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Competition of lattice and basis for alignment of nematic liquid crystals
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Due to elastic anisotropy, two-dimensional patterning of substrates can promote weak azimuthal alignment of
adjacent nematic liquid crystals. Here we consider how such alignment can be achieved using a periodic square
lattice of circular or elliptical motifs. In particular, we examine ways in which the lattice and motif can combine to
favor differing orientations. Using Monte Carlo simulation and continuum elasticity we find, for circular motifs,
that the coverage fraction controls both the polar anchoring angle and a transition in the azimuthal orientation. If
the circles are generalized to ellipses, arbitrary control of the effective easy axis and effective anchoring potential
becomes achievable by appropriate tuning of the ellipse motif relative to the periodic lattice patterning. This has
possible applications in both monostable and bistable liquid crystal device contexts.
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I. INTRODUCTION

Surface anchoring, the promotion of a desired liquid
crystal (LC) orientation by a surface [1], remains an im-
portant problem in applications because precise tuning of
anchoring parameters is often necessary for optimal device
performance [2]. Patterning the surface with a spatially
varying preferred orientation is an attractive route to create
alignment layers with desired anchoring properties because
both the effective anchoring potential and its orientation or
easy axis can be altered by adjusting geometric features
of the pattern [3,4]. Additionally, surfaces of appropriate
symmetry [5] may promote multiple stable easy axes leading
to bistable devices [6–9]. Bistability is desirable [10–13] for
both reduced power consumption and improved addressing
of high-resolution displays. Beyond displays, patterned LC
systems are promising candidates as biosensors [14,15] and
photonic devices [16,17].

Many methods exist to achieve patterning, encompassing
both topographical and chemical approaches. These include
mechanical rubbing [18,19], photolithography [11,18,20],
scribing with an atomic force microscope [10,21], microcon-
tact printing of self-assembled monolayers (SAMs) [22–25],
topographic surface features [26], and flexoelectric surface
switching [27]. Since mechanical methods, such as rubbing,
result in unwanted scratches or debris on the surface [28]
and many methods do not scale well to high-volume manu-
facturing [25], SAMs have received much attention in recent
years. Certain experimental methods show control over the
azimuthal director angle as well as the polar anchoring
angle [18,29] and this is the focus of the work presented in this
paper.

Striped surfaces, incorporating alternating regions prefer-
ring planar degenerate (lying parallel to the substrate but
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at any alignment angle) and homeotropic (perpendicular to
the substrate) alignment, have been well studied [30–35].
For this pattern, the polar angle of the bulk LC is controlled
by the average polar easy axis on the surface; the azimuthal
alignment has an energy minimum aligned parallel or per-
pendicular to the stripe orientation depending on the ratio
of the elastic constants [30]. Grooved surfaces with uniform
alignment preference allow for similar control depending
on the groove depth [36,37]. Square checkerboard lattices
are more complicated: An anchoring transition occurs in
which the LC aligns with the lattice vectors for relatively
strong surface anchoring, but switches to the diagonal for
very weak anchoring [5]. Finally, both polar and azimuthal
control over the bulk LC director orientation may be achieved
with a rectangular checkerboard lattice. In this arrangement,
certain rectangle ratios and anchoring strengths combine to
shift the preferred director azimuthal angle from alignment
with a rectangle edge to alignment diagonally across the
rectangle [38].

For substrates constructed from squares or rectangles, the
pattern units determine the symmetry and periodicity of the
patterning. It is however straightforward to break this coupling
by resorting to non-space-filling pattern basis motifs, such as
circles or ellipses, and arranging these on a periodic lattice.
Importantly, this approach provides a systematic approach by
which to introduce the additional parameters needed to achieve
truly independent control of polar and azimuthal anchoring
angles and set these at arbitrary target values.

We employ a surface divided into two regions. The first
is the space inside an infinite array of ellipses, the centers
of which form a square lattice and whose aspect ratio and
semimajor axis length and orientation are given. The second
region is the space not contained within these ellipses. Each
region is set to prefer either vertical (homeotropic) or planar
(planar degenerate) alignment. The vertical-on-planar case
corresponds to vertical alignment within the ellipses and
planar alignment outside, while the planar-on-vertical case
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corresponds to planar alignment within the ellipses and vertical
alignment outside. Two identical such surfaces bound our
space in the z direction. Figure 3 shows the unit cell of this
space for vertical-on-planar patterning.

In this paper we use a continuum approach to determine the
ground state of a LC in contact with this surface. From this
we identify scenarios for which the basis symmetry and the
lattice symmetry may favor different alignments. This yields
bistable configurations that are free from the constraints
that exist for square or rectangular motifs. The paper is
organized as follows. Monte Carlo (MC) simulation results
with circle patterns are presented in Sec. II. These motivate,
in Sec. III, an analytical continuum model that is constructed
for this arrangement with the simplifying assumption that the
director lies at a constant azimuthal angle. We also construct
a numerical model that relaxes this assumption and explores
the effect of saddle splay. A brief summary and conclusions
are presented in Sec. IV.

II. SIMULATIONS

The combination of MC simulations and continuum theory
has proven synergistic in previous studies [5,38]. The align-
ment induced by a particular pattern depends dramatically
on the relative and absolute length scales present. The
scenarios considered here contain three key lengths: the film
thickness d, the radius of the circular (or elliptical) motif R,
and the periodicity of that motif λ. While MC simulation
probes alignment around such patterns at the order of a few
molecular lengths and continuum theory permits modeling up
to device dimensions, the two approaches inform one another
by identifying dominant regimes and thus highlighting their
dependences.

To gain a microscopic understanding of the effect of
circle patterns on the adjacent nematic, we first performed
MC simulations as described fully in [5]. Particle-particle
interactions are modeled with the hard Gaussian overlap
(HGO) potential, in which the dependence of the interaction
potential νHGO on ûi and ûj , the orientations of particles i and
j , and r̂ij , the interparticle unit vector, is

νHGO =
{

0 for rij � σ (r̂ij ,ûi ,ûj )

∞ for rij < σ (r̂ij ,ûi ,ûj ),
(1)

where σ (r̂ij ,ûi ,ûj ) is the contact distance, given by

σ (r̂ij ,ûi ,ûj ) = σ0

[
1 − χ

2

(
(r̂ij · ûi + r̂ij · ûj )2

1 + χ (ûi · ûj )

+ (r̂ij · ûi − r̂ij · ûj )2

1 − χ (ûi · ûj )

)]−1/2

. (2)

The parameter χ is set by the particle length to breadth ratio
κ via

χ = κ2 − 1

κ2 + 1
. (3)

Particle-substrate interactions are modeled using the hard
needle-wall (HNW) potential [39]. In this, the particles do
not interact directly with the surfaces. Rather, the surface
interaction is achieved by considering a hard axial needle of

length σ0ks placed at the center of each particle. This gives an
interaction

νHNW =
{

0 for |zi − z0| � σw(ûi)

∞ for |zi − z0| < σw(ûi),
(4)

where z0 represents the location of a substrate and

σw(ûi) = 1
2σ0ks cos(θi). (5)

Here ks is the dimensionless needle length and θi =
arccos(ui,z) is the angle between the substrate normal and
the particle’s orientation vector, which also corresponds to the
zenithal Euler angle. For small ks , the vertical arrangement has
been shown to be stable, whereas planar anchoring is favored
for long ks [39]. Furthermore, despite its simplicity, the HNW
potential has been found to exhibit behavior qualitatively
identical to more complex particle-substrate potentials [40].
Here, by allowing ks to vary across one wall, we investigate
the molecular-scale effects of substrate patterning.

Simulations of HGO particles of aspect ratio κ = 3
were performed subject to confinement between two circle-
patterned substrates with fixed separation d. Periodic bound-
aries were applied in x and y, with a common box edge
length Lx = Ly = L. Sharp boundaries were imposed be-
tween vertical and planar regions, needle lengths ks = 0
and κ , respectively, being specified in each region. Particle
configurations were initialized at low density (i.e., large L) and
uniformly compressed in the x and y dimensions by gradually
reducing L between successive runs but maintaining the ratio
R/L. An equilibration run of N = 500 000 MC sweeps was
conducted at each density, followed by a production run of a
further N sweeps. Orientational order was established when
the number density at the center of the film reached that
typical of the HGO nematic (i.e., �0.32). The corresponding
in-plane box length L then corresponded to the effective lattice
periodicity λ.

As regards polar ordering, the findings of these simulations
are summarized by the representative snapshots displayed in
Fig. 1(a) for vertical-on-planar patterning; corresponding plots
for the reverse case are in Fig. 1(b). These show that for d =
λ = 4κσ0, the orientational ordering of the particles at the
center of the film depends on R, the radius of the circle. For
large R, the film follows the alignment of the particles in
the circle, be that planar or vertical. However, a transition
occurs with decreasing R, after which the orientation in the
film becomes dictated by the pattern outside the circle. This
behavior is observed for both vertical-on-planar and planar-
on-vertical surfaces and essentially mimics that seen for other
patterned films; the film orientation is dominated by that of the
majority surface component.

Less intuitively, in all cases the surface patterning is
limited to the at-substrate layers. As a result, even for these
microscopically thin films, the dominant arrangement is that
of a nematic monodomain. This is consistent with previous
observations that, while stripe patterns can yield bridging
of alternative orientational domains, two-dimensional surface
patterns are strictly confined to the surface monolayers [5,38].
This tendency for the center of the film to follow the orientation
of the majority pattern component persists down to very
thin cells, such as d = λ/2, for which the film center can
comprise as few as one layer of particles. In this regime, for
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FIG. 1. (Color online) Snapshots of Monte Carlo simulations of a
nematic confined between periodically patterned circles. (a) Vertical-
on-planar and (b) planar-on-vertical unit cells for different values of
thickness d and circle radius R; the views show slices taken through
the box midplane.

the planar-on-vertical case [Fig. 1(b)], the particle orientation
on the top and bottom substrates at a vertical-planar boundary
is particularly interesting, because the particles tend to align
parallel to the boundary, causing azimuthal distortion of the
LC.

As well as showing that most pattern-confined LC films
form nematic monodomains, MC simulations also indicate a
more subtle azimuthal transition. As illustrated in Fig. 2 for the
vertical-on-planar setup, the preferred azimuth of the planar
region (which, in the cases depicted, is also the orientation
of the underlying nematic monodomain) is also dependent on
R. Specifically, for moderate-sized circles, the particles in the

FIG. 2. (Color online) Apparent orientational anchoring transi-
tion. (a) Top configuration for vertical-on-planar patterning with
R/λ = 1/3 and d/λ = 1. (b) Top configuration for R/λ = 1/4.
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FIG. 3. (Color online) (a) Schematic of the unit cell domain with
important length scales labeled for a circle-patterned surface (a =
b = R and ω = 0) with vertical-on-planar patterning. (b) Definition
of the polar angle θ and the azimuthal angle φ of the LC director.

in-plane region align along the box x and y axes, whereas at
smaller R they pick out the box diagonal.

Two qualitative findings from these simulations, that films
thicker than a few molecules form nematic monodomains
and that there is a pattern-dependent azimuthal transition for
vertical-on-planar systems, motivate and provide the focus for
the continuum analysis that makes up the remainder of this
paper.

III. CONTINUUM MODEL

In our continuum treatment, the LC orientation is charac-
terized by a director field

n = (cos θ sin φ, cos θ cos φ, sin θ ), (6)

where θ is the zenithal angle and φ is the azimuthal angle. The
free energy of the LC is the Frank free energy

F = 1

2

∫
d3x[K1(∇ · n)2 + K2(n · ∇ × n)2

+K3|n × ∇ × n|2] +
∫

S

dS g(θ − θe), (7)

supplemented by a harmonic anchoring potential

g(θ − θe) = Wθ

2
(θ |z=±d/2 − θe)2. (8)

The coordinates are set up as shown in Fig. 3: Consider
a unit cell defined on the box with corners at (0,0,−d/2) to
(λ,λ,+d/2). Each surface at ±d/2 contains an ellipse centered
on the unit cell with semimajor axis a oriented at an angle ω

with respect to the x axis and semiminor axis b. The surfaces
promote homeotropic (θ = π/2) alignment within the ellipse
and planar degenerate alignment (θ = 0) outside.

A. Solution

Following previous work, we make the two-constant ap-
proximation by setting K1 = K3 and K2/K1 = τ [30]. Addi-
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tionally, if the polar angle depends on all of the coordinates
θ = θ (x,y,z) and the azimuthal angle is constant in space
φ = φ0 [38], the bulk free energy may be rewritten as a
quadratic form

F = K1

2

∫
(∇θ )T · A · (∇θ )d3x

+ K1

2Lθλ

∫
S

dS(θ |z=±d/2 − θe)2, (9)

where

A =

⎛
⎜⎝

1
2 (α − β cos 2φ0) 1

2β sin 2φ0 0
1
2β sin 2φ0

1
2 (α + β cos 2φ0) 0

0 0 1

⎞
⎟⎠. (10)

Here we introduced the dimensionless polar anchoring param-
eter

Lθ = K1

Wθλ
, (11)

which may be recognized as a nondimensionalized extrap-
olation length. The assumption of a constant azimuth is
misleading in some geometries [41], but is corroborated
by the monodomains seen in the MC simulations of this
configuration.

Within this approximation, minimization of the free energy
yields an anisotropic Laplace equation

∇T · A · ∇θ (x,y,z) = 0, (12)

where α ≡ 1 + τ and β ≡ 1 − τ . This may be solved using
the series

θ (x,y,z) =
∞∑

n,m=−∞
2Anm cosh(z/znm)ei2π(nx+my), (13)

where the penetration depth znm is defined by

znm = {2π2[α(m2 + n2) + β(m2 − n2) cos 2φ0

+ 2βnm sin 2φ0]}−1/2. (14)

In order to satisfy the boundary conditions, the patterned easy
axis is first expanded in a Fourier series

θe(x,y) =
∞∑

n,m=0

Snmei2π(nx+my). (15)

To determine the coefficients Snm, we assume that the
background surface promotes θe = 0 while the elliptical pat-
tern promotes θe = π/2, or vertical-on-planar patterning; the
alternative planar-on-vertical arrangement is trivially obtained
from this solution by making the substitution

θ → π/2 − θ, (16)

which leaves the energy invariant. The Snm are therefore
evaluated by integrating

Snm = π

2

∫∫
D

exp[2πi(nx + my)]dx dy (17)

over a domain D defined by the ellipse equation

(�x − �xc)T R(ω)

(
1/a2 0

0 1/b2

)
R(−ω)(�x − �xc) � 1. (18)

Here R(ω) is the two-dimensional rotation matrix and
�xc = ( 1

2 , 1
2 ) is the center of the ellipse. As shown in the

Appendix, the integral (17) can be performed analytically to
yield

Snm = abπ

2
(−1)n+m

J1
(
2π

√
a′2

nm + b′2
nm

)
√

a′2
nm + b′2

nm

, (19)

where J1(x) is a Bessel function of the first kind, a′
nm =

(n cos ω + m sin ω)a, and b′
nm = (n sin ω − m cos ω)b.

Having expanded the easy axis in a suitable form, the
coefficients Anm can be determined by imposing the Robin
boundary condition [42] at ±d/2,

θe =
[
±Lθ

∂θ

∂z
+ θ

]
z=±d/2

. (20)

Here ± refers to the direction of the outward normal to the LC
boundary. Inserting Eqs. (13) and (15) into (20), we obtain

Anm = Snm

2[(Lθ/znm) sinh(d/2znm) + cosh(d/2znm)]
. (21)

Note that as Lθ → 0, this recovers the rigid anchoring
condition. The solution for θ (x,y,z) is now obtained by
inserting Eqs. (21), (19), and (14) into Eq. (13). As for other
patterns [5,38], the director follows the surface pattern at
±d/2, while relaxing to a uniform orientation equal to the
average polar angle promoted by the surface far away from the
boundaries.

B. Circular patterns

For a circular surface pattern, set a = b in Eq. (19).
Evaluation of the volume integral in Eq. (7) then yields an
expression for the bulk energy of the LC,

Fb =
∞∑

n,m=−∞
2K1A

2
nm

[
BT A

(
d

2
diag(1,1,−1)

+ znm sinh(d/znm)

2
I3

)
B

]
, (22)

where

B =

⎛
⎜⎝

2πn

2πm

1/znm

⎞
⎟⎠.

Similarly, evaluation of the surface integral over the surfaces
at +d/2 and −d/2 gives the surface energy of the LC

Fs =
∞∑

n,m=−∞

K1[Snm − 2Anm cosh(d/2znm)]2

Lθ

. (23)

The bulk and surface energy of the LC are shown in
Fig. 4 as a function of the azimuthal angle φ for fixed
circle radius and polar anchoring strength. The bulk energy
always prefers alignment along the x or y axis, but with
decreasing strength as the unit cell thickness decreases.
Meanwhile, the surface energy prefers director alignment
at a 45◦ angle to the axes. This surface preference grows
slightly stronger as cell thickness decreases. It it noteworthy
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(a) (b)

FIG. 4. (Color online) (a) The LC surface energy (dotted line),
bulk energy (dashed line), and total energy (solid line) as a function
of the azimuthal angle for a unit cell of thickness d/λ = 1.0 [dark gray
(brown) lines] and d/λ = 0.25 [light gray (cyan) line] for planar-on-
vertical patterning, r/λ = 0.5, and Lθ = 0.01. For the thicker unit
cell, the surface energy azimuthal preference is much weaker than
that of the bulk and the overall preference aligns with that of the bulk.
However, thinner cells exhibit weaker bulk energy preference and
the total energy favors alignment along φ0 = π/4. (b) Corresponding
calculated structures for (i) d/λ = 1.0 and (ii) d/λ = 0.25.

that, in spite of a planar degenerate surface condition, this
configuration achieves nondegenerate anchoring. Results for
planar-on-vertical patterning are identical due to the invariance
of the energy under the linear transformation (16).

We estimate Weff(φ), the effective azimuthal anchoring
potential [43] as the energy difference per unit cell between
the φ0 = φ and the φ0 = 0 states. A positive value of Weff(φ)
indicates a preference for alignment along the x or y axis,
while a negative value of Weff(φ) indicates a preference
for alignment along φ. Correspondingly, we introduce the
effective easy axis φp, which is the value of φ that minimizes
the effective anchoring potential. For circular features, the
effective easy axis is always along either a lattice vector
(φp = 0 or φp = π/2) or the diagonal (φp = π/4). Figure 5(a)
shows the surface component of Weff(π/4) as a function of Wθ ,
the polar anchoring strength, for a series of cell thicknesses.
The surface contribution is strongest for a thin cell with
strong anchoring Wθ ≈ 100, which corresponds to Lθ = 0.01.
In the limit of rigid anchoring (Wθ → ∞) or extremely
weak anchoring (Wθ → 0), the effective anchoring potential
vanishes. For weak anchoring, the nematic effectively ignores
the pattern, while for rigid anchoring the surface follows the
prescribed pattern exactly.

To determine the parameter space in which parallel and
diagonal alignment are each favored, we display in Fig. 5(b)
the effective azimuthal anchoring potential Weff(π/4), shown
for Lθ = 0.100 and Lθ = 0.001. The diagrams indicate two
regions in which the the surface preference overrides the bulk
preference for a sufficiently thin cell. The first of these is the
regime found in the MC simulations (recall Fig. 2) on reducing
the circle size R/λ. Figure 5(b) confirms that the switch from
parallel to diagonal alignment that occurs with decreasing
circle radius is a general feature. Though the preference for
diagonal alignment is very slight, it is readily observed by
MC simulation. Simpler geometries have been found to also

FIG. 5. (Color online) (a) Surface energy as a function of polar
anchoring strength Wθ for R/λ = 0.5 and several cell depths. As
the cell depth decreases, the surface preference becomes more
pronounced for a given value of Wθ . (b) Phase diagram showing
the strength and orientation of the preferred azimuthal alignment
angle as a function of cell depth d/λ and circle radius R/λ for (i)
Lθ = 0.100 and (ii) Lθ = 0.001. Brown (bottom left and bottom right
edge) regions indicate diagonal alignment φ0 = π/4 while cyan (top
right) regions regions prefer alignment with the lattice vectors φ0 = 0
or φ0 = π/2. The regions preferring diagonal alignment expand into
larger cell depths as the anchoring strength increases.

exhibit similar dependences of bulk LC alignment on cell
thickness and anchoring strength [44,45]. The second region
favoring diagonal alignment is the thin brown (bottom right
edge) section at R/λ = 0.5, the largest possible circle radius.

A simple geometric observation explains the thin section:
This region of parameter space is dominated by the surface
term, due to the inability of x- or y-aligned LCs to effectively
fill space between two abutting circles whose edges are nearly
perpendicular to the LC director. Indeed, in this scenario,
the planar regions closely approximate squares whose edges
are aligned at ±π/4. Less intuitive is the explanation for the
light brown (bottom left) region that appears with decreasing
circle size. Here the surface energy, dependent on the area
of the surface features, decreases as the square of the surface
feature length scale. However, because bulk energy depends
on the area of the surface features times the penetration depth,
which is fixed by the length scale of the feature, the bulk energy
decreases as the cube of the surface feature length scale. Thus,
decreasing feature size increases the relative influence of the
surface preference.

The comparable magnitudes and conflicting preferences of
the bulk and surface energies at these length scales indicate that
combining lattice and motif contributions offers an interesting
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route to anchoring control. For these circular patterns, unlike
the rectangular and square patterns previously considered, the
alignment direction is promoted exclusively by the lattice
while the motif favors no particular alignment. In the next
section we therefore extend the capability of these systems by
reducing the motif symmetry from circles to ellipses. This is
done with the aim of determining how the anchoring behaviors
already observed can be extended or achieved with greater
control.

C. Elliptical patterns

We now consider elliptical patterns. For long ellipses,
one might expect the effective azimuthal alignment to lie
parallel to the semimajor axis, resembling the situation with
alignment on striped surfaces [30]. Hence, by adjusting ω,
it should be possible to control the effective azimuthal easy
axis and, by tuning the aspect ratio, also control the effective
azimuthal anchoring potential. The control parameter space
to consider is greatly expanded: While the cell depth d/λ and
the anchoring strength Wθ remain parameters, the circle radius
R/λ is replaced by the semimajor axis length b/λ, aspect ratio
b/a, and the alignment angle ω. From the structure of the
solution (13), we expect the cell depth and anchoring strength
to have similar effects in both patterns and so we focus on the
effects of the new parameters in this section.

In Fig. 6 we show effective azimuthal anchoring potentials
Weff(φ) calculated for a variety of values of ω and b/a. The
coverage fraction of the pattern, or equivalently the area of
the elliptical motif, is kept constant in order to fix the effective
polar angle. An immediately obvious feature, compared to the
equivalent profiles for circular patterns plotted in Fig. 4, is that
the mirror symmetry of the pattern about φ = π/2 is entirely
broken, leaving behind a nonsymmetric anchoring potential
reminiscent of the structures fabricated in [46].

For fairly modest aspect ratios, the alignment angle of the
ellipse controls the effective easy axis such that the energy
minima occur at φp = ω. For smaller values of ω, or aspect
ratios close to unity, the results are more complex: For instance,
the effective easy axis for ω = π/8 in Fig. 6(a) is φp = π/16
instead of π/8. Also, in Fig. 6(b) we see that, for a rotation
angle of π/4, the azimuthal effective easy axis moves from
alignment with the sides of the unit cell to alignment with the
semimajor axis of the ellipse gradually, preferring φp = π/16
for an aspect ratio of 1.05 and φp = π/8 for an aspect ratio
of 1.1.

The mechanism for this transition is twofold. First, the
surface energy consistently prefers azimuthal alignment along
the semimajor axis of the ellipse. Though the angle preferred
by the surface remains the same for any nonunit aspect ratio,
the strength of the preference grows with increasing aspect
ratio. Second, as the aspect ratio grows, the bulk energy of
the LC tends to prefer an azimuthal angle aligned with the
ellipse alignment angle, but this move happens slowly such
that small-to-moderate aspect ratios result in a preferred angle
somewhere between φp = 0 and φp = ω. The magnitude of
the bulk energy preference also grows with increasing aspect
ratio, but less dramatically than that of the surface energy
preference.

(a)

(b)

FIG. 6. (Color online) Total LC energy as a function of the
azimuthal angle shown for (a) several ellipse rotation angles with
b/a = 1.2 and (b) several different aspect ratios with ω = π/4. Both
panels have d/λ = 1, Lθ = 0.01, and a coverage fraction equal to
that of a circle with R/λ = 0.4. Rotation of the ellipse results in
migration of the preferred azimuthal angle from alignment with the
axes of the unit cell to alignment with the semimajor axis of the ellipse.
However, (b) shows that this transition in azimuthal angle preference
is not immediate, but instead passes bistably through several smaller
angles as the aspect ratio increases.

The value of φp is therefore the result of a tension between
surface and bulk effects. We display the effective easy axis
and the effective anchoring potential as a function of aspect
ratio in Fig. 7(a). For an alignment angle of ω = π/4, φp

quickly aligns with the basis once the aspect ratio is increased
above unity and Weff(φp) increases linearly. For a more
subtle rotation angle, φp rotates more slowly away from the
lattice preference and does not reach alignment with the basis
for any value of the aspect ratio that maintains the ellipse
inscribed in the unit cell. Through this transition space, the
magnitude of Weff(φp) increases slowly due to the compe-
tition between bulk and surface preferences for azimuthal
alignment.

Figure 7(b) presents a phase diagram for the effective easy
axis as a function of the semimajor axis and aspect ratio of
the elliptical motifs while holding cell depth and anchoring
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(a)

(b)

FIG. 7. (Color online) (a) Weff(φp) (dashed line, left axis) and
φp (solid line, right axis) given a growing aspect ratio for ellipse
alignment angles of ω = π/4 [dark gray (brown) and ω = π/8 [light
gray (cyan)] with d/λ = 1, Lθ = 0.01, and a coverage fraction equal
to that of a circle with R/λ = 0.4. (b) Phase diagram of φp as a
function of aspect ratio b/a and semimajor axis length b/λ with
d/λ = 1 and Lθ = 0.01 for ellipse rotation angles (i) ω = π/4 and
(ii) ω = π/4. The dashed lines in (b) indicate the paths of constant
coverage fraction followed in (a).

strength constant. As expected, increasing aspect ratio leads to
alignment of the effective easy axis with the ellipse long axis
(φp = ω). Also, unit aspect ratios only achieve φp = 0 at this
depth, thus reproducing the behavior seen for circle patterns.
We also note that, as seen in Fig. 5(b), smaller surface features
allow for realization of the surface preference through the
entire unit cell. In fact, Fig. 5(b ii) indicates that a smaller
coverage fraction does allow the effective easy axis to reach
alignment with the basis, in contrast with the results of the
larger feature in Fig. 5(a). Generally, for small- to moderate-
sized surface features, increases in aspect ratio quickly shift the
LC azimuthal preference to align with the basis, overcoming
the influence of the bulk.

Given the competition for LC alignment at the substrate
layers, the constant-φ approximation may be too restrictive
to characterize behavior at the surfaces of this system.
The results of the MC simulations also suggest this: In the
configurations shown in Fig. 1(b), the particles tend to align
tangentially around the edge of the circle because for τ < 1
the energetically cheapest way to achieve the vertical-to-planar
transition around the perimeter of the circle is through a twist
deformation. In Sec. III D, therefore, we numerically minimize
the free energy (7), plus a saddle-splay term, with respect to
a completely arbitrary director profile to quantify the effect of
azimuthal variations at each surface.

(a)

(b)

FIG. 8. (Color online) (a) Results from the three-dimensional
director minimization model. Shown is the director orientation on
the bottom face of the unit cell for planar-on-vertical patterns of radii
R/λ = 0.5, 0.4, 0.33, and 0.2. These simulations are performed with
Lθ = 0.001, d = 1.0, a final grid size of 20 × 20 × 21, and an initial
guess that had the director aligned along the y axis. (b) Corresponding
results from Monte Carlo simulations.

D. Numerical model

We performed a numerical minimization of the Frank
energy (7) plus a saddle-splay term

f24 = −1

2
(K2 + K24)

∫
d3x ∇ · (n∇ · n + n × ∇ × n) (24)

to better capture the LC behavior at the top and bottom
boundaries. Again, we assume K1 = K3 
= K2 and we set
K24 = (K1 − K2)/2 as per [47], but now the director is
allowed to vary arbitrarily in three dimensions. A Cartesian
representation of the director n̂ = (nx,ny,nz) was used and
the unit length constraint n̂ · n̂ = 1 enforced locally. The
energy was discretized using second-order finite differences
and minimized using an adaptive gradient-descent relaxation
method with line searches. To improve convergence, succes-
sive refinement was used: An initial guess is relaxed on a coarse
grid and then interpolated and relaxed onto successively finer
grids. At each step, the system was relaxed until the energy
converged.

Results from the relaxation model for a set of planar-on-
vertical patterned surfaces are shown in Fig. 8(a). An initial
guess with the director aligned along the y axis was used. After
relaxation, the director adopts an orientation tangent to the
pattern edges, as seen in the corresponding MC simulations
[Fig. 8(b)]. Similar behavior has been seen experimentally
near the boundaries of nematics confined within curved curved
geometries [48,49]. The tangential alignment arises because it
corresponds to a twist deformation across the vertical-planar
boundary, which is energetically cheaper than a bend or splay
deformation. The behavior breaks down for smaller circle radii
because the bend deformation required to follow the arc of
the feature becomes too energetically expensive. That this
breakdown occurs at a larger radius in the MC runs is owed to
the fact that the K3/K1 ratio extracted from MC simulations
of hard ellipsoids [50] is larger than the value of 1 used for the
numerical relaxation.

In order to test the effect of the saddle-splay term, we also
explore extreme K24 values as determined by the Ericksen-
Leslie condition that |K24| � K2 [51]. Figure 9 shows several
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(a) (b) (c) (d)

FIG. 9. (Color online) Numerical results excluding saddle splay
(top) and including maximally strong saddle splay (bottom) for
planar-on-vertical patterning with R/λ = 0.33, Lθ = 0.01, and d =
1.0. (a) Director orientation on the bottom face of the unit cell,
(b) energy density on the bottom face of the unit cell [light gray
(cyan) and dark gray (brown) correspond to positive and negative
energy, respectively], (c) polar angle profile through the depth of the
cell, and (d) azimuthal angle profile through the depth of the cell.

results for K24 = −K2 (top) and K24 = K2 (bottom) with
relatively weak surface anchoring. The director configurations
of Fig. 9(a) show that strong saddle-splay inclusion serves to
stabilize an escaped feature at the bottom of the circle motif.
This effect is observable in Fig. 9(b) as well by the spike in
the energy density near the bottom of the circle and the faint
regions of negative energy density to the sides of the spike. This
feature is reminiscent of the hedgehog structure commonly
observed in experimental LC systems [52–54]. Under strong
anchoring conditions (Lθ = 0.001), the inclusion of saddle
splay has little effect, as expected.

The polar and azimuthal angle profiles of Figs. 9(c) and 9(d)
indicate that the effect of K24 through most of the unit cell is
nearly unobservable: Relaxation of the director field away from
the LC boundaries is slowed very slightly, but no meaningful
qualitative difference exists away from the surfaces. We quan-
tified the vector difference between director configurations
at each grid point for these two cases as 1 − |n1 · n2| and
found the 50th and 95th percentiles to be 0.004 98 and 0.0747,
respectively. This confirms the monodomain findings of Sec. II
and supports both the exclusion of saddle splay and the use of
a constant azimuthal angle in our analytical results.

IV. CONCLUSION

This paper has considered the alignment behavior of square
arrays decorated with elliptical motifs, demonstrating that
such patterns can be used to create surfaces with controllable
anchoring potential and easy axis by varying the period of the
pattern, ellipse orientation, aspect ratio, and coverage fraction.
Given the two-constant approximation and the assumption of a
constant azimuthal angle, the director configuration and energy
can be computed analytically. Depending on the circle radius,
cell depth, and polar anchoring strength of the alignment
material, the ground state may have azimuthal alignment along
either of the lattice vectors, or diagonally.

Our study offers invaluable advice for applications because,
while the elliptical patterned surface offers a remarkable
degree of control over the anchoring properties, the design

parameter space for the pattern is large. Briefly, surfaces
patterned by rotated ellipses allow control of the azimuthal
angle over a continuum of values between the lattice vectors
and the diagonal depending on the orientation of the ellipse.
In these cases, the ellipse aspect ratio controls the effective
anchoring potential. The behavior is nontrivial, however,
and includes regions of bistability as well as an azimuthal
anchoring transition for some designs.

Unlike for other patterned surfaces previously studied, the
constant azimuthal angle approximation is only of limited use
at the surfaces. A numerical study showed a preference for
tangential alignment along the vertical-planar boundary of the
pattern in excellent agreement with MC simulations. Also, the
inclusion of a saddle-splay term in the Frank energy is found
to promote formation of an escaped feature in the director field
at one point on the circle motif.

While the present study has considered a flat surface, the
results may also be important for experimentalists using arrays
of tall posts to align LCs as has been reported in [55–57].
It seems that only a very modest amount of anisotropy in
the shape of the pillars, for example, using posts of elliptical
cross section, may break the square symmetry and lead to
significantly better azimuthal alignment if desired.
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APPENDIX

To evaluate the Fourier coefficients for the easy axis, first
substitute x → x ′ + 1/2 and y → y ′ + 1/2, which allows (17)
and (18) to be rewritten as

Snm = π

2
exp[πi(n + m)]

∫∫
D

exp[2πi(nx ′ + my ′)]dx ′dy ′

(A1)
and

(
x ′ cos ω + y ′ sin ω

a

)2

+
(

x ′ sin ω − y ′ cos ω

b

)2

� 1,

(A2)
respectively. Note that the exponential prefactor in (A1) is
(−1)n+m since n and m are integers.

Next, rotate the coordinates via the transformations
(x ′ cos ω + y ′ sin ω)/a → x ′′ and (x ′ sin ω − y ′ cos ω)/b →
y ′′ and integrate using these new coordinates

Snm = abπ

2
(−1)n+m

∫∫
exp{2πi[(n cos ω+

(x′′ )2+(y′′ )2�1

m sin ω)ax ′′

+ (n sin ω − m cos ω)by ′′]}dx ′′dy ′′. (A3)

Define a′ = (n cos ω + m sin ω)a, b′ = (n sin ω − m cos ω)b,
α = (a′,b′), and g(s) = exp(is) and convert to polar
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coordinates such that (x ′′,y ′′) → rξ , where ξ = (cos θ,

sin θ ):

Snm = abπ

2
(−1)n+m

∫ 1

0
r dr

∫
ξ

g(2πrα · ξ )dξ. (A4)

Equations (1.2) and (1.5) from [58] allow us to evaluate the
inner integral to find

Snm = abπ

2
(−1)n+m

∫ 1

0
2πrJ0(2πr

√
a′2 + b′2)dr. (A5)

Finally, let k = 2π
√

a′2 + b′2 and s = kr and note that∫
xJ0(x)dx = xJ1(x) to obtain

Snm = abπ

2
(−1)n+m 2π

k2

∫ k

0
sJ0(s)ds

= abπ

2
(−1)n+m 2π

k
J1(k)

= abπ

2
(−1)n+m J1(2π

√
a′2 + b′2)√

a′2 + b′2 , (A6)

the result stated in Eq. (19).

[1] B. Jerome, Rep. Prog. Phys. 54, 391 (1991).
[2] T. J. Spencer and C. M. Care, Phys. Rev. E 74, 061708 (2006).
[3] S. Kondrat, A. Poniewierski, and L. Harnau, Eur. Phys. J. E 10,

163 (2003).
[4] G. Barbero, T. Beica, A. L. Alexe-Ionescu, and R. Moldovan,

J. Phys. (France) II 2, 2011 (1992).
[5] C. Anquetil-Deck, D. J. Cleaver, and T. J. Atherton, Phys. Rev.

E 86, 041707 (2012).
[6] J. H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, Appl.

Phys. Lett. 78, 3055 (2001).
[7] Y. W. Yi, V. Khire, C. N. Bowman, J. E. Maclennan, and N. A.

Clark, J. Appl. Phys. 103, 093518 (2008).
[8] M. Yoneya, J. H. Kim, and H. Yokoyama, Appl. Phys. Lett. 80,

374 (2002).
[9] B. Lee and N. A. Clark, Science 291, 2576 (2001).

[10] J.-H. Kim, M. Yoneya, and H. Yokoyama, Nature (London) 420,
159 (2002).

[11] M. Stalder and M. Schadt, Liq. Cryst. 30, 285 (2003).
[12] C. V. Brown, M. J. Towler, V. C. Hui, and G. P. Bryan-Brown,

Liq. Cryst. 27, 233 (2000).
[13] S. Kitson and A. Geisow, Appl. Phys. Lett. 80, 3635 (2002).
[14] D. K. Hwang and A. D. Rey, Soc. Ind. Appl. Math. 67, 214

(2006).
[15] A. M. Lowe, B. H. Ozer, Y. Bai, P. J. Bertics, and N. L. Abbott,

ACS Appl. Mater. Interfaces 2, 722 (2010).
[16] L. Z. Ruan, J. R. Sambles, and I. W. Stewart, Phys. Rev. Lett.

91, 033901 (2003).
[17] L. Wei, J. Weirich, T. T. Alkeskjold, and A. Bjarklev, Opt. Lett.

34, 3818 (2009).
[18] I. H. Bechtold and E. A. Oliveira, Mol. Cryst. Liq. Cryst. 442,

41 (2005).
[19] S. Varghese, S. Narayanankutty, C. W. M. Bastiaansen, G. P.

Crawford, and D. J. Broer, Adv. Mater. 16, 1600 (2004).
[20] M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, Jpn. J.

Appl. Phys. 31, 2155 (1992).
[21] F. K. Lee, B. Zhang, P. Sheng, H. S. Kwok, and O. K. C. Tsui,

Appl. Phys. Lett. 85, 5556 (2004).
[22] V. K. Gupta and N. L. Abbott, Science 276, 1533 (1997).
[23] Y. L. Cheng, D. N. Batchelder, S. D. Evans, J. R. Henderson,

J. E. Lydon, and S. D. Ogier, Liq. Cryst. 27, 1267 (2000).
[24] P. Prompinit, A. S. Achalkumar, J. P. Bramble, R. J. Bushby,
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