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Colloidal interactions in a homeotropic nematic cell with different elastic constants
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We propose a theoretical description of the interaction mediated by a nematic-liquid-crystal host with different
Frank elastic constants. A general expression for the energy of such an interaction between colloidal particles of
arbitrary size and shape suspended in a homeotropic cell is obtained. In the cells of large thickness, the presented
potential converges to that found previously for small particles in the nematic bulk. In general, our results confirm
the validity of the one-constant approximation for weakly elastically anisotropic nematic liquid crystals. For
nematics with a high splay-to-bend ratio we predict a larger range of the interaction. Using the dependence of
this range on the elastic constants, we show that there exists a qualitative similarity between the interactions in
a nematic and in a smectic-A phase. It manifests itself, in particular, in a decrease of the angle between a chain
of quadrupole particles and the uniform far-field director across a nematic–smectic-A phase transition. We also
demonstrate that the anisotropy of the elastic constants can lead to the formation of thermodynamically stable
linear superstructures of asymmetric particles (elastic monopoles) with large, compared to usual dipole chains,
interparticle distances.
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I. INTRODUCTION

Liquid-crystal colloids are of considerable interest because
of their unusual properties arising from a specific type of
interaction between colloidal particles [1]. Particles suspended
in such a medium distort its orientational ordering. An overlap
of the distortions, produced by different particles, gives rise to
the effective colloidal interactions, which do not occur in usual
isotropic hosts [2]. These anisotropic long-range interactions
in nematic liquid crystals result in various superstructures such
as linear [2,3] and inclined chains [4–6] of beads. One can
observe a rich variety of two-dimensional crystals formed
by colloidal particles suspended in a thin nematic cell or at
a nematic-air interface [7–9]. These structures, as well as
three-dimensional colloidal crystals [10], are very sensitive to
external electromagnetic fields [10–12] and might be utilized
as unique composite materials [13].

An understanding of the interactions, mediated by a liquid-
crystal medium, is essential for controlling and predicting
properties and behavior of composite materials based on
colloidal systems of this type. The vast majority of approaches
toward an analytical description of the elastic interactions
in a nematic host are based on the so-called one-constant
approximation, which assumes equal splay K1, twist K2, and
bend K3 elastic constants [14–18]. Despite minor differences,
they all employ the fact that under such an assumption
small director deformations are governed by the Laplace
equation and therefore can be expanded in multipoles. This
makes it possible to greatly simplify the problem via a
representation of the particle by an effective pointlike source
of the deformations. Some of these approaches [14,18] have
been confirmed experimentally in both bulk [19–21] and
confined [22,23] liquid crystals. However, those experiments
were carried out with quite typical calamitic nematics, in which
the elastic constants are indeed comparable.

At the same time, a growing interest in chromonic (with
the twist constant being an order of magnitude smaller than

the splay and bend [24]) and bent-core nematics (where the
splay constant is a few times higher that the bend [25])
raises a question about the role of the elastic constants in
the interactions mediated by a liquid-crystal host. It has to be
admitted that other effects besides the elasticity (particularly
flexoelectricity and possible chirality) can contribute to the in-
teractions between colloids in such media. Those mechanisms
lie beyond the scope of the present study, which is restricted
to only the interactions arising from the elastic properties
of the host. A similar problem was considered in [26], but
the authors focused on the case of small particles embedded
in an infinite nematic liquid crystal. In practice, though, the
host medium must be always confined. Theoretical [18,27,28]
as well as experimental [22,23] studies demonstrate that the
presence of confining surfaces can significantly influence the
interaction potential. Therefore, in this paper we propose a
theory of the elastic interactions between colloidal particles of
arbitrary shape and size suspended in a homeotropic nematic
cell, a commonly used experimental setup consisting of a liquid
crystal confined by two parallel planes with perpendicular
alignment of the director.

II. EFFECTIVE FREE-ENERGY FUNCTIONAL

The bulk free energy of a nematic liquid crystal can be
written in the well-known Frank form

Fbulk = 1

2

∫
dr{K1(div n)2+K2(n · rot n)2+K3(n × rot n)2},

(1)

where n = n(r) is the director field and K1, K2, and K3 are the
splay, twist, and bend elastic constants, respectively. In order
to simplify this functional the one-constant approximation
K1 = K2 = K3 = K is commonly adopted. Under such an
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assumption, the bulk energy reduces to

F̃bulk = K

2

∫
dr{(div n)2 + (rot n)2}. (2)

Due to a preferred alignment of the director at the surface of
a colloidal particle, the bulk energy has to be supplemented
by a surface term. The latter is usually taken in the form of
Rapini-Papoular energy

Fsurf =
∮

ds W (s)[ν(s) · n(s)]2, (3)

where W is the anchoring constant and ν is the outer normal
at point s on the particle surface. As a result of competition
between the bulk and surface energies, the director deviates
from its homogeneous ground state n0 = (0,0,1). When the
deviations are small, i.e., n(r) ≈ (nx,ny,1), one can further
simplify the free energy (2) to the harmonic form

F̃ har
bulk = K

2

∫
dr

∑
μ=x,y

(∇nμ · ∇nμ)2. (4)

The Euler-Lagrange equations arising from (4) are of Laplace
type �nμ = 0 and their solutions at large distances can be
expanded in multipoles

nμ(r) = q̃μ

r
+ p̃α

μrα

r3
+ Q̃αβ

μ rαrβ

r5
+ · · · , (5)

where α and β take values x, y, and z (summation over repeated
greek indices is implied hereafter). Quantities q̃μ, p̃α

μ, and Q̃αβ
μ ,

called, respectively, elastic monopole, dipole, and quadrupole
moments, determine the director field far from the particle
surface and, consequently, the long-range interactions between
the particles (in case we have more than one particle suspended
in a nematic host). It has been shown in [14] that one can easily
derive these interactions by replacing the surface energy (3) of
every particle with an effective pointlike source of the director
distortions. In particular, for a system of N axially symmetric
particles instead of the total energy F̃ har

bulk + ∑N
i=1 F i

surf we have
F̃ har

bulk + F AS
source, where

F AS
source = −4πK

∫
dr[P̃ (r)∂μnμ + C̃(r)∂z∂μnμ], (6)

with P̃ (r) = ∑N
i=1 p̃iδ(r − ri) and C̃(r) = ∑N

i=1 Q̃iδ(r − ri)
being dipole and quadrupole moment densities. Although (6)
was initially derived for an infinite nematic, it is suitable
for confined systems as well. For instance, for beads of
radius a accompanied by hyperbolic hedgehogs the multipole
moments p̃ = 2.04a2 and Q̃ = −0.72a3 provide good agree-
ment between theoretical and experimental results in a planar
nematic cell [23]. However, this approximation relies on the
electrostatic analogy rooted in (4). Therefore, it seems that the
source (6) may be not valid when dealing with the elastically
anisotropic bulk energy (1). Fortunately, for this case (in an
infinite nematic) the authors of [26] have obtained qualitatively
the same representation directly from the Rapini-Papoular
energy (3). Assuming weak anchoring (Wd/K < 1, where
d is the particle size) at the particle surface and expanding n(s)

into the Taylor series about its center they showed that
N∑

i=1

F i
surf ≈

N∑
i=1

{
αi

zμnμ + βi
zμα∂αnμ + γ i

zμαβ∂α∂βnμ

}
, (7)

where nμ, similarly to (6), have to be taken at the center ri of the
ith particle and αzμ = 2

∮
ds Wνzνμ, βzμα = 2

∮
ds Wνzνμdα ,

and γzμαβ = ∮
ds Wνzνμdαdβ with d = s − ri . These quanti-

ties αzμ, βzμα , and γzμαβ are not elastic multipole moments per
se, but they obey the same symmetry requirements [28,29]. On
these grounds, we may conclude that for our case the effective
source of the distortions can be written as a generalization of
(6) on colloidal particles of arbitrary shape

Fsource = −4πK

∫
dr

[
qμ(r)nμ + pα

μ(r)∂αnμ

+Qαβ
μ (r)∂α∂βnμ

]
, (8)

where K is an effective elastic constant that allows the
elastically isotropic description of the host medium, qμ(r) =∑N

i=1 qi
μδ(r − ri), pα

μ(r) = ∑N
i=1 pα,i

μ δ(r − ri), and Qαβ
μ (r) =∑N

i=1 Qαβ,i
μ δ(r − ri). Strictly speaking, the multipole expan-

sion (5), which gives rise to the concept of the elastic
multipoles, does not minimize the anisotropic free energy
(1). Therefore, beyond the one-constant approximation Eq. (5)
should be taken as an ansatz for the director field. In the general
case, the parameters of this ansatz qμ, pα

μ, and Qαβ
μ may differ

from those found in the one-constant limit (denoted by tildes).
Nevertheless, we can still refer to these parameters as the
elastic multipoles since the interparticle interaction, as will
be seen below, exhibits an appropriate power-law behavior
despite the anisotropy of the elastic constants.

It is worth noting that within the one-constant approxi-
mation K = K1 = K2 = K3, but beyond it the exact value
of K is in fact unknown. This means that the choice of K

influences the values of all multipole moments (qμ,pα
μ,Qαβ

μ )
corresponding to a given particle. If we fix (qμ,pα

μ,Qαβ
μ ), then

K can be found as a fitting parameter and vice versa. The only
way for unambiguous experimental measurement of the values
of (qμ,pα

μ,Qαβ
μ ) is by light scattering on the director field n(r).

III. PAIRWISE INTERACTIONS

Let us now address the geometry of our problem. The
system under consideration is confined by two parallel planes
with normal boundary conditions, that is, nμ(z = 0) = nμ(z =
L) = 0, where L stands for the distance between the planes.
To satisfy these constraints, we seek nμ(r) in the form

nμ(r) = 1

4π2

∫
d2q⊥

2

L

∞∑
m=1

nμ(q)eiq⊥·r⊥ sin qzz, (9)

where qz = mπ
L

, q = (q⊥,qz), and r = (r⊥,z). To second order
in small director distortions nx and ny the bulk free energy (1)
transforms into

Fbulk = 1

4π2L

∫
d2q⊥

∞∑
m=1

{K1|nx(q)qx + ny(q)qy |2

+K2|nx(q)qy − ny(q)qx |2

+K3q
2
z [|nx(q)|2 + |ny(q)|2]}. (10)
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FIG. 1. (Color online) Coordinate system used in this study. For
a given wave vector q the basis (e1,e2,e3) is rotated with respect to
the fixed basis (ex,ey,ez) by the angle φq around the axis ez‖e3, which
is normal to the plane of the drawing, in such a way that e1‖q⊥.

It follows from (10) that the distortion profiles nx(r) and ny(r),
which minimize the total energy Ftot = Fbulk + Fsource, obey a
system of two coupled equations δ

δnμ
Ftot = 0. A simple way

to decouple them is to introduce an orthogonal basis (e1,e2,e3)
associated with the wave vectors q. For a given q the basis
(e1,e2,e3) is rotated with respect to the (ex,ey,ez) by the
angle φq = arccos (ex · q⊥/q⊥) around the axis ez‖e3. From
the sketch in Fig. 1 we can easily find that

nx = n1 cos φq − n2 sin φq,
(11)

ny = n1 sin φq + n2 cos φq.

Then Fbulk reduces to

Fbulk = 1

4π2L

∫
d2q⊥

∞∑
m=1

{|n1(q)|2(K1q
2
⊥ + K3q

2
z

)
+ |n2(q)|2(K2q

2
⊥ + K3q

2
z

)}
. (12)

The effective part of the energy given by (8) can be expressed
in terms of n1 and n2 as well,

Fsource = −2K

πL

∫
d2q⊥

∞∑
m=1

N∑
i=1

{
N̂ i

x[n1 cos φq − n2 sin φq]

+ N̂ i
y[n1 sin φq + n2 cos φq]

}
exp[iq⊥ · ri

⊥] sin qzz
i .

(13)

For the sake of compactness we introduced the operators N̂μ =
qμ + pα

μ∂α + Qαβ
μ ∂α∂β . The superscript i denotes that N̂ i

μ is
constructed from the multipole moments of the ith particle and
acts on its coordinates ri

⊥ and zi .
Now Ftot is the sum of Fbulk and Fsource given by (12) and

(13), respectively. The Euler-Lagrange equations for n1(q) and
n2(q) are independent and their solutions are easy to find. In
particular,

n1(q) = 4πK

K1q
2
⊥ + K3q2

z

N∑
i=1

{
N̂ i

x cos φq + N̂ i
y sin φq

}
× exp[−iq⊥ · ri

⊥] sin qzz
i (14)

and

n2(q) = 4πK

K2q
2
⊥ + K3q2

z

N∑
i=1

{ − N̂ i
x sin φq + N̂ i

y cos φq
}

exp[−iq⊥ · ri
⊥] sin qzz

i . (15)

Substituting these solutions into the total energy, one sees that Ftot = ∑
i>j Uij + ∑

i U
i , where Ui is the self-energy of the ith

particle and Uij is the energy of the interaction between ith and j th particles,

Uij = −8K

L

∫
d2q⊥

∞∑
m=1

{
N̂ i

xN̂
j
x

[
cos2 φq

κ1q
2
⊥ + κ3q2

z

+ sin2 φq

κ2q
2
⊥ + κ3q2

z

]
+ N̂ i

yN̂
j
y

[
sin2 φq

κ1q
2
⊥ + κ3q2

z

+ cos2 φq

κ2q
2
⊥ + κ3q2

z

]

+[
N̂ i

xN̂
j
y + N̂ i

yN̂
j
x

][ sin φq cos φq

κ1q
2
⊥ + κ3q2

z

− sin φq cos φq

κ2q
2
⊥ + κ3q2

z

]}
exp[−iq⊥ · (ri

⊥ − rj

⊥)] sin qzz
i sin qzz

j . (16)

Hereafter κs = Ks/K , s = 1,2,3. The integration is quite straightforward and yields

Uij = −16πK

L

∞∑
m=1

{
N̂ i

xN̂
j
x

[
1

κ1
K0

(
ρm√
κ1/κ3

)
cos2 ϕ + 1

κ1
K1

(
ρm√
κ1/κ3

)√
κ1/κ3

ρm

cos 2ϕ

+ 1

κ2
K0

(
ρm√
κ2/κ3

)
sin2 ϕ − 1

κ2
K1

(
ρm√
κ2/κ3

)√
κ2/κ3

ρm

cos 2ϕ

]
+ N̂ i

yN̂
j
y

[
1

κ1
K0

(
ρm√
κ1/κ3

)
sin2 ϕ − 1

κ1
K1

(
ρm√
κ1/κ3

)√
κ1/κ3

ρm

cos 2ϕ

+ 1

κ2
K0

(
ρm√
κ2/κ3

)
cos2 ϕ + 1

κ2
K1

(
ρm√
κ2/κ3

)√
κ2/κ3

ρm

cos 2ϕ

]
+ [

N̂ i
xN̂

j
y + N̂j

x N̂ i
y

][ 1

κ1
K2

(
ρm√
κ1/κ3

)
− 1

κ2
K2

(
ρm√
κ2/κ3

)]
sin ϕ cos ϕ

}
sin

mπzi

L
sin

mπzj

L
, (17)

042505-3



O. M. TOVKACH, S. B. CHERNYSHUK, AND B. I. LEV PHYSICAL REVIEW E 92, 042505 (2015)

where ϕ denotes the angle between ρ = ri
⊥ − rj

⊥ and ex , Kn(x) is the modified Bessel function of the second kind, and
ρm = mπρ/L. This general expression describes the interaction between arbitrary colloidal particles suspended in a homeotropic
nematic cell with different elastic constants. If we replace qμ, pα

μ, and Qαβ
μ in (17) by −αzμ/4πK , −βzμα/4πK , and −γzμαβ/4πK ,

respectively, then at short distances Eq. (17) will transform into that found in [26] for an infinite nematic medium

Uij,0 = −4πK

{
N̂ i

xN̂
j
x

[
1√
κ1

cos2 ϕ√
κ3ρ2 + κ1l2

− cos 2ϕ√
κ1

√
κ3ρ2 + κ1l2 −

√
κ1l2

κ3ρ2

+ 1√
κ2

sin2 ϕ√
κ3ρ2 + κ2l2

+ cos 2ϕ√
κ2

√
κ3ρ2 + κ2l2 −

√
κ2l2

κ3ρ2

]

+N̂ i
yN̂

j
y

[
1√
κ1

sin2 ϕ√
κ3ρ2 + κ1l2

+ cos 2ϕ√
κ1

√
κ3ρ2+κ1l2 −

√
κ1l2

κ3ρ2
+ 1√

κ2

cos2 ϕ√
κ3ρ2 + κ2l2

− cos 2ϕ√
κ2

√
κ3ρ2 + κ2l2−

√
κ2l2

κ3ρ2

]

+ [
N̂ i

xN̂
j
y + N̂j

x N̂ i
y

][ 1√
κ1

(
√

κ3ρ2 + κ1l2 −
√

κ1l2)2

κ3ρ2
√

κ3ρ2 + κ1l2
− 1√

κ2

(
√

κ3ρ2 + κ2l2 −
√

κ2l2)2

κ3ρ2
√

κ3ρ2 + κ2l2

]
sin ϕ cos ϕ

}
, (18)

where l = |z − z′|. Within the one-constant approximation K1 = K2 = K3 = K , Eq. (18) reduces to the well-known multipole
interactions Ũ ij,0 = −4πKN̂i

μN̂
j
μ|ri − rj |−1 considered in [14,15,29].

Before proceeding to a detailed analysis of (17), suppose that we have only two particles in the cell. Then we can omit
superscripts i and j and use primed and nonprimed quantities instead, i.e., N̂ i

μ → N̂μ, N̂
j
μ → N̂ ′

μ, etc.

A. Monopole interaction

Colloidal particles without both the symmetry axis parallel to n0 and the symmetry plane normal to n0 possess monopole
moments [28,29]. Assume for simplicity qy = q ′

y = 0, qx = q, and q ′
x = q ′ (this means that the particles are in addition symmetric

with respect to the xz plane). Suppose furthermore that qq ′ < 0. Below we will see that namely the case of the monopoles of
opposite sign is of more interest. Then the energy of the corresponding monopole-monopole interaction in the bulk host U 0

qq

reads [see (18)]

U 0
qq = −2πKqq ′

[
1√
κ1

1√
κ3ρ2 + κ1l2

− cos 2ϕ√
κ1

(
√

κ3ρ2 + κ1l2 −
√

κ1l2)2

κ3ρ2
√

κ3ρ2 + κ1l2

+ 1√
κ2

1√
κ3ρ2 + κ2l2

+ cos 2ϕ√
κ2

(
√

κ3ρ2 + κ2l2 −
√

κ2l2)2

κ3ρ2
√

κ3ρ2 + κ2l2

]
. (19)

Within the one-constant approximation (κs = 1) Eq. (19) yields a Coulomb-like interaction between elastic monopoles Ũ 0
qq =

−4πKq̃q̃ ′/r , where r =
√

ρ2 + l2 = |r − r′|.
When the host medium is confined to the cell, the energy of the monopole-monopole interaction takes the form

Uqq = −16πKqq ′

L

∞∑
m=1

[
1

κ1
K0

(
ρm√
κ1/κ3

)
cos2 ϕ + 1

κ1
K1

(
ρm√
κ1/κ3

)√
κ1/κ3

ρm

cos 2ϕ

+ 1

κ2
K0

(
ρm√
κ2/κ3

)
sin2 ϕ − 1

κ2
K1

(
ρm√
κ2/κ3

)√
κ2/κ3

ρm

cos 2ϕ

]
sin

mπz

L
sin

mπz′

L
, (20)

which reduces to

Ũqq = −16πKq̃q̃ ′

L

∞∑
m=1

sin
mπz

L
sin

mπz′

L
K0(ρm) (21)

in the one-constant limit (κs = 1). Comparing Uqq and Ũqq

we see a substantial difference. While the latter is isotropic
throughout the planes z = z′, the former is not. Indeed, at short
distances (ρ 	 √

κ1,2/κ3L) between the particles located in
the middle of the cell (z = z′ = L/2) the interaction (20), as
well as (21), is repulsive Uqq = − 4πKqq ′

ρ
√

κ3
( cos2 ϕ√

κ2
+ sin2 ϕ√

κ1
) > 0

[see (19) with l = 0], but its isolines are not circles Moreover,

when the distance increases two zones of attraction appear
[see Fig. 2(a)]. They are localized either along the x axis (if
κ1 < κ2) or along the y (if κ1 > κ2). In usual nematics, e.g.,
4-pentyl-4′-cyanobiphenyl (5CB), κ1/κ2 ≈ 1.5 and the at-
traction is strongly suppressed by the cell walls (so-called
confinement effect [22]). However, the greater the difference
between κ1 and κ2, the closer to the particle the attraction zones
are and the larger κ1/κ3 or κ2/κ3, the slower the interaction
decays with ρ. Say for definiteness K1 = 3.1 pN, K2 = 0.31
pN, and K3 = 0.88 pN (these values were reported in [25] for
4-chloro-1,3-phenylene bis 4-[4′-(9-decenyloxy)benzoyloxy]
benzoate (C1Pbis10BB) in a nematic phase). Under these
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FIG. 2. (Color online) Interaction between two monopoles qx and q ′
x of opposite sign. The particles are placed in the middle of the cell

(z = z′ = L/2). (a) Map of the interaction. Arrow lines indicate the local direction of the force F = −∇Uqq. The shaded region is a repulsion
zone ∂Uqq

∂ρ
< 0. The stars indicate minima of the energy. Here κ1/κ3 = 3.5 and κ2/κ3 = 0.35 [25]. (b) Energy of the interaction along the y axis

(ϕ = π/2). Here qx = q ′
x = d , d = 3 μm, L = 12 μm, K3 = 0.88 pN, and K = 1.4 pN, the average elastic constant of C1Pbis10BB [25].

conditions, the interaction between the monopoles of opposite
sign is attractive along the y axis when ρ � 0.5L. In order to
estimate the energy in that region, let us assume by analogy
with [14] that q = q ′ ≈ d, where d = 3 μm is the particles
size, and take L = 12 μm and K = (K1 + K2 + K3)/3. This
rough estimate shows that the attraction is quite strong; its
energy is of the order of 1000 kT [see solid line in Fig. 2(b)].
Thus, it might result in the formation of linear chains with
large separation between the particles.

B. Dipole interaction

Consider now the interaction between colloidal inclusions
with axially symmetric director configurations in their vicinity.
Widely used representatives of such colloids are spherical
particles with homeotropic anchoring. When the radius of
the particle a is large enough, a topological defect called
a hyperbolic hedgehog appears in its vicinity [1]. Such a
configuration has the symmetry of a dipole aligned along n0.
It is characterized by equal elastic moments px

x = p
y
y = p.

Consequently, N̂μ = p∂μ, N̂ ′
μ = p′∂ ′

μ, and the energy of the
interaction in the bulk nematic can be written as [see (18)]

U 0
pp = 4πKpp′

r3

κ3√
κ1

κ3 sin2 θ − 2κ1 cos2 θ

(κ3 sin2 θ + κ1 cos2 θ )5/2
, (22)

where θ is the angle between r = r − r′ and n0. As-
suming κs = 1, one can readily transform U 0

pp to Ũ 0
pp =

4πKp̃p̃′(1 − 3 cos2 θ )/r3, which is well known from [14].
It follows from (22) that the energies of the interaction
along the director (θ = 0) and in the perpendicular direction
(θ = π/2) depend differently on the bend constant. Indeed,
U 0

pp(θ = 0) = −8πpp′(K/K1)2|z − z′|−3K3, while U 0
pp(θ =

π/2) = 4πpp′K2K
−1/2
1 ρ−3K

−1/2
3 . Suppose that K3 is much

larger than K1. This is the case near a nematic–smectic-A
phase transition, for instance. Under these circumstances, bend
(and twist) deformations are energetically unfavorable and
the elasticity of the liquid crystal is defined primarily by the
splay constant. That is, K ≈ K1 near the transition point. This
means in particular that we may expect a strengthening of
the interaction along n0 and weakening in the perpendicular
directions upon approaching a nematic–smectic-A phase
transition. It is interesting to note that such a reduction of
the interaction potential to one dimension above the transition
point is qualitatively consistent with its behavior below TN-Sm,
in a smectic-A phase. References [30,31] showed that in a
lamellar medium the interaction between two elastic dipoles
p̄ and p̄′,

U sm
pp = −πK1p̄p̄′

(
32

l3
− 16ρ2

λl4
+ ρ4

λ2l5

)
e−ρ2/4λl, (23)

where λ = √
K1/B and B is the compression modulus,

vanishes exponentially along the layers (z → z′) and scales
as 1/|z − z′|3 along the normal to the layers [32].

If the particles with hedgehogs are placed in a homeotropic
cell, the energy (17) takes a surprisingly simple form

Upp = 16πKpp′

L3

κ3

κ2
1

∞∑
m=1

m2π2 sin
mπz

L

× sin
mπz′

L
K0

(
ρm√
κ1/κ3

)
, (24)

which does not contain the twist constant K2. This sounds
reasonable since the director field around such an elastic dipole
has no azimuthal component. Equation (24), as well as its
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FIG. 3. Dimensionless energy of the dipole-dipole interaction
Vpp = UppL

3κ2
1 /16πKpp′κ3 as a function of the particle separation ρ.

At short distances ρ � L
√

κ1/κ3 the energy Upp ∝ 1/ρ3. When ρ �
L

√
κ1/κ3 the interaction decays exponentially. Note that, although

the curve κ1 > κ3 lies above the others, the corresponding energy of
the interaction is not necessarily higher as it depends on the absolute
values of the elastic constants.

one-constant counterpart [27]

Ũpp = 16πKp̃p̃′

L3

∞∑
m=1

m2π2 sin
mπz

L
sin

mπz′

L
K0(ρm),

predicts a completely isotropic interaction between the par-
ticles located in the middle of the cell (z = z′ = L/2).
Namely, parallel dipoles repel and antiparallel dipoles attract.
A common feature of the elastic interaction in nematic cells
is its confinement discovered experimentally in [22]. Due to
the rigid director orientation on the cell plates, the interaction
decays exponentially when the interparticle distance ρ exceeds
a threshold value ρmax ∼ L. Formally, this is because of
the asymptotic behavior of the modified Bessel functions
Kn(x � 1) ∝ e−x/

√
x. One sees from (24) that ρmax depends

on the ratio
√

K1/K3. In typical calamitic nematics K1 < K3

and the range of the interaction is about
√

K1/K3 times smaller
than that predicted by the one-constant theory [27]. If, to the
contrary, K1 > K3, the region of the interaction will be about√

K1/K3 times larger (see Fig. 3).
It should also be remarked that in nematics with high

K1/K3 and low K2/K3 a twist transition of the elastic
dipole may occur [33,34]. Such a structural rearrangement
probably alters the elastic moments and destroys the axial
symmetry of the dipole-dipole interaction transforming it into
the aforementioned monopole-monopole. However, this issue
requires further investigation.

C. Quadrupole interaction

Far from a spherical particle accompanied by a Saturn
ring or boojum topological defect the director field can be
described by means of the quadrupole moments Qxz

x = Q
yz
y =

Q. Implying N̂μ = Q∂z∂μ and N̂ ′
μ = Q′∂ ′

z∂
′
μ, one can find that
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FIG. 4. Dependence of the angle θ th
min that minimizes the energy

of the quadrupole-quadrupole interaction (25) on the ratio K3/K1. In
the limit of vanishing K3/K1 the angle θ th

min approaches (but does not
reach) 90◦. Similarly, if K3/K1 → ∞, then θ th

min approaches (but does
not reach) 0◦.

in the bulk medium

U 0
QQ = 4πKQQ′

r5
κ3

√
κ1

× 24κ2
1 cos4 θ + 9κ2

3 sin4 θ − 72κ1κ3 sin2 θ cos2 θ

(κ3 sin2 θ + κ1 cos2 θ )9/2
.

(25)

In the one-constant limit (κs = 1), Eq. (25) re-
duces to the well-known Ũ 0

QQ = 4πKQ̃Q̃′(9 − 90 cos2 θ +
105 cos4 θ )/r5. The quadrupole-quadrupole interaction (25)
is highly anisotropic. If QQ′ > 0 it is repulsive along the
directions θ = 0 and θ = π/2 and attractive within an inter-
mediate range of the angles. Such a pattern of the interaction
can lead to aggregation of quadrupole particles in chains
directed at some angle 0 < θmin < π/2 to the bulk director
n0. Figure 4 shows that the angle θ th

min that minimizes U 0
QQ

is a monotonically decreasing function of the ratio K3/K1.
At the same time, the experimental value of θmin is about
30◦ practically regardless of K3/K1 [4]. This discrepancy
is probably caused by the influence of higher-order elastic
multipoles and by nonlinear deformations in the vicinity of
the defects [35]. Restricting ourselves to the quadrupole-
quadrupole interaction and consequently to a qualitative level
only, we see that in the limit of large K3/K1 the equilibrium
angle θ th

min approaches (but does not equal) 0◦. That is, near a
nematic–smectic-A phase transition the chains become almost
parallel to n0. Recently, such a decrease of the angle between
the rubbing direction and the line joining the centers of two
boojum colloids from 33◦ to 22◦ across the phase transition
was reported in [36].
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FIG. 5. Quadrupole interaction between two beads with tangen-
tial anchoring in the cell filled with 5CB. Here Q = Q′ = −0.4a3 and
Q̃ = Q̃′ = −0.31a3, with a = D/2 = 2.2 μm, L = 8 μm, K1 =
6.2 pN, K2 = 3.7 pN, K3 = 8.3 pN [38], and K = 6.1 pN. The
points depict experimental data from [22].

In the nematic cell the interaction between two quadrupoles
is given by

UQQ = 16πKQQ′

L5

κ3

κ2
1

∞∑
m=1

m4π4 cos
mπz

L

× cos
mπz′

L
K0

(
ρm√
κ1/κ3

)
. (26)

Naturally, since (26) is quite similar to (24), properties of
the quadrupole interaction are similar to those of Upp as
well. Indeed, it is isotropic for the particles located in the
middle of the cell and scales at short distances as 1/ρ5. At
ρ � L

√
K1/K3 the interaction is exponentially decaying.

Now we try to examine how the anisotropy of the elastic
constants affects the values of the multipole moments. The
energy of the interaction between two beads with tangential
anchoring in a homeotropic cell filled with 5CB liquid crystal
was measured in [22]. The theory we present involves two
parameters: the effective elastic constant K and the value of
the quadrupole moment Q = Q′. Apparently, both these pa-
rameters cannot be unambiguously found from an experiment
on the energetics of the interaction because UQQ ∝ K2QQ′.
In order to be clear, we simply define K = (K1 + K2 + K3)/3
and Q = Q′ = −βa3, where a is the particle radius and β is
unknown and positive. Then fitting the one-constant curve

UQQ = 16πKQ̃Q̃′

L5

∞∑
m=1

m4π4 cos
mπz

L
cos

mπz′

L
K0(ρm),

(27)
with these parameters to the experimental data from [22],
one can find that β̃ = 0.31 (see Fig. 5 for details). The same
procedure with the energy (26) results in β = 0.4. Although β

and β̃ differ considerably, they both are close to the value 0.36
found in [37] from another experiment.

We have to admit that the fitting of UQQ is somewhat
sensitive to the ratio K1/K3, which varies with temperature
from 0.7 to 0.8 [38]. We employed K1/K3 = 0.75 as it
provides good agreement between all the results. Under that

condition, both curves in Fig. 5 describe equally well the
interaction at the distances smaller than the cell thickness.
At the same time, UQQ gives a slightly more accurate
representation of the tail of the potential.

As we have already mentioned, in the bulk nematic host the
interaction between two quadrupoles (25) is repulsive along
the director. However, recently it was observed that in nematics
with K1 > 2K2, spherical particles with degenerate planar
anchoring attract along n0 [39]. A numerical investigation
performed by the same authors revealed that in such a medium
the director at the surface of the particle deviates from the
meridional directions. The azimuthal component of n(s) gives
rise to a so-called chiral dipole [40]. In terms of the elastic
multipoles, this helical configuration can be described by p

y
x =

−px
y = −pc, where pc is positive for right-handed helicity and

negative otherwise [28]. Then N̂x = −pc∂y , N̂y = pc∂x , and
Eq. (18) yields

U 0
pcpc

= 4πKpcp
′
c

r5

κ3√
κ2

κ3 sin2 θ − 2κ2 cos2 θ

(κ3 sin2 θ + κ2 cos2 θ )5/2
. (28)

Hence, the chiral dipoles of the same handedness attract along
the director (θ = 0), while those of opposite handedness repel,
in complete agreement with the observations [39].

Interestingly, the interaction between chiral inclusions in
the bulk host as well as in the cell

Upcpc
= 16πKpcp

′
c

L3

κ3

κ2
2

∞∑
m=1

m2π2 sin
mπz

L

× sin
mπz′

L
K0

(
ρm√
κ2/κ3

)
(29)

depends on the twist constant K2 and does not depend
explicitly on the splay K1. However, the opposite is true
for the interaction of achiral dipoles considered above. The
latter does not depend on K2 but do depend on K1. These
features originate from the types of deformations that dominate
in every configuration. Those are primarily twist-bend and
splay-bend deformations in the cases of chiral and achiral
dipoles, respectively.

IV. CONCLUSION

We obtained a general expression for the energy of the inter-
action between colloidal particles suspended in a homeotropic
nematic cell with different Frank elastic constants. It is suitable
for the particles of arbitrary size and shape. In general, our
results confirm the validity of the one-constant approximation
for calamitic nematic liquid crystals, in which the elastic
constants are usually comparable. At the same time, the present
study reveals some interesting features of the elastic colloidal
interactions in liquid crystal hosts with more specific relations
between the elastic constants.

For instance, we predict a decrease of the angle between
a chain of quadrupole particles and the bulk director with
increasing K3/K1. Recently, such a decrease of the angle
between the rubbing direction and the line joining the centers
of two boojum colloids from 33◦ to 22◦ across a nematic–
smectic-A phase transition was reported in [36]. This effect is
a manifestation of the suppression of the interaction along the
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directions normal to n0 upon approaching the transition point.
Such a reduction of the interaction to one dimension above the
transition point is qualitatively consistent with its behavior in
a smectic-A phase.

Despite the constant’s values, the interactions in the cell are
confined. That is, if the projection of the interparticle distance
onto the plane of the cell exceeds a threshold value ρmax (close
to the cell thickness for calamitic nematics), the interaction
will decay exponentially. Hence, there exists a finite region
of the interaction. Its size is proportional to

√
K1/K3. This in

particular means that in nematics with K1 � K3 the threshold
ρmax can increase up to a few cell thicknesses.

The one-constant approximation predicts a completely
isotropic interaction between two asymmetric particles (elastic
monopoles) located in the middle of the cell. They attract
if their elastic monopole moments are of the same sign

and repel otherwise. The anisotropy of the elastic constants
breaks the symmetry of the interaction by inducing two zones
of repulsion (attraction). In weakly elastically anisotropic
nematics these zones are of no interest, as they lie beyond the
region of the interaction. However, in the hosts, where either
K1 � K2,K3 or K2 � K1,K3, they are within the region
and under certain conditions might lead to the formation of
thermodynamically stable linear chains with large separations
between the particles.
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