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Translational and rotational diffusion of a single nanorod in unentangled polymer melts
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Polymer nanocomposites have been an issue of both academic and industrial interest due to promising electrical,
mechanical, optical, and magnetic properties. The dynamics of nanoparticles in polymer nanocomposites is a
key to understanding those properties of polymer nanocomposites and is important for applications such as
self-healing nanocomposites. In this article we investigate the translational and the rotational dynamics of
a single nanorod in unentangled polymer melts by employing extensive molecular dynamics simulations. A
nanorod and polymers are modeled as semiflexible tangent chains of spherical beads. The stiffness of a nanorod
is tuned by changing the bending potential between chemical bonds. When polymers are sufficiently long and
the nanorod is stiff, the nanorod translates in an anisotropic fashion along the nanorod axis within time scales
of translational relaxation times even in unentangled polymer melts. The rotational diffusion is suppressed more
significantly than the translational diffusion as the polymer chain length is increased, thus the translational and
rotational diffusion of the nanorod are decoupled. We also estimate the winding numbers of polymers, i.e., how
many times a polymer winds the nanorod. The winding number increases with longer polymers but is relatively
insensitive to the nanorod stiffness.
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I. INTRODUCTION

Polymer nanocomposites, mixtures of nanoparticles and
polymers, have drawn attention because one can design novel
materials with desirable properties of both polymers and
nanoparticles [1–6]. For example, one may prepare isotropic
conductive adhesives by mixing conductive silver nanowires
and epoxy [7]. The major stumbling block to developing
novel polymer nanocomposites is the poor dispersion of
nanoparticles in polymer matrices [8,9]. In order to enhance the
dispersion, therefore, the intermolecular interaction between
nanoparticles and polymers has been studied extensively by
either modifying the surface of nanoparticles or introducing
dispersing agents [10–12]. Recent studies showed that the
diffusion of nanoparticles in polymer matrices should relate
closely to the dispersion kinetics of nanoparticles [13]. The
dynamics of nanoparticles in polymer melts, however, has
drawn relatively less attention. The translational and rotational
diffusion of nanoparticles is also critical to the development of
self-healing materials [14] and provides rheological informa-
tion [15] on various length scales [16–18]. In this work, we per-
form molecular dynamics simulations in order to investigate
the translational and rotational diffusion of a single nanopar-
ticle, especially a nanorod, in unentangled polymer melts.

Stokes-Einstein (SE) and Stokes-Einstein-Debye (SED)
relations describe the translational and rotational diffusion
of nanoparticles, respectively, in polymers above the glass
transition temperature (Tg) [19]. Both relations suggest that
the translational diffusion coefficient (DT ) and the rotational
diffusion coefficient (DR) of nanoparticles should be propor-
tional to T/η, where T and η are temperature and polymer
viscosity, respectively. There have been, however, reports that
the SE relation breaks down depending on either T or the size
of nanoparticles [20]. For example, DT of cadmium selenide
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nanoparticles was about 200 times faster than predicted
by the SE relation when the nanoparticle size was smaller
than the entanglement mesh [21]. Other experiments illustrated
that, as T approached Tg , DT and DR showed different
temperature dependencies. Recent theoretical and simulation
studies illustrated systematically that the diffusion of nanopar-
ticles should be determined by the nanoparticle size (R), the
polymer size, the polymer correlation length (ξ ), and polymer
entanglements [22–24]. In our simulations we also find that
the rotational diffusion of a single nanorod is suppressed more
than the translational diffusion as the degree of polymerization
of polymer melts increases.

In case of a nonspherical nanoparticle such as a nanorod,
sufficiently long polymers may wrap the nanorod, and the
rotational and translational dynamics of the nanorod would be-
come complicated [25–30]. When the aspect ratio of nanorods
is sufficiently large, both the translational and rotational dy-
namics would decrease significantly [31]. A recent simulation
study showed that, as the aspect ratio increased from 5 to 10,
both DT and DR decreased by a factor of 30, which affected
the dispersion and aggregation kinetics significantly. In the
meantime, recent single molecule fluorescence imaging ex-
periments illustrated that in entangled F-actin filaments, actin
filaments (nonspherical particles) underwent an anisotropic
translational diffusion [32]. A rodlike virus in the nematic
phase also showed an anisotropic diffusion with a much larger
diffusion coefficient along the nematic director [33]. Even
in isotropic solutions, the translational diffusion of nanorods
showed anisotropic behaviors if the nanorod concentration
increased up to semidilute solutions [34]. In this study we
find that, even in isotropic unentangled polymer melts, the
translational diffusion is anisotropic within the translational
relaxation time. Such an anisotropic translational motion
disappears after the rotational relaxation time.

The diffusion of polymers in polymer nanocomposites also
plays critical roles in various applications and has been studied
extensively. Recent systematic studies revealed that there
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should exist a universal scaling relation for polymer diffusion
in nanocomposites in the case of spherical nanoparticles and
that the nanoparticle size, interparticle spacing, and polymer
size should play critical roles in polymer diffusion [35–40].
When carbon nanotubes (CNTs) were introduced to polymers,
the polymer diffusion showed a nonmonotonic behavior as a
function of the CNT concentration [41,42]. The addition of
carbon nanotubes decreased the polymer diffusion initially,
but the polymer diffusion coefficient increased beyond a
critical carbon nanotube concentration. It was revealed that the
polymer diffusion should be determined by the intermolecu-
lar interaction, polymer entanglement, and carbon nanotube
size [43,44].

In this paper, we employ molecular dynamics simulations
to investigate the translational and rotational dynamics of a
single nanorod in unentangled polymer melts. When polymers
are sufficiently long, DT and DR depend on the polymer chain
length (or viscosity) in different fashions. It is interesting that
the translational diffusion of the nanorod becomes anisotropic
even in unentangled polymers at the time scales of the trans-
lational relaxation time. Such an anisotropic diffusion is most
pronounced for the longest and stiffest nanorod in relatively
long polymer melts. We estimate the winding number (W ) of
a polymer around a bead of the nanorod, i.e., how much the
polymer wraps the nanorod [45]. The winding number (W )
increases with an increase in the degree of polymerization (N )
of polymers. But W is relatively insensitive to the flexibility
of the nanorod. We also estimate the total winding number (T ,
the sum of W ’s for all neighbor polymers) and the effective
winding number (S, the sum of W ’s for W � 0.5) in order
to study how several polymers may wind and influence the
nanorod simultaneously.

The rest of the paper is organized as follows. The simulation
model and methods are described in Sec. II, results are
presented and discussed in Sec. III, and a summary and
conclusions are presented in Sec. IV.

II. MODEL AND SIMULATION METHODS

Metal-based nanorods would be quite rigid while CNTs
would be more flexible. One can even tune the stiffness
and the length of CNTs either by modifying their surface
or by undergoing sonication. The various physical properties
such as the modulus of composites depend on the stiffness
of CNTs because the stiffness might influence the way a
polymer and a CNT would interact with each other. In order
to investigate nanorods of different stiffness, we model the
nanorod as a semiflexible chain of Nrod(=20) spheres of
diameter σ , which is the unit of length in this study. Two
neighbor spheres of the nanorod are bonded by employing a
harmonic potential Uh = Kh(r − r0)2, where r is the distance
between two spheres. In this study Kh = 500kBT σ−2 and
r0 = 1.3σ , where kB and T denote the Boltzmann constant
and temperature, respectively. kBT is the energy unit of this
study, i.e., kBT = 1. Between two consecutive chemical bonds
of the nanorod is a bending potential Ub = Kb(θ − θ0)2, where
θ is the angle between two chemical bonds, θ0 = π and Kb

ranges from 0 to 20. Kb is a parameter to control the stiffness of
the nanorod. The nonbonding interaction between spheres of
the nanorod is described using the Weeks-Chandler-Adersen

(WCA) potential (Unb) as follows:

Unb(r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6] + ε, r � 21/6σ,

0, r > 21/6σ,

where ε = kBT [45].
Polymers are modeled as semiflexible chains of monomers,

too. But we employ the finitely extensible non-linear elastic
(FENE) potential (UF ) to describe the chemical bonds of
monomers, i.e.,

UF (r) = −0.5Kf R2
0 ln
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)2]

+ 4ε
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)12

−
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σ

r

)6]
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where R0 = 1.5 and Kf = 30. The nonbonding interaction
between monomers of polymers is also described by the same
WCA potential (Unb). However, the interaction between a
monomer and a sphere of the nanorod is described by a
truncated and shifted Lennard-Jones potential with a cutoff
distance of 2.5σ and a well depth of kBT . Our model is
quite similar to previous computational studies [46] in various
aspects: (1) both polymers and a nanorod are modeled as
bead-spring models, (2) the diameter of beads for a nanorod
is identical to that of monomers, and (3) the harmonic
bonding potential is used to describe the nanorod. Such a
model for nanorod-polymer composites may correspond to the
polymer nanocomposites of either short CNTs or nanowires.
In some experiments the size of nanorods is comparable to
or smaller than the polymer size, which is consistent with our
model [41,42]. Our system temperature of T = 1 is well above
the glass transition temperature because both polymers and the
nanorod are diffusive in our simulation times.

Initial configurations of a single nanorod and polymers
are obtained by placing the nanorod in a cubic simulation
cell of dimension L = 50σ . Then, polymers are inserted at
random positions. If a newly inserted polymer, placed at a
random position, overlaps with preexisting molecules, i.e., the
shortest distance between beads of the polymer and preexisting
molecules is smaller than σ , the random position is discarded
and a new random position is tried. This procedure is repeated
until the number density of polymer (ρ = NNp/L3) is 0.8.
N and Np are the degree of polymerization and the number
of polymers in the simulation cell, respectively. In our study,
N and Np range from 1 to 64 and from 100 000 to 1562,
respectively. It was reported that in the case of polymer
melts with FENE chemical bond potential and Lennard-
Jones nonbonding interaction potential, the entanglement
length (Ne) is about 85. Because N < Ne in our study, we
expect that the entanglements of polymers hardly occur in
our systems [47]. Initial configurations are equilibrated in
the canonical ensemble by performing molecular dynamics
simulations until both the nanorod and polymers diffuse
translationally more than their own size; i.e., the mean-square
displacements [〈(	r)2(t)〉] of molecules are larger than the
radius of gyration R2

g of polymers and the nanorod. We employ
the LAMMPS molecular dynamics simulator to perform molec-
ular dynamics simulations. We use a Nosé-Hoover thermostat
and the velocity-Verlet integrator with a time step of 0.002.
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FIG. 1. (Color online) (a) A simulation snapshot for N = 32 and Kb = 20. A yellow molecule is the nanorod. Red polymers are ones that
wind the nanorod with the winding number W > 0.6. Grey polymers do not wrap but interact with the nanorod via nonbonding intermolecular
interactions. (b) A schematic for the estimation of the winding number W . 	φij is the angle between two vectors projected onto the surface
perpendicular to the chemical bond of the nanorod.

The number density of the nanorod is 0.8 × 10−5 and is
much smaller than that of polymers. Therefore, the presence
of a single nanorod in the system does not influence the
polymer diffusion, especially the mean-square displacements
of polymers. However, if one were to add many nanorods to the
polymer matrices, the viscosity would increase in proportion to
the intrinsic viscosity of the nanorod, which should affect both
the dynamics of nanorods and polymers. In this study, we con-
sider a limiting case of only one nanorod in polymer matrices.

Polymers in our systems are expected to follow Rouse
dynamics because polymers are too short to be entangled
significantly. We investigate the translational and rotational
diffusion of polymers by calculating the mean-square dis-
placement [〈(	r)2(t)〉] of the centers of mass of polymers
and the time correlation functions [U (t)] of the end-to-end
vectors of polymers. The translational (τpT ) and rotational
(τpR) relaxation times of polymers are estimated by using
the relations 〈(	r)2(t = τpT )〉 = R2

g of polymers and U (t =
τpR) = e−1, respectively. As expected for the Rouse dynamics,
τpT ∼ N2 and τpR ∼ N2 for N � 32 (not shown). This
suggests that polymers in our simulations should not be
entangled significantly.

We quantify how much a polymer winds the nanorod by
estimating the winding number W . For a given configuration
of the nanorod and polymers, we first find a set of neigh-
bor polymers of which the shortest distance between their
monomers and the nanorod is within a distance of 1.5σ . As
depicted in Fig. 4(a), neighbor polymers within the distance of
1.5σ form the first shell around the nanorod beads. For each
bead i of the nanorod, we obtain vectors (rij ) between the bead
and monomers of a neighbor polymer, i.e.,

ri,j = rj − ri , (2)

where rj and ri denote the position vectors of the j th
monomer of the neighbor polymer and the ith bead of the
nanorod, respectively. We project two vectors ri,j and ri,j+1 of
consecutive monomers of the neighbor polymer onto the plane
that is perpendicular to the chemical bond for the ith and the

(i + 1)th beads of the nanorod [Fig. 1(b)]. Then, the angle
(	φij ) between two projected vectors is obtained. Note that
the angle 	φij has a different sign depending on the direction
of the j th and the (j + 1)th monomers’ wind. We estimate how
much the neighbor polymer winds the nanorod by calculating
W as follows:

W = 1

2π

N−1∑
j=1

	φij . (3)

In this study, we estimate values of W only for the ten beads
at the center of the nanorod, i.e., 6 � i � 15. Figure 2 depicts
six schematic examples of monomers of a polymer that are
projected on a plane normal to the chemical bond of a nanorod
bead, and corresponding values of W . In case of the last

FIG. 2. (Color online) Six schematic examples for how a poly-
mer (red) may wind a nanorod (yellow) and corresponding winding
numbers W . Monomers of the polymer and the nanorod bead of
interest are projected onto the plane normal to the chemical bond for
the nanorod bead.
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example with W = 0, a polymer makes a circle, outside of
which the nanorod is located. In this case, the half of monomers
rotate clockwise around the nanorod while other monomers
rotate counterclockwise, resulting in 	φij ’s of different signs
and W = 0.

The total winding number (T ) is defined as the sum of all
values of W ’s of neighbor polymers for a given configuration.
The effective winding number (S) is obtained by summing
the values of W only when W � 0.5. When estimating T , all
values of W are summed even though W is small. T may
represent how much the nanorod would be wrapped by all
neighbor polymers whereas S indicates the degree of effective
wrapping with W � 0.5. We obtain the probability distribution
functions [P (W ), P (T ), and P (S)] for W , T , and S.

In order to investigate the rotational diffusion of the
nanorod, we calculate the time correlation function U (t) =
〈RE(t) · RE(0)〉/〈RE(0) · RE(0)〉, where RE(t) (=r1 − rNrod )
denotes the end-to-end vector of the nanorod at time t [48].
The rotational relaxation time τR of the nanorod is estimated
by using the relation, U (t = τR) = e−1. The translational
diffusion of the nanorod is investigated by calculating the
mean-square displacement of the center of mass of the
nanorod, 〈(	r)2(t)〉 ≡ 〈[rc(t) − rc(t = 0)]2〉, where rc(t) is
the position vector of the center of mass of the nanorod
at time t [48]. The translational diffusion coefficient DT is
obtained from DT = limt→∞〈(	r)2(t)〉/6t . We also investi-
gate the anisotropy of the translational diffusion by estimating
〈(	‖r)2(t)〉, 〈(	⊥r)2(t)〉, and A(t). 〈(	‖r)2(t)〉 and 〈(	‖r)2(t)〉
are the mean-square displacements of the nanorod in directions
parallel and perpendicular to the end-to-end vector of the
nanorod at time t = 0, respectively, i.e.,

〈(	‖r)2(t)〉 =
〈(

	rc(t) · RE(t = 0)

|RE(t = 0)|
)2

〉
, (4)

〈(	⊥r)2(t)〉 = 〈(	r)2(t)〉 − 〈(	‖r)2(t)〉, (5)

where RE(t = 0) is the end-to-end vector of the nanorod at
time t = 0. A(t) is defined as follows:

A(t) ≡ 3
〈(	‖r)2(t)〉
〈(	r)2(t)〉 − 1. (6)

A(t) allows us to quantify how much the nanorod translate
parallel to the end-to-end vector of the nanorod. When the
translational diffusion is isotropic, A(t) = 0, whereas A(t) = 2
if the nanorod would translate only in the direction parallel
to RE(t = 0). The translational relaxation time (τT ) of the
nanorod is also obtained by using the relation, 〈(	r)2(t)〉(t =
τT ) = 〈R2

g〉. Here, 〈R2
g〉 is the mean-square radius of gyration

of the nanorod.

III. RESULTS AND DISCUSSION

The persistence length (lp) of the nanorod increases sharply
with the force constant Kb of the bending potential Ub(θ ). We
estimate lp using the relation lp = σ/(1 + 〈cos θ〉), where θ

is the angle between two consecutive chemical bonds of the
nanorod [49]. As depicted in Fig. 3(a), lp increases from lp =
1.65 for Kb = 0 to lp = 41.19 for Kb = 20 in polymer melts of
N = 32. Because lp ≈ 20 for Kb ≈ 10 and the contour length
of the nanorod is only 20 (Nrod = 20), the nanorod should

FIG. 3. (Color online) Simulation results for (a) the persistence
length (lp) and (b) the mean-square end-to-end distance (RE) of a
single nanorod as a function of Kb. In this case, N = 32 and ρ = 0.8.

be quite stiff when Kb > 10. The length of the nanorod is
also characterized by the root mean-square end-to-end distance
(RE) as follows [50]:

RE =
√〈(

r1 − rNrod

)2〉
, (7)

where r1 and rNrod are the position vectors of the first and the
last beads of the nanorod. When Kb = 0, RE is only 7.9. On
the other hand, when Kb > 10, RE is much larger: around
RE ≈ 16.5.

The site-site intermolecular correlation function [gNP (r)]
between the nanorod and polymers is insensitive to the degree
of polymerization (N ) of the polymers [Fig. 4(a)]. This is
attributed to the relatively high number density (ρ = 0.8) of
the polymer melts. Regardless of N , the first shell of monomers
around beads of the nanorod forms for r � 1.5σ . On the other
hand, the site-site intermolecular correlation function [gPP (r)]
between polymers depend on the values of N , especially for
the first and second peak heights. Those peak heights decrease
with an increase in N because two monomers of different
chains are less likely to contact each other for longer polymers.

The translational and rotational diffusion of the nanorod
slow down as N increases. The slow-down of the diffusion
coefficient may be attributed mainly to the increase in viscosity
(η) of polymer melts with the degree of polymerization N .
Figure 5 depicts both 〈(	r)2(t)〉 and U (t) of the nanorod for
Kb = 20 and various values of N . The translational diffusion
of the nanorod reaches the Fickian diffusion regime within
our simulation times for all values of N , i.e., 〈(	r)2(t)〉 ∼ t1.
〈(	r)2(t)〉 decreases with an increase in N but does not
decrease much from N = 32 to N = 64. On the other hand,
U (t) decays more slowly as N increases from 1 to 64.

FIG. 4. (Color online) (a) The site-site intermolecular correlation
functions [gNP (r)] between the nanorod and polymers and (b) site-site
intermolecular correlation functions [gPP (r)] between polymers.
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FIG. 5. (Color online) (a) 〈(	r)2(t)〉 and (b) U (t) of the nanorod
in polymer melts for Kb = 20 and different values of N.

Note that the abscissa has a logarithmic scale in Fig. 5(b).
Figures 6(a) and 6(b) depict the translational diffusion
coefficient (DT ) and the translational and rotational relaxation
times (τT and τR). DT decreases with an increase in N . When
N � 32, DT decreases with N slightly more slowly than
expected by the Stokes-Einstein relation, i.e., DT ∼ N−0.71.
But in the case of N = 64 the translational diffusion is much
faster than expected by the Stokes-Einstein relation. Such a
change in DT is reflected in the translational relaxation time
τT [Fig. 6(b)]. On the other hand, τR increases with N more
significantly. τR increases by a factor of 17.7 from N = 1 to
64 while τT increases only by a factor of 12.1. Comparing the
relative translational and rotational relaxation times, the
translational diffusion slows down less significantly than
the rotational diffusion, thus decoupling the translational
and rotational diffusion of the nanorod even in unentangled
polymer melts. Such decoupling might be attributed to the
anisotropic nature of the translational motion of the nanorod.
As will be discussed below, the translational diffusion of
the nanorod becomes significantly anisotropic, especially
in polymer melts of N = 64. This implies that the nanorod
would experience different drag forces depending on whether
the nanorod translates parallel or perpendicular to the
end-to-end vector of the nanorod. The structural and dynamic
anisotropies intrinsic in the nanorod may complicate its
translational diffusion behavior.

For a given polymer length (N ), the translational diffusion
of the nanorod is relatively less dependent on its flexibility
than the rotational diffusion. Figure 7 depicts 〈(	r)2(t)〉 and
U (t) for N = 32 and various values of Kb. The rotational
relaxation of the nanorod slows down with an increase in Kb.

FIG. 6. (Color online) (a) The translational diffusion coefficient
DT and (b) relative relaxation times (τT /τT,N=1 and τR/τR,N=1) of
the nanorod in polymer melts for Kb = 20 and different values of N .
τT,N=1 and τR,N=1 are the translational and rotational relaxation times
of the nanorod for N = 1.

FIG. 7. (Color online) (a) 〈(	r)2(t)〉 and (b) U (t) of the nanorod
in polymer melts for N = 32 and different values of Kb.

The rotational diffusion slows down more with Kb than the
translational diffusion because more energy would be required
for a stiffer (therefore longer and more anisotropic) nanorod
to change its conformation and rotate in dense polymer melts.

Longer polymers are more likely to wind the nanorod. In
our simulations, polymers of N � 32 hardly wind the nanorod.
Only the longest polymers of N = 64 are capable of winding
the nanorod to some extent. Figure 8 depicts the probability
distribution function P (W ) for different values of Kb and N .
As shown in Fig. 8(a), for a given value of Kb = 20, only when
N = 64 are polymers able to wind the nanorod more than
halfway around the nanorod perimeter, i.e., W � 0.5. When
N < 64, P (W ) hardly changes with the nanorod stiffness
(Kb). When N = 64, a more flexible nanorod is wrapped
more efficiently by polymers. But the difference in P (W )’s
for different Kb is within our simulation errors.

The winding number (W ) and its probability distribution
[P (W )] provide information on how a single neighbor polymer
winds the nanorod. Because there are many neighbor polymers
around the nanorod in dense polymer melts, a few neighbor
polymers, at least in principle, may wind the nanorod simulta-
neously. When investigating the nanorod dynamics, therefore,
it would be necessary to consider the overall effects of multiple
neighbor polymers that wind the nanorod at the same time.
We investigate the total winding number (T ) and the effective
winding number (S). T is defined as the sum of all winding
numbers W ’s for all neighbor polymers at a given time (or a
given configuration). S is the sum of values of only W ’s that are
larger than 0.5. Therefore, when estimating S, we count only
polymers that wind the nanorod effectively with W � 0.5.

As depicted in Fig. 9, P (T )’s for N = 8, 32, and 64 are quite
similar to each other, indicating that the overall sum of W ’s is
not sensitive to N . This would be partially attributed to the fact

FIG. 8. (Color online) The probability distribution functions
[P (W )] of the winding number W for (a) Kb = 20 and (b) N = 64.
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FIG. 9. (Color online) (a) The probability distribution functions
P (T ) of the total winding number T and (b) the probability
distribution functions P (S) of the effective winding number S.
Kb = 20 and N ranges from 2 to 64.

that gNP (r)’s are insensitive to N and there are similar numbers
of neighbor monomers per nanorod bead regardless of N . In
the mean time, P (S) for N = 64 shows a pronounced increase
for S � 0.5 compared to other values of N . This suggests that
in the case of N = 64 there are several polymers that wind the
nanorod effectively with W � 0.5. The values of S reach up to
5.1 for N = 64. Considering that W reaches usually up to 0.6
for N = 64 [in the case of Kb = 20, as in Fig. 8(b)], there may
be some instances when up to six neighbor polymers wind the
nanorod effectively at the same time. For example, as shown
in Fig. 10, the nanorod (yellow) is wrapped by six neighbor
polymers with W � 0.5. Winding numbers for red, orange,
green, pink, purple, and ice-blue neighbor polymers are 0.93,
0.56, 0.94, 0.71, 0.81, and 0.56, respectively, thus S = 4.51
in this particular case. This clearly shows that, even though
large values of S are still scarce, the anisotropic nanorod may
be wrapped by many neighbor polymers simultaneously, thus
making the dynamics of the nanorod a complicated many-body
problem.

The nanorod tends to translate in an anisotropic fashion
as either the degree of polymerization N increases or the
nanorod becomes stiffer (with larger Kb). Figure 11(a) depicts

FIG. 10. (Color online) A simulation snapshot for a single
nanorod (yellow) in polymers melts of N = 64. Red, orange, green,
pink, purple, and ice-blue neighbor polymers wind the nanorod at the
same time with winding numbers W = 0.93, 0.56, 0.94, 0.71, 0.81,
and 0.56, respectively. All other polymers are colored in grey.

FIG. 11. (Color online) A(t) of the nanorod for (a) Kb = 20 and
different values of N and (b) N = 32 and different values of Kb.

A(t) for Kb = 20. A larger value of A(t) indicates that the
nanorod undergoes translational motion more in the direction
of an end-to-end vector. Because multiple polymers may
wrap the nanorod effectively when N � 64, A(t) increases
significantly for long chains with N � 64. For Kb = 20 and
N = 64, A(t) shows a maximum at around t = tmax ≈ 104. Be-
cause tmax < τT (≈1.8 × 104) < τR(≈8 × 104), the anisotropy
in translational motion of the nanorod is maximized before
the nanorod translates about its own size (Rg) and well
before the rotational relaxation decays completely. However,
when t ≈ 105 > τR > τT , A(t) decreases quickly, implying
that the anisotropy in translational motion goes away at such
time scales. As depicted in Fig. 11(b), the anisotropy in
the translational motion increases quickly with the nanorod
stiffness, or Kb. This suggests that the anisotropic translation
dominates when a stiffer nanorod is wrapped by long polymers.

In order to investigate whether the anisotropic translational
diffusion of the nanorod would relate to polymers winding
the nanorod, we estimate the conformational correlation
between neighbor polymers and the nanorod. We calculate the
orientational correlation coefficient (S2) between the end-to-
end vectors of the nanorod and the local segment of a polymer.
We define Nseg consecutive monomers of the single polymer
as the local segment of size Nseg. All Nseg monomers are
connected via Nseg − 1 chemical bonds. There are, therefore,
N − Nseg + 1 local segments of size Nseg for each polymer.
S2 ≡ 1

2 (3〈cos2(θ ) − 1〉), where θ is the angle between two
end-to-end vectors of the nanorod and the local segment. S2 is
averaged over all neighbor polymers and configurations. When
the orientation of the local segment is parallel, perpendicular,
and uncorrelated to that of the nanorod, S2 = 1, −0.5, and
0, respectively. In Fig. 12(a), we plot S2 as a function of the
shortest distance (rmin) between the local segment and the
nanorod. For large values of rmin, S2 = 0 because there is no
orientational correlation between the nanorod and the local
segment. As rmin decreases, on the other hand, S2 becomes
negative, implying that local segments of polymers around the
nanorod are likely to align perpendicular to the nanorod. For
smaller local segments, the decrease in S2 for small values of
rmin is even more pronounced. Such a negative value of S2

arises because the local segment winds the nanorod, which
is consistent with simulation snapshots (Fig. 10). Because
the local segment aligns perpendicular to the nanorod and
winds the nanorod, the translational motion of the nanorod
is restricted in the direction perpendicular to its end-to-end
vector. In other words, while local segments of polymers
wind the nanorod, the nanorod can translate only parallel
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FIG. 12. (Color online) (a) The orientational correlation coefficient (S2) between two end-to-end vectors of both the nanorod and the local
segment of polymers as a function of the shortest distance (rmin) between the local segment and the nanorod. (b) The time-dependent diffusion
coefficient 〈D(t ; r)〉 as a function of time t for different initial shortest distance r between the monomer and the nanorod for N = 64 and
Kb = 20. (c) 〈D(t ; r)〉 of monomers during time t = 96 as a function of the initial shortest distance r .

to its end-to-end vector, thus making the nanorod diffusion
anisotropic at certain time scales. Considering that multiple
polymers of N � 64 may wind the nanorod at the same time
(Fig. 10), the nanorod diffusion should be restricted more
significantly in the perpendicular direction for longer polymers
and the anisotropy in the nanorod diffusion should be more
pronounced for the nanorod in longer polymer melts.

We also investigate the dynamics of monomers near the
nanorod by calculating the time-dependent diffusion coeffi-
cient 〈D(t ; r)〉 ≡ 〈(	r)2(t ; r)〉, where 	r(t ; r) is the displace-
ment vector of a monomer during time t , and the shortest
distance the monomer and the nanorod is r initially [51,52].
Figure 12(b) depicts 〈D(t ; r)〉 as functions of the duration t for
different values of the shortest distance r between a monomer
and the nanorod. 〈D(t ; r)〉 is smaller for smaller values of
r , implying that the monomers at the interface between the
nanorod and polymers would be less mobile than monomers
far away from the nanorod. As t increases, the correlation
between the nanorod and polymers becomes less significant
and 〈D(t ; r)〉 also becomes less sensitive to the values of r . We
also plot 〈D(t ; r)〉 as a function of r for a given value of t = 96
[Fig. 12(c)]. Not surprisingly, as N increases from 8 to 64, the
mobility decreases for all ranges of r . This may be attributed to
the fact that the longer polymer diffusion becomes significantly
slower. Figure 12(c) shows clearly that monomers become less
mobile as monomers approach the nanorod. Such a slow-down
of monomers at the interface may result from both (1) the
attractive interaction between the nanorod and monomers and
(2) the winding of monomers around the nanorod. As discussed
above, there is a stronger correlation between the nanorod
orientation and the local segment, which also might affect the
slow-down of monomers at the interface.

IV. SUMMARY AND CONCLUSIONS

The dynamics of a single nanorod in polymer melts is
investigated by performing molecular dynamics simulations

and investigating how much polymers may wind the nanorod.
When N increases from 1 to 64, τT and τR increase by factors of
10 and 17.7, respectively. This shows that the rotational motion
of the nanorod is hindered more than the translational motion.
However, the translational diffusion becomes anisotropic at
time scales shorter than τT . The translational anisotropy is
maximized for the stiffest nanorod and the longest polymers.
At time scales longer than τR , the anisotropy of the transla-
tional motion vanishes. Note, however, that the translational
diffusion enters a Fickian regime even when the translational
diffusion is anisotropic, i.e., 〈(	r)2(t)〉 ∼ t1. For example, in
the case of (N,Kb) = (64,20), the translational diffusion of the
nanorod becomes the most anisotropic at t ≈ 104 [Fig. 11(a)],
〈(	r)2(t)〉 ∼ t1 at t ≈ 104 [Fig. 7(a)].

Our simulations are performed only for relatively short
polymers and a nanorod. As N increases beyond a certain
value, polymers begin to entangle one another, which should
affect the nanorod dynamics. It is well known that the
translational diffusion of a nanoparticle changes qualitatively
depending on the polymer correlation length (or the entangle-
ment mesh size). Therefore, investigating the translational and
rotational dynamics of the nanorod in entangled polymer melts
is going to be a important topic in future studies.
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