) (b) (c) (d)

FIG. 5. (Color online) Functional networks sequences for in-
creasing coupling strength, (a–d) gc = 100, 215, 300, 400 pS, and
fixed glucose concentration [G] = 7.1 mM. Top row, linear chain;
center row, percolated structure; bottom row, compact cluster.

to hold for a central range of values while log-normal fit suits
better for low degree nodes and the tail.

Although bigger cells populations should be studied to
mitigate finite-size effects and to deeply investigate cumu-
lative distributions behavior, our results highlight a strong
inhomogeneity of the network and suggest that scale-free
properties may be involved in the synchronization pathways.
A bimodal distribution underlines bigger and more clustered
synchronized communities, increasing the coupling strength
further above the physiological value.

With the aim to study functional network correlations
between degrees of connected nodes, the average nearest
neighbor degree distributions knn(k) are also computed and

TABLE I. Clustering coefficient for increasing coupling strengths
([G] = 7.1 mM). N600, simulations performed with 600 stochastic
K-Ca channels per cell; N300, simulations performed with 300
stochastic K-Ca channels per cell.

Linear Percolated Compact

gc [pS] N600 N300 N600 N300 N600 N300

100 0.00 0.00 0.06 0.00 1.00 0.86
150 0.00 — 0.26 — 1.00 —
215 0.50 0.00 0.72 0.24 1.00 1.00
250 0.50 — 0.73 — 1.00 —
300 0.56 0.01 0.74 0.41 1.00 1.00
350 0.61 — 0.78 — 1.00 —
400 0.63 0.51 0.80 0.70 1.00 1.00

provided in Fig. 6. For a coupling strength in the range
100–215 pS, knn(k) is an increasing function. For stronger
coupling, the increasing trend reaches a plateau after a cutoff
of k � 30, probably linked to structural issues. However,
this observation suggests an assortative mixing property of
the network [39,41] for optimal coupling strength: nodes
are mostly linked to other nodes with the same degree.
Additionally, such assortative tendency is conserved in lower
degree nodes for stronger coupling. Degree-preserving random
rewiring (not shown) does not show increasing trend in knn(k),
suggesting that assortative mixing is not induced by the
structure, but other processes may be involved [41].

B. Fixed gap junction conductance and variable glucose

The emergent activity of the three structures was also an-
alyzed for different values of glucose concentrations, ranging
from low subthreshold stimulation values up to high glycemic
levels that evoke a continuous spiking response. In this analy-
sis, the coupling conductance was set at 215 pS. Figure 7 shows
a functional networks sequence of the analyzed structures
at different glycemic levels. Subthreshold values of glucose
concentration functionally decouple the network as for low
coupling strength values. In the same way, high values of glu-
cose concentration decrease BCs temporal correlation causing
functional decoupling of the network at high glycemic states.
Optimal functional connectivity is obtained for glycemic levels
slightly greater than the stimulation threshold. The computed
clustering coefficient for each structure (see Table II) confirms
these observations.

These results suggest that the glucose range ensuring
cells functional synchronization is greater in the compact
case, shrinking progressively in the percolated and the chain
network. The analysis of the network degree distribution of the
percolated cluster is computed for different glycemic states,
see Fig. 8, showing that log-normal trends and possibly scale-
free properties may also arise in the range of glucose values
that maximize cells correlation. Cumulative distributions were
not computed in this analysis because of the limited number
of samples. In addition, although functional decoupling of
the cells causes a lack of data for the computation of the
average nearest-neighbor degree distribution in subthreshold
stimulation and in overstimulation regimes, the computed
knn(k) shows an increasing trend for glucose concentrations
just above the stimulation threshold. This result suggests an
assortative property of the network as shown in the case of
variable coupling strength discussed in the previous section.

C. Noise effect

Ion channel gating is a stochastic process, and the macro-
scopic currents observed originate from the opening and
closing of large channel populations distributed on the cell
membrane. Therefore, these biological systems can be viewed
as intrinsically stochastic oscillators. Macroscopic membrane
current fluctuations strongly depend on single-channel prop-
erties and on the numerosity of the population. Noise level is
expected to have a great impact on cells synchronization.

On these bases, we investigate the noise effect on functional
networks by varying the channel population size. Specifically,
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FIG. 6. (Color online) Degree distribution for different functional networks (FN) of the percolated structure varying the coupling strength
(gc = 100, 215, 300, 400 pS) and keeping fixed the glucose concentration ([G] = 7.1 mM). A smoothing kernel was used for the histograms
fitting, previously normalizing the occurrences with the maximum value reached in each case. N600, observables computed from simulations
performed with 600 stochastic K-Ca channels per cell; N300, observables computed from simulations performed with 300 stochastic K-Ca
channels per cell; AVNND, average nearest neighbor degree; Pcum, cumulative degree distribution. Dotted line and continuous line in the
AVNND plots represent a power law and a log-normal fit of the data (colored square), respectively.

(a) (b) (c) (d)

FIG. 7. (Color online) Functional networks sequences for in-
creasing glucose concentration, (a–d) [G] = 4.7, 8.7, 12.7, 16.6 mM
from left to right and fixed gap junction conductance gc = 215 pS.
Top row, linear chain; center row, percolated structure; bottom row,
compact cluster.

the size of K-Ca channels population was lowered to half of
the original value (from 600 to 300) in order to increase current
fluctuations. Functional network sequences were similarly
analyzed as presented above, i.e., (1) keeping fixed the glucose
concentration and varying coupling strength, (2) keeping fixed
the coupling strength and varying the glucose level. Numerical
results show a similar trend with respect to lower noise levels.
Figure 9 shows that increasing the coupling conductance
enhances the connectivity of the network. Although, compared
to the 600 K-Ca channels case, doubled values of the coupling
strength are needed to achieve a similar functional connectivity
for the linear and percolated structures. These observations are

TABLE II. Clustering coefficient for increasing glucose con-
centrations (gc = 215 pS). N600, simulations performed with 600
stochastic K-Ca channels per cell; N300, simulations performed with
300 stochastic K-Ca channels per cell.

Linear Percolated Compact

Glucose [mM] N600 N300 N600 N300 N600 N300

4.7 0.02 0.00 0.03 0.17 0.00 0.00
6.7 0.51 — 0.71 — 1.00 —
8.7 0.03 0.00 0.47 0.21 1.00 1.00
10.7 0.00 — 0.18 — 1.00 —
12.7 0.00 0.00 0.03 0.00 0.97 0.00
14.6 0.00 — 0.00 — 0.00 —
16.6 0.00 0.00 0.00 0.00 0.00 0.00

042702-6



ROLE OF TOPOLOGY IN COMPLEX FUNCTIONAL . . . PHYSICAL REVIEW E 92, 042702 (2015)

net_type

FN1 ([G]=4.7 mM)

FN2 ([G]=8.7 mM)

FN3 ([G]=12.7 mM)

FN4 ([G]=16.6 mM)

1

2

3

4

5

5

10

15

20

1.50

1.75

2.00

2.25

2.50

1.2

1.4

1.6

F
N

1
F

N
2

F
N

3
F

N
4

0 10 20 30
Node degree

A
V

N
N

D
 N

60
0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

F
N

1
F

N
2

F
N

3
F

N
4

0 5 10 15 20 25 30
Node degree

N
or

m
al

iz
ed

 d
en

si
ty

 N
60

0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

F
N

1
F

N
2

F
N

3
F

N
4

0 5 10 15 20 25 30
Node degree

N
or

m
al

iz
ed

 d
en

si
ty

 N
30

0
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FIG. 9. (Color online) Functional networks sequences for in-
creasing coupling strength, (a–d) gc = 100, 215, 300, 400 pS from
left to right at fixed glucose, i.e., [G] = 7.1 mM. The number of
K-Ca channels per cell was set to 300 to increase noise strength.
Top row, linear chain; center row, percolated structure; bottom row,
compact cluster.

summarized by the computed clustering coefficients reported
in Table I. The compact cluster resulted more robust to noise
perturbation, and a fully functional connectivity was reached
for physiological values of the coupling conductance. The
analysis was limited to selected values of the conductance
due to computational issues.

Similar behaviors are also observed varying the glucose
level (Fig. 10 and Table II). An optimal range of glucose con-
centration maximizing cells synchronization is still present.
However, higher noise perturbations strongly reduce this range
and the degree of synchronization.

The degree distribution analysis of the functional networks
computed from the percolated structure (Figs. 6 and 8)
shows similar topological properties also for enhanced noise
levels. Log-normal and power-law behaviors of the degree
distributions are obtained for coupling conductances higher
than the physiological value and glucose concentrations of
about 8–9 mM. However, also for higher noise levels the
maximum degree of the nodes is significantly lowered. This
result underlines the robustness of the functional topology with
respect to perturbations.

IV. DISCUSSION

Experimental studies have shown that β cells in pancreatic
islets exploit several pathways of communication in order
to coordinate and synchronize their secretory activity, from
electrical to autocrine and paracrine coupling. This evidence
implies a specific structural organization of cells within
the islet. Such a structure varies from species to species
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(a) (b) (c) (d)

FIG. 10. (Color online) Functional networks sequences for in-
creasing glucose, (a–d) [G] = 4.7, 8.7, 12.7, 16.6 mM from left to
right at fixed gap junction conductance, i.e., gc = 215 pS. The number
of K-Ca channels per cell was set to 300 to increase noise strength.
Top row, linear chain; center row, percolated structure; bottom row,
compact cluster.

and can be substantially altered by degenerative pathologic
processes like type-1 diabetes [42]. The existing literature
on mouse and human data highlights that the emergent
electrical activity in time and its coordination in space may
vary significantly considering different species. Additionally,
the loss of communication and degeneration of the cellular
network in diabetic subjects strongly affect insulin release.

The present study analyzed the relation between structure
and function in BCs networks, considering normal conditions
and varying selected control parameters with respect to the
physiological limits. In this framework, it is fundamental to
analyze compact and percolated clusters since they clearly
resemble mouse and human BCs architectures. The linear
chain case, instead, is the representative example of a degen-
erate case, usually adopted to study the dynamics of coupled
oscillators [43].

A. Bursting robustness

In the physiological state, numerical results show that
temporal robustness of bursting activity is strongly affected
by network architecture. This aspect was highlighted in the
original work of Sherman et al. [24,29], studying cubic
clusters of increasing size. They showed that coupled cells
can “share the pool of stochastic channels” lowering noise
strength. Similar behaviors were studied experimentally in
cardiac coupled cells [44] and numerically in coupled networks
of stochastic oscillators [24,29,45,46]. In these studies, an

enhancement of the temporal precision was achieved for
specific properties of the network, e.g., topology and number of
nodes N . In particular, the standard deviation of the inter-beat
intervals was shown to follow a 1/

√
N scaling law. Similar

properties also arise in the stochastic gating of K-Ca channels
in the “supercell” version of the SRK model [24]. Since the
gating is modeled as a two-state process, it is possible to write
the master equation for the evolution of the probability to find
n channels in an open state in a population of size N [47]. The
master equation is a set of (N + 1) ODE of the form

dPo(n,t)

dt
= K1Po(n − 1,t) − K2Po(n,t) + K3Po(n + 1,t),

where K1 = k+(N − n + 1), K2 = k+(N − n) + k−n, K3 =
k−(n + 1), and k+/− are the transition rates from the closed to
the open state (see Appendix).

The equilibrium solution is given by the well-known
binomial distribution:

P ∞
o (n) =

(
N

n

)
pn(1 − p)N−n ,

with p = k+/(k+ + k−). The coefficient of variation of this
distribution is CV = SD/m = √

(1 − p)/(Np), where SD and
m are the standard deviation and the mean value, respectively.
For the supercell model, the total number of stochastic
channels is given by the number of channels per cell times
the number of cells within the isopotential cluster. Using
CV as a noise measure, for an increasing number of cells a
lower spreading of P is obtained and the decrease of noise
fluctuations is proportional to 1/

√
Ncell. A similar intuitive

approach was also pointed out by Clay et al. [45]. These
observations underline scaling laws similar to the one found
in the variation of temporal precision, which are embedded in
the intrinsic stochastic process of channel gating on the cell
membrane. In this study, we show that the attitude of noise
spreading and filtering, which gives rise to a robust bursting
in time, is also dependent on the clustering of the network and
not only on the population size. Our approach is in line with
the heterogeneity studies recently discussed in Ref. [4].

B. Cluster synchronization

Synchronization analysis of bursting activity reveals in-
teresting features. In particular, the linear chains do not
ensure a long-range synchronization of cells and the functional
network analysis suggests that a significant correlation in
the activity (R � 0.8) holds just in a radius of about two
cells. Alternatively, the compact structure shows that fully
functional connectivity can be reached even considering
only nearest-neighbors interactions. Of note is that such a
feature is in line with recorded signals in mouse islets,
showing an in-phase bursting over the whole islet [12,13].
Interestingly, the percolated topology (the closest to the human
physiological one) presents intermediate behaviors where
several synchronized areas arise. A globally synchronized
activity is not achieved in this case as demonstrated by the
degree distribution of the functional network (Fig. 6) and the
out-of-phase bands in the space-time plot of membrane voltage
signals (Fig. 4). These results suggest a limited and partially
synchronized activity in human-like β-cell networks under
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physiological conditions, in line with experimental recordings
of intracellular calcium [21].

Could these results be a symptom of modularity? It is
known that many biological networks show such a feature,
which is strictly connected to the system robustness against
system’s perturbations [48], i.e., environment changes or
altered dynamics of some nodes in the network. The functional
network structure changes dynamically when the operating
conditions change. The numerical analyses we conducted
in this study demonstrate that if the cluster structure is not
compact, values of the coupling conductance below a certain
threshold are not able to synchronize cells anymore. In fact,
the functional network for the linear and percolated cases are
almost totally disconnected. On the other hand, higher values
of the coupling are able to recover cells synchronization though
the functional network loses its modularity. These evidences
suggest the hypothesis of an optimal value of coupling
strength, peaked at the physiological value, to maintain the
functional features of the system.

In addition, other interesting properties arise keeping fixed
the coupling strength while increasing glucose concentration.
Glycemic levels that keep β cells in a silent state or evoke
a continuous bursting lead to cells desynchronization in all
the topologies analyzed; i.e., the corresponding functional
networks are almost totally disconnected. For intermediate
values of glucose concentration, however, the clustering
coefficient for all three structures reaches a clear maximum.
This last result suggests an optimal value, again, of the glucose-
synchronization feedback. This level is above the stimulatory
threshold and for the percolated and compact clusters is very
close to the peak of glucose concentration usually observed
after a meal [49,50]. These outcomes are consistent with
experimental based functional network analyses in mouse
islets [28], where time correlations of intracellular calcium
variations between β cells are analyzed.

C. Percolated clusters and self-similarity

The associative behaviors pointed out for the average
nearest-neighbor degree distributions highlight interesting as-
pects of synchronization pathways. The node-degree correla-
tion suggests somehow that the emergent coordinated activity
does not appear as a sharp transition in response to parameters
changes but comes out as a nucleation-like process. For low
values of the coupling strength, high-degree nodes are absent
and low-degree nodes are coupled with other low-degree
nodes, i.e., functional cell doublets and small coordinated
pools. Increasing the coupling strength, the distribution of
knn(k) shows a plateau and high-degree nodes appear. These
nodes are equally linked to other nodes, suggesting that the
system is reaching a global synchronization.

Degree distributions analysis performed for the differ-
ent operating conditions reveal that physiological coupling
strength values and postprandial glucose concentrations induce
a scale-free-like topology of the functional network. Our
representative human-like cluster, in fact, comes from a
particular occurrence of the percolation process performed
on a regular 3D lattice of cells [5]. Specifically, in order to
match biological and histological evidences, a site percolation
with p∗

s = 0.54 and a bond percolation with p∗
b = 0.67

was performed. Numerical studies about mixed site-bond
percolation performed on different lattices showed that the
pair (p∗

s , p
∗
b) is very close to the percolation threshold curve

in the ps-pb plane for the cubic lattice (Fig. 1 in Ref. [51]).
Moreover, finite-size effects have been pointed out also in
Ref. [5]. In typical percolation problems performed on infinite
lattices, once this threshold is reached a big connected cluster
spanning all the lattice emerges; the process can be viewed
as a phase transition in physical systems [35]. Near this
critical threshold, fractal shapes can arise characterized by
self-similarity properties. Scale-free topology of the functional
network may then be reminiscent of the underlying self-similar
topological structure, and variations of the model parameters
could enhance or disrupt such a property in this perspective.
Experimental studies have highlighted the appearance of
scale-free networks in many biological complex systems like
metabolic reaction networks, gene regulatory networks, and
functional connectivity in the brain [52–54]. In the latter
case, the scale-free properties are associated with characteristic
states of the neural activity.

In the pancreatic islets, such a functional structure high-
lights substantial differences between mouse and human.
A modularity and scale-free topology of synchronization
(we are talking about functional networks) could represent
the best way to regulate cells’ electrophysiological activity.
In addition, the analyses performed with increased noise
levels suggest that perturbations of the voltage dynamics can
considerably desynchronize cells’ activity due to stochastic
fluctuations of ion currents. However, numerical simulations
also highlight that the observed topological features of the
functional networks are conserved both for the percolated
and the compact structure. These evidences suggest that the
system is robust, and synchronization patterns are qualitatively
conserved when the intrinsic noise due to cell properties
is enhanced. Though these results have been derived on
simplified topological BCs networks and adopting a murine-
based stochastic mathematical model, due to the similarity of
the reaction-diffusion formulation, ionic currents and the order
of magnitude of the coupling conductances [55] we expect, by
analogy, our results may have relevance within a complete and
more reliable human-based framework.

V. CONCLUSIONS

The functional network analysis performed on differ-
ent cluster topologies of coupled BCs highlighted a deep
connection between structure and function. Results on cell
synchronization are in line with experimental studies per-
formed on human and mouse islets, in which a partial and a
complete synchronization was found, respectively. The degree
of synchronization is not constant but varies together with
operating conditions. The compact cluster acts as a unique
functional unit that is very robust over a degeneration of
coupling and desegregates only for subthreshold and very high
values of glucose concentration. The percolated structure gives
rise to limited synchronization of cells as observed in human.
In this case, physiological values of coupling conductance
and glucose concentration maximize cells synchronization
also preserving modularity and scale-free properties of the
functional connectivity.
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In the present study, we adapted a well-known murine-
based electrophysiological model to different cluster config-
urations in order to highlight the relation between structural
and physical topology and functionality [6]. A fine-tuning of
the model parameters matching different electrophysiological
behavior is out of the scope of this work. Moreover, syn-
chronization and emergent dynamics need further exploitation
in future studies taking into account that the analysis of
the functional connectivity, different from the physical one,
requires a careful interpretation of the statistical analyses.
However, it is important to remark that modularity and scale-
free properties shown in this work arise only for physiological
values of the parameters, thus implying a correct interpretation
of the results. In addition, synchronization and emergent
dynamics are fundamental for the correct functioning of β

cells and their alteration is related to pathological conditions,
i.e., diabetes.

Model limitations rely with the absence of the autocrine
and paracrine communication pathways within the islet and
the different endocrine cells. In this perspective, more realistic
coupled network topologies of the islet should be recon-
structed [56] or based on local dependencies [57,58], analyzing
the functional response of the cells with human electrophysi-
ological models [55,59,60] and analyzing networks properties
from observed dynamics [61]. Accordingly, the model should
be tuned on human data and different percolation structures
should be studied in the context of evolutionary studies [62]. In
addition, weighted networks without a correlation cutoff need
also to be considered in forthcoming contributions in order
to better characterize the in-phase and out-of-phase bursting
behaviors, as well as partial synchronization phenomena.
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APPENDIX

1. Electrophysiological SRK model

Here we list the SRK model’s equations [24,29], expressed
for a single cell. For the sake of notation, we denote variables
Vi , ni , Cai , simply as V , n, Ca; Cm the cell membrane
capacitance; V the membrane potential; n is the potassium
(K+) channel gating variable; n∞ the steady-state activation
curve for the potassium channel; Ca the intracellular calcium
(Ca2+) concentration; ḡK , ḡCa, and ḡK-Ca the whole cell ionic
channels conductances for K+, Ca2+, and K-Ca, respectively;
gc the coupling conductance; VK and VCa the potassium
and calcium reversal potentials; λ a parameter used to fine
tune the K+ channels time constant; f is the fraction of
free intracellular calcium; α is a conversion factor; kCa the
calcium removal rate; Kd the ratio of the kinetic constants that
regulate the K-Ca channels chemical process of opening and
closing; Vcell and Scell the volume and the surface of the cell,
respectively, assuming a spherical geometry; F the Faraday
constant and the factor 10 in the membrane capacitance

expression is the capacitance per unit area (f F μm−2).

Cm

dV

dt
= −Iion − ḡK-Cap(V − VK) − gc

∑
j∈�

(V − Vj )

dn

dt
= λ

[
n∞ − n

τn

]

dCa

dt
= f [−αICa − kCaCa]

〈p〉 = Ca

Kd + Ca

Iion = IK + ICa = ḡKn(V − VK) + ḡCam∞h(V − VCa)

m∞ = 1

1 + exp[(Vm − V )/Sm]

h = 1

1 + exp[(V − Vh)/Sh]

n∞ = 1

1 + exp[(Vn − V )/Sn]

τn = c

exp[(V − V̄ )/a] + exp[(V − V̄ )/b]

α = 1

2 F Vcell

Cm = 10 Scell.

The adopted formulation considers three particular ionic
channels: (i) the delayed rectifier K+ channel (allows ions
flux in a specific direction), (ii) the Ca2+ channel, and (iii)
the K-Ca channel. The Ca2+ conductance is defined by the
product of two sigmoidal functions: a steady-state activation
curve m∞, and a factor h, introduced to achieve a reasonable fit
of experimental data. The K+ conductance is regulated by the
activation level n with time constant τn. The K-Ca conductance
at a particular instant is given by the total K-Ca conductance
ḡK-Ca times the fraction of open channels p calculated by a
parallel stochastic process described in the following section.

The last term in Eq. (2) takes into account the ultrastruc-
tural connections (gap junctions) between cells and tends to
homogenize the voltage gradients between neighboring cells.
The summation is evaluated in a neighborhood � of the cell and
defined as a three-dimensional expansion of a two-dimensional
Von Neumann neighborhood [63]. The numerical integration
of the ODE system was carried out using a fourthorder
Runge-Kutta solver and a fixed time step of 0.1 ms. A complete
list of the model parameters can be found in Table III.

2. Coupled stochastic processes

The opening and closure events of each K-Ca channel were
modeled as a Markov stochastic process [47]. For a single
channel the following two-state kinetics was considered:

1/τc

C � O

1/τo

,

where τo and τc are the mean time spent by the channel
in an opened and a closed state, respectively. Considering
a stochastic variable s ∈ {C,O} in a time interval 	t , the
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TABLE III. Model parameters.

Parameter Unit Value

Cell radius μm 6.5
F C mmol−1 96.487
VK mV −75
VCa mV 110
ḡK pS 2500
ḡCa pS 1400
ḡK−Ca pS 30 000
gc pS See text
Vn mV −15
sn mV 5.6
Vm mV 4
sm mV 14
Vh mV −10
sh mV 10
a mV 65
b mV 20
c ms 60
V̄ mV −75
λ 1.7
Kd μM 100
f 0.001
τc ms 1000
C1 ms−1 mM−1 6.3 × 10−3

C2 ms−1 0.0147

probability that a channel in a closed state makes a transition
in an opened state is given by

	t

τc

= Prob{s = O,t + 	t | s = C,t}.

Vice versa the probability that a channel in an opened state
makes a transition to a closed one is given by

	t

τo

= Prob{s = C,t + 	t | s = O,t}.

A Monte Carlo simulation scheme [47] was adopted to evolve
such a stochastic process. To ensure probability conservation,
the resulting summation over the transition probabilities must
be 1, so one can split the interval [0,1] in regions related to a
specific transition of the channel. A random number extracted
uniformly in the interval [0,1] can then be used to impose the
change of the single channel state. A number of 600 K-Ca
channels per cell was considered, and the state of every single
channel at each integration time step was evaluated. As in
Ref. [24], mean closing time was kept fixed and mean opening
time was defined as a function of calcium concentration:

τo = τc

Cai

Kd

.

We remark that the calcium feedback is achieved directly
weighing the transition probability of the channel. The number
of opened channels at each time t was used to obtain the
factor p in the membrane potential equation. A congruential
generator characterized by a relatively high value of the period
was adopted using the ran2 routine given in Ref. [64] to ensure
the randomness of the generated number sequence.

3. Glucose feedback

By varying the kCa parameter, a silent regime or an emergent
bursting with increasing active phases can be obtained.
Following Portuesi et al. [11], we fine tuned this property
to model glycemic inputs. Setting kCa = 0.02 ms−1 and kCa =
0.09 ms−1 the model responds with a silent-active transition
and an active-continuous spiking transition, respectively.
These transitions in BCs occur at glucose concentrations of
5.5 mM and 16.6 mM, respectively. On these evidences, we
assumed for simplicity a monotonic linear trend of kCa given
by

kCa = C1[G] − C2 for [G] � 2.33 mM,

where

C1 = 6.3 × 10−3 ms−1 mM−1, C2 = 0.0147 ms−1,

and [G] is the glucose concentration.
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Rupnik, and D. Korošak, PLoS Comput. Biol. 9, e1002923
(2013).

[29] A. Sherman and J. Rinzel, Biophys. J. 59, 547 (1991).
[30] M. Perez-Armendariz, C. Roy, D. C. Spray, and M. V. Bennett,

Biophys. J. 59, 76 (1991).
[31] A. L. Hodgkin and A. F. Huxley, J. Physiol. 117, 500 (1952).
[32] A. Loppini, A. Capolupo, C. Cherubini, A. Gizzi, M. Bertolaso,

S. Filippi, and G. Vitiello, Phys. Lett. A 378, 3210 (2014).
[33] M. G. Pedersen, J. Theor. Biol. 235, 1 (2005).
[34] M. Bastian, S. Heymann, and M. Jacomy, ICWSM 8, 361

(2009).
[35] D. Stauffer and A. Aharony, Introduction to Percolation Theory

(CRC Press, Boca Raton, FL, 1994).
[36] R. K. P. Benninger, M. Zhang, W. S. Head, L. S. Satin, and

D. W. Piston, Biophys. J. 95, 5048 (2008).
[37] T. H. Hraha, A. B. Bernard, L. M. Nguyen, K. S. Anseth, and R.

K. P. Benninger, Biophys. J. 106, 299 (2014).
[38] J. Lee Rodgers and W. A. Nicewander, Am. Stat. 42, 59

(1988).
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