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The realization of a spontaneous macroscopic ferroelectric order in fluids of anisotropic mesogens is a topic of
both fundamental and technological interest. Recently we demonstrated that a system of dipolar achiral disklike
ellipsoids can exhibit long-searched ferroelectric liquid crystalline phases of dipolar origin. In the present work,
extensive off-lattice Monte Carlo simulations are used to investigate the phase behavior of the system under the
influences of the electrostatic boundary conditions that restrict any global polarization. We find that the system
develops strongly ferroelectric slablike domains periodically arranged in an antiferroelectric fashion. Exploring
the phase behavior at different dipole strengths, we find existence of the ferroelectric nematic and ferroelectric
columnar order inside the domains. For higher dipole strengths, a biaxial phase is also obtained with a similar
periodic array of ferroelectric slabs of antiparallel polarizations. We have studied the depolarizing effects by
using both the Ewald summation and the spherical cutoff techniques. We present and compare the results of
the two different approaches of considering the depolarizing effects in this anisotropic system. It is explicitly
shown that the domain size increases with the system size as a result of considering a longer range of dipolar
interactions. The system exhibits pronounced system size effects for stronger dipolar interactions. The results
provide strong evidence to the novel understanding that the dipolar interactions are indeed sufficient to produce
long-range ferroelectric order in anisotropic fluids.
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I. INTRODUCTION

The understanding and development of various possible
polar order in liquid crystals is an important area of research
in soft matter physics and chemistry [1–5]. The studies of ferro-
electric and antiferroelectric fluids have attracted much atten-
tion in the last 25 years [1,3–5]. The systems of chiral rodlike
molecules and achiral bent core molecules are the conventional
systems which exhibited ferroelectric and antiferroelectric
liquid crystal phases. Chiral disk shaped molecules also exhibit
ferroelectric columnar phases [6]. Usually in the conventional
ferroelectric smectic and columnar phases, the respective fer-
roelectric orderings are not primarily driven by dipole-dipole
interactions. However, there is no fundamental reason to forbid
a proper ferroelectric fluid with spontaneous ferroelectric order
of dipolar origin [7–16]. From computer simulation studies, it
has been found that model spherical particles with a strong
central dipole moment exhibit ferroelectric fluid phases in
conducting surroundings [8,9,16–18]. In some studies, the
dipolar spheres showed the formation of ferroelectric domains
in the presence of a strong depolarizing field in insulating
vacuum surroundings [16,17]. The spontaneous ferroelectric
order in the system of dipolar spheres is developed solely due
to the dipolar interactions and the lack of orientational bias of
the spherical particles. On the contrary, the situation is very
different for aspherical particles having dipole moments. A
spontaneous macroscopic ferroelectric order of dipolar origin
is very rare in fluids of anisotropic molecules which are the
natural candidates to form liquid crystal phases. It was also
shown that as the length to breadth ratio decreases from unity,
the tendency to form a ferroelectric nematic phase gradually
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decreases for discotic ellipsoidal particles with strong central
dipoles [19]. Recently we have shown that the realization of
a novel class of proper ferroelectric liquid crystal phases is
possible in a system of achiral dipolar disklike Gay-Berne
(GB) ellipsoids in conducting surroundings [20]. The model
system of interest consists of attractive-repulsive GB oblate
ellipsoids embedded with two parallel point dipoles positioned
symmetrically on the equatorial plane of the ellipsoids. The
system exhibited stable ferroelectric nematic and columnar
fluids with strong overall polarization. The study demonstrated
that the dipolar interactions are indeed sufficient to produce
a class of novel ferroelectric fluids of essential interest in
systems of disk shaped particles [20]. A system exhibiting
a spontaneous macroscopic polarization is usually expected
to be sensitive to the electrostatic boundary conditions. Thus,
it becomes interesting enough to investigate the influences
of the boundary conditions upon the novel ferroelectric
liquid crystal phases of interest. Here we study the phase
behavior of the system under the influence of the boundary
condition that restricts any global polarization. We study
the phase behavior of the system using the simple spherical
cutoff approach excluding the contribution of a polarizing
reaction field [21] and also with the more conventional Ewald
summation method [21] incorporating the effect of a strong
depolarizing field. Both the methods are described in Sec. II.

Extensive work focused on testing the influence of different
boundary conditions on the behavior of simple models of
dipolar liquids, for example, the dipolar hard spheres and
Stockmayer fluid, was started in the 1980s [22–27]. Even
recently computational studies of dipolar systems have been
performed using different boundary conditions [28,29]. How-
ever, the present work is one of the firsts in testing the effects
of boundary conditions on an anisotropic system exhibiting
spontaneous polarization of dipolar origin. It must be empha-
sized that the attractive-repulsive GB ellipsoids can naturally
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form liquid crystal phases even without dipolar interactions,
whereas the spherically symmetric particles are unable to form
orientationally ordered phases without dipolar interactions.

Now it can be easily understood that the problem of
determining the collective organization of a system of dipolar
molecules is definitely nontrivial, since it is the result of a
balance between the tendency of two dipoles to arrange an-
tiparallel and the formation of domains with a common dipole
orientation that gives fascinating domain structures [17,18,30].
In the present work we systematically investigate the influence
of the depolarizing boundary condition upon the existence
of different ferroelectric phases of interest. The system
results in the formation of slablike ferroelectric fluid domains
periodically arranged in an antiferroelectric fashion. More
importantly, at different state points and dipole strengths,
we find the existence of a long-range ferroelectric nematic,
ferroelectric columnar, and ferroelectric biaxial order within
the domains. Systems of different size (N = 1500, 4000, and
8500) have been investigated via the simple spherical cutoff
approach. It is explicitly shown that the size of the ferroelectric
domains grow with the system size as an effect of considering
a longer range of dipolar interactions. In Sec. II we detail
the molecular model and pair interactions. The simulation
methods are described in Sec. III. In Sec. IV we describe
the simulation results and Sec. V concludes the paper.

II. MODEL

In this paper we present computer simulations of a system
of uniaxial oblate GB ellipsoids of revolution where each
ellipsoid is embedded with two axial off-center parallel point
dipole moments. The dipoles are symmetrically placed on
the equatorial plane of the ellipsoid, at equal distances from
the center of the ellipsoid. In the present work, the dipoles
are placed on the molecular x axis (perpendicular to the
symmetry axis) of each GB molecule, separated by a distance
d∗ ≡ d/σ0 = 0.5 along the axis. The dipolar ellipsoids are
interacting via a pair potential which is a sum of a modified
form of the GB potential [31] and the electrostatic dipolar inter-
actions. In the modified form for discotic liquid crystal [32], the
pair potential between two oblate ellipsoids i and j is given by

UGB
ij (rij ,ûi ,ûj ) = 4ε(r̂ij ,ûi ,ûj )

(
ρ−12

ij − ρ−6
ij

)
,

where ρij = [rij − σ (rij ,ûi ,ûj ) + σe]/σe. Here unit vectors
ûi and ûj represent the orientations of the symmetry axes of
the molecules, rij = rij r̂ij is the separation vector of length
rij between the centers of mass of the ellipsoids, and σe is the
minimum separation between two ellipsoids in a face-to-face
configuration determining the thickness of the ellipsoids. The
anisotropic contact distance σ and the depth of pair interaction
well ε are dependent on four important parameters κ,κ ′,μ,ν,
as defined in Ref. [32]. Here κ = σe/σ0 is the aspect ratio of the
ellipsoids where σ0 is the minimum separation between two
ellipsoids in a side-by-side configuration, and κ ′ = εs/εe is the
ratio of interaction well depths in side-by-side and face-to-face
configuration of the disk shaped ellipsoids. The other two
parameters μ and ν control the well depth of the potential.
σ0 and ε0 define the length and energy scales, respectively,
where ε0 is the well depth in the cross configuration. The
values used here to study the bulk phase behavior are κ =

0.345,κ ′ = 0.2,μ = 1,ν = 3. The value of κ is obtained from
the parametrization of the GB potential that mimics the
interaction between two molecules of triphynylene [33], which
is known to form the core of many discotic mesogens [34]. The
other parameters were chosen from previous works on discotic
liquid crystals which exhibited discotic nematic and hexagonal
columnar phases [30,35,36]. The electrostatic interaction
energy between two such dipolar ellipsoids is given by

U dd
ij =

2∑
α,β=1

μ2

r3
αβ

[(μ̂iα · μ̂jβ) − 3(μ̂iα · r̂αβ)(μ̂jβ · r̂αβ)],

where rαβ(=rjβ − riα) is the vector joining the two point
dipoles μiα and μjβ on the molecules i and j at the
positions riα = ri ± d

2 x̂i and rjβ = rj ± d
2 x̂j . Then the total

interaction energy between two dipolar molecule is given by
U total

ij = UGB
ij + U dd

ij . Here we have used different values of

the reduced dipole moments μ∗ ≡
√

μ2/ε0σ
3
0 = 0.2, 0.4, 0.6,

0.7, and 0.9 to investigate the effect of dipole strength on the
phase behavior of the system of interest. The dipole moments
μ∗ = 0.2 and 0.9, for a molecular diameter of σ0 ≈ 10 Å and
an energy term ε0 = 5 × 10−15 erg, corresponds to 0.45 and
2 D, respectively.

The Ewald summation (ES) and reaction field (RF) methods
are two highly popular methods to handle the long-range
dipolar interaction in condensed matter systems. In the ES
method [21], the central cubic simulation cell is surrounded
by its replicas in all directions to form an infinitely large
sphere of periodic images. This infinitely large sphere is itself
embedded in a continuous medium of dielectric constant εs .
The expression for the overall dipolar interaction energy of the
system in the ES technique is given by

UES = −1

2

∑
i

∑
j

∑
n

′
(μi · ∇)(μj · ∇)

erfc(α|r ij + nL|)
|r ij + nL|

+ 1

2πV

∑
k �=0

4π2

k2
F (k)F ∗(k)exp

(−k2

4α2

)

−
∑

i

2α3μi
2

3
√

π
+ 2π

(2εs + 1)V
M2,

where F (k) = ∑
i(k · μi)exp(ik · r i) and M = ∑

i μi , where
r i is the position vector of the dipole moment μi . M is
the total dipole moment of the cubic central box of volume
V = L3, erfc is the complementary error function, and the
sum on n is over lattice vectors. The prime in the sum
over n = (nx,ny,nz), nx,ny,nz integers, indicates that i �= j

for |n| = 0. The reciprocal space vectors are of the form
k = 2π

L
n. The convergence of the interaction terms in the

ES depends on the parameter α which is chosen such that
the real space sum over lattice vectors can be restricted to
the first term in the sum, i.e., the term with |n| = 0. The
last term in the above equation for UES, accounts for the
work done against the depolarizing field due to the surface
charges induced on the spherical boundary. This term vanishes
only for εs → ∞ (conducting/tin-foil boundary condition)
and makes its maximum contribution when εs = 1 (vacuum
boundary condition). The contribution to this term from the
pair interactions is given by 4π

(2εs+1)L3 μi · μj . It is to be noted
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that the term does not decay with separation and it is clear
from μi · μj dependence that this term will favor antiparallel
rather than parallel dipolar orientations. The choice of εs = 1
effectively results in surrounding the large spherical sample of
cubic replicas with a vacuum and is extreme for a ferroelectric
medium. Therefore, we can expect to observe a significant
effect upon the ferroelectric order found in Ref. [20] when
εs is set equal to 1. The Ewald sum parameters used in the
present work for a system of N = 500 dipolar ellipsoids are
|nmax| = 3, n2

max = 27 containing 334 �k vectors, α = 15.
In the reaction field method [21], the dipolar pair in-

teractions are exactly evaluated up to a cutoff radius RC

and the dipoles outside cutoff sphere are considered as a
continuous medium with dielectric constant εs . Polarization
of the continuous medium in response to the polarization from
the total dipole moment M within cutoff sphere produces an
electric field Ri that acts back on the ith dipole, located at the
center of the cavity. The reaction field is expressed as Ri =

2(εs−1)
(2εs+1)RC

3 M. The size of the reaction field along any molecule
is proportional to the moment of the cavity surrounding that
molecule. The contribution to energy from reaction field is
− 1

2μi · Ri , which is a negative contribution if μi is parallel to
M. Therefore, the reaction field tends to polarize the system
when a ferroelectric phase is formed, by reducing the potential
energy of the system in favor of global ferroelectric order.

The value of εs strongly influences the behavior of
a ferroelectric system. If εs → ∞ (conducting or tin-foil
boundary condition), the contribution to energy from reaction
field strongly favors a polarization. As mentioned before, the
systems of dipolar spheres exhibited global ferroelectric order
under the influence of the conducting boundary conditions in
both the ES [8,9,16–18] and RF methods [37,38]. The present
system of dipolar ellipsoids was also found to generate global
ferroelectric order in our previous works [20,39] under the
influence of the conducting boundary conditions. If εs = 1
(vacuum or spherical cutoff boundary condition), Ri = 0, so
only pairwise interactions within the cavity are considered.
This boundary condition is used to simulate the behavior of
a macroscopic sample placed in vacuum and acts against the
formation of global polarization. If εs = 1, the system tends
to form local structures while keeping the total polarization
zero. The RF method with εs = 1 has been satisfactorily used
in studies of the orientationally ordered systems of dipolar
spheres [28,29,37] and model systems of water [40,41].

It should be noted that in the case of ES a depolarizing
field appears for εs = 1, which is absent for εs → ∞. In the
RF method, a polarizing field appears for εs → ∞, absent
when εs = 1, with the same effect. So, we expect to observe
qualitatively similar phase behavior using both the methods.

We have used three different system size: N = 1500 (RC =
3σ0), N = 4000 (RC = 5σ0), and N = 8500 (RC = 7σ0) when
investigating the phase behavior of the system using spherical
cutoff approach (εs = 1, Ri = 0).

III. SIMULATION DETAILS

We have performed Monte Carlo (MC) simulation studies in
the isothermal-isobaric (constant NPT) ensemble with periodic
boundary conditions imposed on the systems of dipolar

ellipsoids. We have performed a cooling sequence of simula-
tion runs along an isobar at fixed pressure P ∗(≡Pσ 3

0 /ε0) =
100. A MC simulation of the system of GB ellipsoids
without dipoles yielded a discotic nematic and hexagonal
columnar phases at the same pressure without any ferroelectric
order [35]. We started the simulation from a well equilibrated
isotropic liquid phase in a cubic box. We then reduced the
temperature of the system sequentially to explore the phase
behavior. At a given temperature, the final equilibrated con-
figuration obtained from the previous higher temperature was
used as the starting configuration. The system was subjected to
long equilibrium runs at each state point [p∗,T ∗]. During a MC
cycle, each particle was randomly displaced and reoriented
following metropolis criteria where the reorientation moves
were performed using the Barker-Watts technique [21]. An
attempt to change the volume of the cubic box was also
performed in each MC cycle. The acceptance ratio of the
roto-translational moves and volume were adjusted to 40%.
To overcome any possibility of locking in a metastable state,
the particles were also allowed to attempt up-down flip moves
exchanging particle tip with bottom with a 20% frequency
with respect to the roto-translational MC moves. We have also
used an orthogonal box at some state points.

IV. RESULTS AND DISCUSSIONS

In order to characterize different phases of the system,
various order parameters were computed. The average ori-
entational order of the particles was monitored by the second-
rank orientational order parameter P2 defined by the largest
eigenvalue of the order tensor Sαβ = 1

N

∑N
i=1

1
2 (3uiαujβ −

δαβ), where α,β = x,y,z are the indices referring to three
components of the unit vector û along the orientation of
the particles and δαβ is the Kronecker delta symbol. The
value of P2 is close to zero in the isotropic phase and tends
to 1 in the highly ordered phases. The global ferroelectric
order was measured by calculating the average polarization
per particle P1 defined by P1 = 1

N

∑N
i=1 μ̂i · d̂ , where d̂

is the director of the system. P1 is unity in a perfectly
ferroelectric phase and zero in an antiferroelectric phase and
in the isotropic phase. P2 is therefore the indicator of global
orientational order and P1 distinguishes between ferroelectric
and antiferroelectric phases. We have also measured the biax-
ial order parameter 〈R2

2,2〉 = 〈 1
2 (1 + cos2 β) cos 2α cos 2γ −

cos β sin 2α sin 2γ 〉 as described in [42], where α,β,γ are the
Euler angles giving the orientation of the molecular body
set of axes with respect to the director set of axes. In a
biaxial phase, the anisotropic molecules exhibit additional
orientational order along a second macroscopic direction
perpendicular to the primary director. It means that we can
define a set of perpendicular macroscopic axes of preferential
orientation (only two need to be defined as the third is then
specified as perpendicular to the other two) in a biaxial
phase. In the present system, the symmetry axes of the
ellipsoids remain aligned in all the uniaxial and biaxial
ferroelectric discotic phases but the molecular x axes (axes
along the separation between two dipoles on each ellipsoid)
and molecular y axes (axes perpendicular to both the molecular
symmetry axis and molecular x axis) are significantly oriented
only in a biaxial phase. The biaxial order parameter 〈R2

2,2〉
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FIG. 1. (Color online) (a) Evolution of the average second-rank order parameter 〈P2〉 against reduced temperature T ∗ at constant pressure
P ∗ = 100.0 for μ∗ = 0.20 and N = 1500 and 4000. (b) Evolution of 〈P2〉 against T ∗ at P ∗ = 100.0 for μ∗ = 0.40 and N = 1500 and 4000.
(c) Evolution of 〈P2〉 against T ∗ at P ∗ = 100.0 for μ∗ = 0.60 and N = 1500, 4000, and 8500. (d) Evolution of 〈P2〉 against T ∗ at P ∗ = 100.0
for μ∗ = 0.90 and N = 4000 and 8500.

measures the degree of ordering of the molecular x and y

axes in a plane perpendicular to the primary director [42].
For 〈P2〉 = 1, 〈R2

2,2〉 = 0 the system is perfectly uniaxial
and for 〈P2〉 = 1, 〈R2

2,2〉 = 1 the system is perfectly biaxial.
In order to verify the fluidity of the ferroelectric phases,
we calculated the mean square displacement as follows:
〈R2〉τ = 1

N

∑N
i=1[ri(τ ) − ri(0)]2, where ri(τ ) is the position

vector of the ith particle after completion of τ MC cycles.
In the fluid phases, the mean square displacement steadily
increases with increasing τ indicating fluid behavior. In
contrast for solids 〈R2〉τ becomes constant as τ increases.
For a proper structural analysis of the resultant ferroelectric
phases, we calculated important distribution functions as
required. We have measured the radial distribution function
g(r) = 1

4πr2ρ
〈δ(r − rij )〉ij , where the average is taken over

all the molecular pairs. The columnar distribution function
gc(r∗

�
) and the perpendicular distribution function g(r∗

⊥) for
the disklike ellipsoids were calculated following [32].

A. Results obtained using the spherical cutoff approach

For μ∗ = 0.20, the strength of dipolar interaction remains
quite weak to significantly influence the phase behavior
of the GB ellipsoids. The system in this case exhibits a
phase behavior qualitatively similar to that of the nonpolar
GB disks as reported in Ref. [35]. The variations of the

average orientational order parameter 〈P2〉 against the reduced
temperature are presented in Fig. 1(a) for two systems of
different size. It can be seen that the behavior remains quite
similar for N = 1500 and N = 4000. 〈P2〉 remains close to
zero at high temperatures identifying the isotropic phase. Upon
cooling 〈P2〉 jumps to 〈P2〉 ≈ 0.71 at T ∗ = 6 indicating a
transition to the orientationally ordered discotic nematic phase.
At T ∗ = 5 we observe a discotic columnar phase without
any well defined polar arrangement of the ellipsoids. The
snapshots of these resultant configurations are shown in Fig. 2
and the related distribution functions are presented in Fig. 3 for
N = 4000. The flatness in the radial distribution function g(r∗)
at T ∗ = 6.5 reflects the structurelessness of the isotropic liquid
in the long range. At T ∗ = 6, g(r∗) shows the absence of any
long-range positional order in the nematic phase. Considerable
structure in g(r∗) for T ∗ = 5 indicates the formation of the
higher ordered columnar structures. The columnar distribution
function gc(r∗

�
), which is a measure of positional order within

a single column, is shown in Fig. 3(b). The periodic nature
of gc(r∗

�
) confirms the periodic stacking of molecules in the

columnar phases. At T ∗ = 5, gc(r∗
�
) decays algebraically,

indicating a quasi-long-range columnar order. The algebraic
decay of the peak values in the columnar distribution function
is a typical signature of columnar liquid crystal order [32].
For a crystal, the peak intensities remain finite at long range,
which is clearly not the case. As the temperature is lowered,

FIG. 2. (Color online) Snapshots of the configurations generated by MC simulations at (N = 4000, μ∗ = 0.20): (a) Isotropic phase at
T ∗ = 7, (b) nematic phase at T ∗ = 6, (c) side view of the hexagonal columnar phase at T ∗ = 5, and (d) the color plate showing different colors
used in the snapshots given in this paper. The oblate ellipsoids are color coded according to their orientation with respect to the phase director
ranging from parallel [green (light gray)] to antiparallel [blue (dark gray)] and the intermediate colors indicate intermediate orientations. All
the snapshots are generated using the graphics software QMGA [43].
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FIG. 3. (Color online) Distribution functions for μ∗ = 0.20 (N = 4000). (a) Radial distribution function g(r∗) at three different
temperatures: T ∗ = 6.5 (I), T ∗ = 6.0 (N), and T ∗ = 5.0 (Col). (b) Columnar distribution function gc(r∗

‖ ) at three different temperatures:
T ∗ = 6.5, T ∗ = 6.0, and T ∗ = 5.0. (c) Perpendicular distribution function g(r∗

⊥) at three different temperatures: T ∗ = 6.5, T ∗ = 6.0, and
T ∗ = 5.0. The symbol I stands for isotropic, N stands for nematic phase, and Col stands for the columnar phase.

gc(r∗
‖ ) exhibits more ordered structure. The small peaks for

r∗,r∗
�

< 0.5 in gc(r∗
�
) and in g(r∗) describes finite probability

of short range face-to-face ordering in the nematic phase.
Figure 3(c) shows the perpendicular distribution function
g(r∗

⊥), which is a measure of translational order in the plane
orthogonal to the orientation of the disk shaped molecules.
g(r∗

⊥) at T ∗ = 6.0 remains essentially flat for the nematic
phase. At T ∗ = 5, a flat second peak indicates hexagonal
columnar packing. The second peak is usually broken for a
perfect hexagonal order. The biaxial order parameter 〈R2

2,2〉
and the global ferroelectric order parameter 〈P1〉 remain ≈0
in all the above described phases for μ∗ = 0.20.

For μ∗ = 0.40, the variations of the average orientational
order parameter 〈P2〉 against the reduced temperatures are
shown in Fig. 1(b) for N = 1500 and N = 4000. The isotropic
liquid condenses to a discotic nematic phase without any well
defined polar ordering at T ∗ = 6.5 with 〈P2〉 ≈ 0.66. For
T ∗ � 6.0, the systems generate interesting columnar structures
consisting of periodic array of ferroelectric slablike domains
arranged in an antiferroelectric fashion. The striped columnar
phase at T ∗ = 6 is shown in Figs. 4(b) and 4(c). It can be clearly
seen that the system has split into a number of ferroelectric

domains with alternating polarization in the columnar phase.
The colors indicate two mutually antiparallel directions of
polarization of the domains. Each domain consists of a number
of axially polarized columns of the ellipsoids. The related
columnar and transverse distribution functions are shown in
Figs. 5(b) and 5(c). The formation of antiparallel polarized do-
mains can be qualitatively understood as follows. If a spherical
ferroelectric sample is surrounded by vacuum, then charges
induced on the surface of the sphere creates a depolarizing
electric field with energy proportional to the macroscopic
polarization. To minimize the configuration energy, domains
are generated with opposite polarization which destroy the
overall polarization. There is a competition between the energy
decrease due to domain formation and energy increase due to
domain wall formation. The domains are formed until these
two balance each other. A similar scenario can be observed
in case of ferroelectric crystals [44] and in model systems of
dipolar spheres [16,17]. Here the striped phase shows a number
of distinct ferroelectric domains with alternating polarization
rather than different domains with different directions of
polarization found for dipolar spheres [17]. In addition the
domains are characterized with a strong axial polarization. At

FIG. 4. (Color online) Snapshots of the configurations generated by MC simulations at (N = 4000, μ∗ = 0.40): (a) Nematic phase at
T ∗ = 6.5, (b) top view of the striped hexagonal columnar phase with periodically arranged domains of nearly equal and opposite polarizations
at T ∗ = 6, and (c) side view of the striped hexagonal columnar phase at T ∗ = 6. The particles are color coded according to their orientation
with respect to the phase director ranging from parallel [green (light gray)] to antiparallel [blue (dark gray)]. In the columnar phase, most
ellipsoids are colored either in green (light gray) or blue (dark gray) to indicate that most of them are oriented either parallel or antiparallel to
the director. The different polarized domains can be easily distinguished by their colors.
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FIG. 5. (Color online) Distribution functions for μ∗ = 0.40 (N = 4000). (a) Radial distribution function g(r∗) at three different
temperatures: T ∗ = 7 (I), T ∗ = 6.5 (N), and T ∗ = 6.0 (SCol). (b) Columnar distribution function gc(r∗

‖ ) at three different temperatures:
T ∗ = 7, T ∗ = 6.5, and T ∗ = 6. (c) Perpendicular distribution function g(r∗

⊥) at three different temperatures: T ∗ = 7, T ∗ = 6.5, and T ∗ = 6.
The symbol I stands for isotropic, N stands for nematic phase, and SCol stands for the striped columnar phase.

T ∗ = 6.5, the radial distribution function g(r∗) in Fig. 5(a)
shows the absence of any long-range positional order in the
nematic phase. Considerable structure in g(r∗) for T ∗ = 6
indicates the formation of higher ordered striped columnar
structure. At T ∗ = 6, gc(r∗

�
) decays rapidly, indicating a quasi-

long-range order along the column axis. As the temperature is
lowered, gc(r∗

‖ ) exhibited more ordered structure. Figure 5(c)
shows the perpendicular distribution function g(r∗

⊥), which is
a measure of translational order in the plane orthogonal to the
orientation of the disk shaped molecules. g(r∗

⊥) at T ∗ = 6.5
remains essentially flat for the nematic phase. At T ∗ = 6.0,
the broken second peak indicates proper hexagonal columnar
packing. The biaxial order parameter 〈R2

2,2〉 and the global
ferroelectric order parameter 〈P1〉 remain ≈0 in all the above
described phases for μ∗ = 0.40.

For μ∗ = 0.60, the system directly transforms from an
isotropic liquid to a striped nematic fluid at T ∗ = 8 for N =
4000 and N = 8500. However, a smaller system (N = 1500)
does not exhibit the striped nematic phase at T ∗ = 8. The
snapshots of the striped nematic configurations are shown in
Figs. 7(a) and 7(c), respectively, for N = 4000 and N = 8500.
The fascinating periodic modulation of ferroelectric order
obtained in the striped nematic phase is similar to that observed
in the striped columnar phases found for μ∗ = 0.40. The
snapshots in Fig. 7 clearly show that systems have generated
slablike ferroelectric domains periodically arranged in an
antiferroelectric fashion. Different colors have been used
to indicate different domains of approximately antiparallel
overall polarization. The striped columnar phase appears at
T ∗ = 7.5 for all the system sizes. The similarity in the phase

behavior of the two larger systems can be seen from Fig. 1(c)
describing the variation of the average orientational order
parameter with the reduced temperature. The snapshots also
indicate that each domain is strongly polarized.

The snapshots in Fig. 7 show that the domain size increases
with the system size N in case of the striped nematic and
columnar phases. For N = 1500, each polarized slablike
domain in the striped columnar phases consists of two rows
and for N = 4000 and N = 8500, the domains clearly consist
of three and four rows, respectively, as can be seen from
Figs. 7(b) and 7(d). The gradual increase in the domain size
clearly indicates that the consideration of longer range of
dipolar interaction favors the ferroelectric order. In addition,
the snapshots in Fig. 7 clearly demonstrate the absence of any
long-range structure in the striped nematic phases. In order
to verify the fluidity of the nematic phase, we calculated the
mean square displacement 〈R2〉τ and the corresponding plot
is shown in Fig. 10. The mean square displacement steadily
increased with increasing τ indicating highly fluid behavior
at T ∗ = 8. The related structural distribution functions for
μ∗ = 0.60,N = 8500 are shown in Fig. 6. At T ∗ = 8, the
radial distribution function g(r∗) in Fig. 6(a) shows the absence
of any long-range positional order in the nematic phase.
Considerable structure in g(r∗) for T ∗ � 7.5 indicates the
formation of higher ordered columnar structures. At T ∗ = 7.5,
gc(r∗

�
) decays rapidly, indicating a quasi-long-range order

along the column axis. The snapshot in Figs. 7(b) and 7(d)
show the positional order along the columns of the columnar
fluid structures. Figure 6(c) shows the perpendicular distribu-
tion function g(r∗

⊥) which at T ∗ = 8 remains essentially flat
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FIG. 6. (Color online) Distribution functions for μ∗ = 0.60 (N = 8500). (a) Radial distribution function g(r∗) at three different
temperatures: T ∗ = 8.5 (I), T ∗ = 8 (SN), and T ∗ = 7.5 (SCol). (b) Columnar distribution function gc(r∗

‖ ) at three different temperatures:
T ∗ = 8.0, T ∗ = 7.5, and T ∗ = 6.5 (SCol). (c) Perpendicular distribution function g(r∗

⊥) at three different temperatures: T ∗ = 8.0, T ∗ = 7.5,
and T ∗ = 6.5. The symbol I stands for isotropic, SN stands for the striped nematic phase, and SCol stands for the striped columnar phase.
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FIG. 7. (Color online) Snapshots of the configurations generated by MC simulations for μ∗ = 0.60: (a) Striped nematic phase with polarized
domains at T ∗ = 8 for N = 4000, (b) side view of the columnar phase with polarized domains at T ∗ = 7.5 for N = 4000, (c) striped nematic
phase with polarized domains at T ∗ = 8 for N = 8500, and (d) side view of the striped hexagonal columnar phase at T ∗ = 7 for N = 8500.
The oblate ellipsoids are color coded according to their orientation with respect to the phase director ranging from parallel [green (light gray)]
to antiparallel [blue (dark gray)].

for the nematic phase. At T ∗ = 6.5, the broken second peak
indicates proper hexagonal columnar packing. The biaxial
order parameter 〈R2

2,2〉 and the global ferroelectric order
parameter 〈P1〉 remain ≈0 in all the above described phases
for μ∗ = 0.60.

Let us now describe the phase behavior for μ∗ = 0.90. The
system exhibits a striped biaxial phase having slablike ferro-
electric domains in addition to the uniaxial striped nematic
phase. The phase biaxiality originates exclusively from the
strong dipolar interactions. No columnar phase is obtained at
this dipole strength. The variations of the orientational order
parameter 〈P2〉 against the reduced temperatures for different
system sizes are shown in Fig. 1(d). It can be seen from
Figs. 1(c) and 1(d) that the temperature range of the striped
nematic phase gradually increases with the dipole strength for a
fixed system size which is similar to the behavior of the system
when studied under the influence of the conducting boundary
conditions in our previous investigation [39] where the
temperature range of the single domain ferroelectric nematic
phase gradually increased with μ∗. Here a system size effect is
also observed as the temperature range of the striped nematic

phase is found to increase with N as indicated by the plots in
Fig. 1(d). The largest system consisting of N = 8500 dipolar
ellipsoids exhibits a striped nematic phase at T ∗ = 12 with
〈P2〉 ≈ 0.5. The ordering of ferroelectric domains as shown
in Figs. 8(a) and 8(b) is quite similar to that observed for the
striped nematic and striped columnar phases obtained for lower
dipole strengths. Figure 9(a) shows the radial distribution
function g(r∗) at different temperatures. The flatness in g(r∗) at
T ∗ = 11.5 reflects the structurelessness of the striped nematic
liquid in the long range. At T ∗ = 11.5, gc(r∗

�
) and g⊥(r∗

⊥) also
show no sign of any long-range positional order. We have also
calculated the mean square displacement 〈R2〉τ for the striped
nematic phase at T ∗ = 11.5. The mean square displacement
steadily increased with increasing τ indicating fluid behavior
as shown in Fig. 10. Considerable structure in g(r∗) at T ∗ = 11
indicates the formation of a more ordered biaxial phase.
We have measured the conventional biaxial order parameter
〈R2

2,2〉, the value which is ≈0.95 as measured in the biaxial
phases. However, 〈R2

2,2〉 remain ≈0 in the striped nematic
phases reported here. The columnar and transverse distribution
functions, shown in Figs. 9(b) and 9(c), are quite different from

FIG. 8. (Color online) Snapshots of the interesting configurations generated by MC simulations for μ∗ = 0.90: (a) Striped nematic phase
with polarized domains at N = 4000,T ∗ = 11.5, (b) striped nematic phase with polarized domains at N = 8500,T ∗ = 12, (c) side view of the
striped biaxial phase with domains of equal and antiparallel polarization at N = 4000,T ∗ = 11, and (d) top view of the striped biaxial phase
at N = 4000,T ∗ = 11, where the orientations of the dipolar separation vectors of each ellipsoid is indicated by red lines. The oblate ellipsoids
are color coded according to their orientation with respect to the phase director ranging from parallel [green (light gray)] to antiparallel [blue
(dark gray)].
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FIG. 9. (Color online) Distribution functions for μ∗ = 0.90 (N = 4000). (a) Radial distribution function g(r∗) at three different
temperatures: T ∗ = 12 (I), T ∗ = 11.5 (SN), and T ∗ = 11.0 (SB). (b) Columnar distribution function gc(r∗

‖ ) at three different temperatures:
T ∗ = 12, T ∗ = 11.5, and T ∗ = 11.0. (c) Perpendicular distribution function g(r∗

⊥) at three different temperatures: T ∗ = 12, T ∗ = 11.5, and
T ∗ = 11.0. The symbol SN stands for the striped nematic and SB stands for the striped biaxial phase.

those obtained for the columnar phases. From the snapshots
of the biaxial phases, we can understand the related structure.
From Fig. 8(d) it can be seen that the dipoles are arranged such
that the dipolar separation vectors pointing from one dipole on
a disk to the other get oriented mostly in the same direction.
This ordering can be understood as the effect of strong pair
interaction possible in this condition between two terminal
dipoles of neighboring ellipsoids if two parallel dipoles are
placed above each other. The snapshot of such intercalated
arrangement is shown in Fig. 8(c). The structural distribution
functions for the biaxial phase are shown in Figs. 9(a)–9(c). At
T ∗ = 11, gc(r∗

�
) indicates the intercalated arrangement of the

ellipsoids. The shorter peaks generate due to the presence of
the pairs of side-by-side ellipsoids covering single ellipsoids.
It should be noted that strong dipoles stabilize striped nematic
phases with relatively weak orientational order. The global
ferroelectric order parameter 〈P1〉 remained approximately
equal to zero indicating zero net polarization for all the phases
observed for μ∗ = 0.90.

B. Results obtained using the Ewald summation method

We have also studied the phase behavior using the con-
ventional but more time consuming Ewald summation method
with εs = 1. We have chosen a smaller system consisting of
N = 500 dipolar ellipsoids to study the depolarizing effects
using the ES approach and investigated the phase behaviors
for two different dipole strengths μ∗ = 0.70 and μ∗ = 0.90
for which we observe the ferroelectric nematic, ferroelectric
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FIG. 10. (Color online) Mean-squared displacement 〈R2〉τ

against MC cycles for the striped nematic phases at
(T ∗ = 8,μ∗ = 0.60) and (T ∗ = 11.5,μ∗ = 0.90) for the systems of
N = 4000 dipolar particles.

columnar, and ferroelectric biaxial order within periodic
slablike ferroelectric domains.

For μ∗ = 0.70, the striped nematic phase with ferroelectric
slablike domains is obtained at T ∗ = 9 upon cooling the
isotropic phase at the fixed pressure. The snapshot in Fig. 11(a)
clearly shows the presence of ferroelectric nematic domains
with mutually opposite polarization at T ∗ = 8.5. Further
lowering of temperature gives rise to a columnar liquid crystal,
at T ∗ = 8, with ferroelectric domains consisting of three rows
of columns. The plots of the structural distribution functions
are presented in Fig. 12. The flatness in the radial distribution
function g(r∗) at T ∗ = 8.5 confirms the absence of any long-
range positional order in the striped nematic phase shown in
Fig. 11(a). Considerable structure in g(r∗) for T ∗ � 8 indicates
the formation of the higher ordered columnar structures. The
columnar distribution function gc(r∗

�
) is shown in Fig. 12(b).

At T ∗ = 8, gc(r∗
�
) decays algebraically, indicating a quasi-

long-range columnar order as shown in the snapshot in
Fig. 11(b). The small peaks for r∗,r∗

�
< 0.5 in gc(r∗

�
) and in

g(r∗) indicates finite probability of short range face-to-face
ordering in the nematic configurations. Figure 12(c) shows
the perpendicular distribution function at T ∗ = 8.5 remains
essentially flat for the nematic phase. At T ∗ = 8, a broken
second peak indicates hexagonal columnar packing of the
columns. The above characteristics are qualitatively similar to
that of the (N = 4000, μ∗ = 0.60) system investigated using
the SC technique. The biaxial order parameter 〈R2

2,2〉 and the
global ferroelectric order parameter 〈P1〉 remain ≈0 in all the
above described phases for μ∗ = 0.70.

For μ∗ = 0.90, the striped nematic phase having ferroelec-
tric slablike domains is obtained at T ∗ = 11 upon cooling the
isotropic phase. The variations of the average orientational
order parameter 〈P2〉 against the reduced temperatures are
presented in Fig. 11(e) and the snapshots of the interesting
configurations obtained using the Ewald sum method are
given in Figs. 11(c) and 11(d). The presence of ferroelectric
nematic domains with antiparallel polarizations at the above
temperature can be seen from the snapshots. Further lowering
of temperature generates a highly ordered biaxial phase, at
T ∗ = 10.5, with ferroelectric domains of width ≈3σ0. The
strong dipolar interactions in this case stabilizes a biaxial phase
instead of a columnar phase. The characteristics are again
found qualitatively similar to that exhibited by (N = 4000,
μ∗ = 0.90) system studied using the spherical cutoff approach.
The plots of the structural distribution functions are given in
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FIG. 11. (Color online) Snapshots of the configurations generated by MC simulations at N = 500 using the Ewald summation method:
(a) Striped nematic phase at μ∗ = 0.7,T ∗ = 8.5, (b) striped columnar phase at μ∗ = 0.7,T ∗ = 7.5, (c) striped nematic phase at μ∗ = 0.9,T ∗ =
11, and (d) striped biaxial phase at μ∗ = 0.9,T ∗ = 10.5. The oblate ellipsoids are color coded according to their orientation with respect to
the phase director ranging from parallel [green (light gray)] to antiparallel [blue (dark gray)] and the intermediate colors indicate intermediate
orientations. (e) Evolution of the average second-rank order parameter 〈P2〉 against reduced temperature T ∗ at constant pressure P ∗ = 100.0
for μ∗ = 0.7, 0.9, and N = 500.

Fig. 13. The flatness in the radial distribution function g(r∗)
at T ∗ = 11 confirms the absence of any long-range positional
order in the striped nematic phase. Figures 13(b) and 13(c)
show that the columnar and perpendicular distribution func-
tions remains essentially flat for the nematic phase at T ∗ = 11.
Considerable structures in gc(r∗

�
) and g(r∗

⊥) at T ∗ = 10.5
indicate the formation of the higher ordered biaxial phase. We
have measured the biaxial order parameter 〈R2

2,2〉, the value
which is ≈0.95 as measured in the striped biaxial phase at
T ∗ = 10.5. However, 〈R2

2,2〉 remain ≈0 in the striped nematic
phase. The columnar and transverse distribution functions at
T ∗ = 10.5 are found quite different from those obtained for
the columnar phases. From the snapshot of the biaxial phase
in Fig. 11(d), we can understand that the structure is quite
similar to the biaxial phase obtained using the spherical cutoff
approach. It can be seen that the dipoles are arranged such
that the dipolar separation vectors pointing from one dipole on
a disk to the other get oriented mostly in the same direction.
This ordering can be understood as the effect of strong pair
interaction possible in this condition between two terminal
dipoles of neighboring ellipsoids if two parallel dipoles are
placed above each other. At T ∗ = 10.5, gc(r∗

�
) indicates the

intercalated arrangement of the ellipsoids.
The formation of a biaxial phase via dipolar interactions

supports earlier simulation works on dipolar anisotropic
particles which showed that dipolar interactions can introduce
a biaxial orientational order even in the absence of a shape
biaxiality of the constituent molecules [35,45]. The global
ferroelectric order parameter 〈P1〉 remained approximately

equal to zero indicating zero net polarization for all the phases
observed for μ∗ = 0.90. We have observed that the system
developed a small cavity at this dipole strength which might
be a result of the fixed shape constraint of the cubic box used
by us as reported earlier in studies of discotic liquid crystals
in Ref. [36].

Therefore, the simulations of smaller systems performed
using the ES technique, generated results qualitatively similar
to that obtained from the simulations of larger systems using
the spherical cutoff technique. Usually it is considered that
the macroscopic properties of a system of dipolar particles
converge more rapidly with system size in the case of the ES
method (εs = ∞) than in the case of the RF method. Here
the results also indicate that the macroscopic properties of a
system of dipolar particles exhibiting long-range ferroelectric
order also converge more rapidly in the case of the ES method
(εs = 1) than in the case of the simpler spherical cutoff method.
A study on the system size effects using ES technique, although
of undeniable interest, has not been attempted here because of
the substantial computing cost required. However, we think
that the domain size would increase with system size in the
ES method similar to behavior observed in the spherical cutoff
approach. A similar view was also discussed for ferroelectric
systems of dipolar spheres in Ref. [16].

Let us now discuss the behavior of the pair interactions.
The pair interaction energy between two dipolar ellipsoids is
plotted in Fig. 14 as a function of the component of the pair
separation vector r perpendicular to the particle symmetry axes
r∗
⊥ as one particle is slid over the other maintaining a fixed sepa-
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FIG. 12. (Color online) Distribution functions for μ∗ = 0.70 (N = 500). (a) Radial distribution function g(r∗) at three different
temperatures: T ∗ = 8.5 (SN), T ∗ = 8.0 (SN), and T ∗ = 7.5 (SCol). (b) Columnar distribution function gc(r∗

‖ ) at three different temperatures:
T ∗ = 8.5, T ∗ = 8.0, and T ∗ = 7.5. (c) Perpendicular distribution function g(r∗

⊥) at three different temperatures: T ∗ = 8.5, T ∗ = 8.0, and
T ∗ = 7.5. The symbol SN stands for striped nematic phase and SCol stands for the striped columnar phase.
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FIG. 13. (Color online) Distribution functions for μ∗ = 0.90 (N = 500). (a) Radial distribution function g(r∗) at two different temperatures:
T ∗ = 11 (SN) and T ∗ = 10.5 (SB). (b) Columnar distribution function gc(r∗

‖ ) at two different temperatures: T ∗ = 11 and T ∗ = 10.5.
(c) Perpendicular distribution function g(r∗

⊥) at two different temperatures: T ∗ = 11 and T ∗ = 10.5. The symbol SN stands for striped
nematic phase and SB stands for the striped biaxial phase.

ration (r� = σe) along the symmetry axis and having all dipoles
oriented in the same direction. Note that when r∗

⊥ is zero one
particle completely covers the other. Curves are shown for
d∗ = 0 and d∗ = 0.50. Here we have discussed the case where
the ellipsoid is sliding along the direction of molecular x axis,
i.e., along the dipolar separation vector d∗(=d∗x̂) of the ellip-
soids. This particular case is important for the biaxial phase
behavior found for μ∗ = 0.90. It is evident from Fig. 14 that the
dipolar separation d∗ has a dramatic role on the pair potential.
For d∗ = 0, the strong head-to-tail dipolar interaction results
in a sharp minima at r∗

⊥ = 0. It is the sharpness of this potential
which leads to strong stabilization of the columnar phase for
central dipolar disk shaped particles studied in Refs. [9,46].
In the columnar phases of central dipolar disks, the individual
polarized columns do not interact strongly enough and entropy
ensures that equal numbers will be polarized in opposite direc-
tions [9,46]. In the present model, the pair interaction loses its
sharp focus when the dipoles are more separated and generates
a weaker and slowly varying attraction which helps in gener-
ating the ferroelectric nematic order for d∗ = 0.50. It can be
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FIG. 14. (Color online) The variation of the pair interaction
energy U ∗

total of two polar ellipsoids having parallel dipolar separation
vectors as one polar ellipsoid is slid over another along the dipolar
separation vector with their dipoles oriented along their symmetry
axes and keeping the component of the interparticle vector parallel
to the symmetry axes of the particles at a fixed value of σe. r∗

⊥
is the component of the interparticle vector perpendicular to the
symmetry axes of the particles. The different curves are for different
combinations of d∗ and μ∗ as described inside the figure.

seen that for separation d∗ = 0.50, a second well is constructed
with its minimum at r∗

⊥ = 0.50. The second well simply results
from the interaction between two parallel dipoles when they are
positioned above each other. The strengthening of this second
well favors strong stabilization of the ferroelectric biaxial
phase at higher dipole strengths. In the uniaxial striped nematic
and striped columnar phases, the dipolar separation vectors of
two neighboring ellipsoids are usually randomly oriented with
respect to each other. In such cases, the pair interaction do not
generate a second well as found for parallel orientation of the
dipolar separation vectors of the two ellipsoids. Here the for-
mation of the ferroelectric columnar domains for μ∗ = 0.40,
0.60, and 0.70 indicate that the column-column interactions
are stronger than that in case of central dipolar disks.

V. CONCLUSIONS

In this work we have systematically investigated the
influences of the depolarizing boundary conditions upon the
existence of a class of novel ferroelectric phases of dipolar ori-
gin in the systems of disklike anisotropic particles using both
the spherical cutoff and the Ewald summation techniques. The
systems resulted in the formation of periodic slablike ferro-
electric fluid domains arranged in an antiferroelectric fashion.
We found existence of the long-range ferroelectric nematic,
ferroelectric columnar, and ferroelectric biaxial orderings
within the domain regions at different state points and dipole
strengths. It is found that the minimum value of the dipole
strength required to generate a ferroelectric order is μ∗ = 0.40.
The periodicity and the size of the slablike domains, for a fixed
system size, remained unchanged with respect to a variation
of temperature or dipole strength studied here. It is explicitly
shown that the size of the ferroelectric domains grow with
the system size as an effect of considering increasing range
of dipolar interactions. These results provide great support to
the novel understanding that the dipolar interactions are indeed
sufficient to produce a long-range ferroelectric order in discotic
fluids. Our results also support the view expressed in Ref. [16]
that for sufficiently large samples the local orientational
order in the ferroelectric domains would be quite similar to
that obtained with εs = ∞. Our study should be helpful in
analyzing and understanding the structural properties of novel
anisotropic fluids where dipolar forces would play a dominant
role in generating global ferroelectric order.
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