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Impact of microphysics on the growth of one-dimensional breath figures
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Droplet patterns condensing on solid substrates (breath figures) tend to evolve into a self-similar regime,
characterized by a bimodal droplet size distribution. The distributions comprise a bell-shaped peak of
monodisperse large droplets and a broad range of smaller droplets. The size distribution of the latter follows
a scaling law characterized by a nontrivial polydispersity exponent. We present here a numerical model for
three-dimensional droplets on a one-dimensional substrate (fiber) that accounts for droplet nucleation, growth,
and merging. The polydispersity exponent retrieved using this model is not universal. Rather it depends on
the microscopic details of droplet nucleation and merging. In addition, its values consistently differ from the
theoretical prediction by Blackman and Brochard [Phys. Rev. Lett. 84, 4409 (2000)]. Possible causes of this
discrepancy are pointed out.
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I. INTRODUCTION

When a flux of supersaturated vapor gets into contact with
a solid substrate, a condensation process can originate, leading
to the formation of droplets patterns on the substrate (“breath
figures” [1]). The interest in breath figures is both theoretical
and practical. From the theoretical point of view, they can be
used as a test ground for scaling concepts in a well-posed
nonequilibrium setting. From the practical point of view,
they appear in many natural phenomena, e.g., dew deposition
on a spider web or on a leaf. They can also be exploited
for technological applications: water collection from dew
harvesting [2–4], biological sterilization [5], manufacturing
of surface structures and patterns for nanotechnologies [6–9],
fabrication of efficient heat exchangers and cooling devices
[10–12]. For such applications, understanding and controlling
the droplets’ formation, growth, and coalescence is crucial.

The formation of breath figures undergoes several phases
[13]. First, the droplets nucleate on the substrate; then
they grow and coalesce, creating a roughly monodisperse
distribution. Eventually the space released by merging is
sufficient for the nucleation of new droplets. As the evolution
continues, self-similar droplet patterns appear [14–17].

In this phase, bimodal droplet size distributions emerge in
experiments [14,18–21], as well as in simulations [21–23].
The size distributions feature a monodisperse bell-shaped
peak for the largest droplets, and a power-law distribu-
tion for the smaller droplets, characterized by a nontrivial
polydispersity exponent. Scaling descriptions for the droplet
number density have been largely adopted in the classical
theory for breath figures [14,15,22,24–27]. Such a theory
relates the polydispersity exponent to the exponents for the
time decay of the droplet number and the porosity, i.e.,
the fraction of the nonwetted area over the total area of the
substrate [16,17]. The scaling descriptions of the droplet size
distribution are also solutions [28,29] of the Smoluchowski
coagulation equation [30], an integro-differential equation
describing the evolution of the droplet size distribution as
a consequence of merging processes. However, for droplets
growing on two-dimensional substrates the polydispersity
exponent derived from the solution of the Smoluchowski

coagulation equation [31] was found to be noticeably smaller
than the value found in numerical simulations [21,32] and
larger than the one observed in experiments [21].

In the present paper, we examine the case of a one-
dimensional substrate with three-dimensional droplets. We use
a numerical approach in order to test the existing scaling theory
and, in particular, the common assumption that the polydis-
persity exponent takes a universal value [14,15,22,24–27,31].
We introduce a numerical model based on a nucleation rule
governed by surface tension-driven instabilities. The dynamics
account for the presence of a precursor film between droplets,
droplet growth due both to direct mass deposition from
the surrounding vapor and surface diffusion, and nontrivial
droplet interactions due to deviations from the spherical
shape. By means of simulations, we systematically explore
the dependence of the droplet patterns on the deposition
rate, the rules of droplet interaction, the radius of the fiber,
and the nucleation radius. Surprisingly, we find a dependence
of the polydispersity exponent of the droplet size distribution
on the microscopic details of the model, leading to the
conclusion that the polydispersity exponent is not universal,
as assumed in the classical scaling models. Moreover, we
observe a sizable mismatch between the predicted [31] and
the observed values of polydispersity exponent. We point out
possible sources of the discrepancies.

The paper is organized as follows. In Sec. II we introduce
our model and its numerical implementation. In Sec. III we
revisit the scaling description of breath figures with special
emphasis on the predictions for droplet growth on fibers. These
predictions are then in Sec. IV carefully tested by comparison
to comprehensive numerical data. Finally, we conclude in
Sec. V.

II. MODEL AND NUMERICAL METHOD

The precise dynamics of droplet nucleation and growth
on a solid substrate is still a debated matter and depends
on the specific system. Possible mechanisms include [5,13]
heterogeneous nucleation on impurities and defects of the
substrate, homogeneous nucleation, hydrodynamic instabili-
ties, surface diffusion on the substrate, direct condensation of
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FIG. 1. (Color online) Sketch of the model adopted for the
numerical simulation of the growth of droplets i and i + 1 with radii
Ri and Ri+1, respectively. The droplets reside on a fiber (solid gray
line). They grow due to a constant water flux per unit length, �

[μm2s−1], due to the supersaturated vapor impinging on the fiber.
There is a precursor film of radial thickness ei in the region between
adjacent droplets, which has a length li . When the precursor film
collects sufficient water volume, new droplets are nucleated. When
two droplets approach each other within their interaction ranges εRi

and εRi+1, they merge.

the vapor molecules on the droplets surface, coalescence with
neighboring droplets, heat transfer localized at the triple line,
and preventing nucleation. The radius of an isolated droplet
on a substrate increases following a power law in time, whose
exponent changes according to the specific growth mechanism
[13,33,34]. However, in densely populated droplets systems,
the growth is always dominated by coalescence. Therefore,
the growth exponent of the average radius depends only on the
dimensionalities of the droplets and the substrate [15].

A. Modeling breath figures on a fiber

We model breath figures on a fiber as a one-dimensional
chain of spherical droplets, in contact with a supersaturated
vapor. The ith droplet has a radius Ri and an interaction range
εRi , where ε is constant for all the droplets. Such an interaction
range has been introduced to keep into account the deviation
from the spherical shape observed in experiments [35] (see
Fig. 1). We account for a cylindrical water prewetting film
surrounding the fiber, in the spaces between the droplets. Water
is deposited on the fiber by condensation from the surrounding
vapor. We do not consider removal of water from the fiber by
evaporation and gravity.

We consider a case where the supersaturation of the vapor
is small and the diffusive transport to the thread is the growth
limiting process for the droplets. In this case we expect
cylindrically symmetric vapor concentration profiles in the
far field. We assume that the system is in thermal steady-state
conditions, i.e., the water flux deposited on the fiber � – water
volume per unit length per unit time – is small enough to
keep the temperature of the droplets and the fiber uniform and
invariant in time. We also assume hydrodynamic steady-state
conditions, taking � to be constant in time and independent of
the position, x, on the fiber. These approximations have been
largely adopted in the study of breath figures [14] and can be
considered reasonable for laminar vapor flows. The modeling
of more complicated vapor flows may require the inclusion of
correction terms, but this is beyond the scope of the present
paper.

B. Evolution of the droplets

We adopt an event-driven approach and periodic boundary
conditions for the fiber. In order to simplify the problem,
we decouple the treatment of the droplets growth due to the
impinging flux from the nucleation process. In particular,
for each time step, we consider the growth in a time-
continuous fashion and the nucleation in a time-discrete
fashion. The algorithm to advance from time tj to the next
instant tj+1 proceeds as follows. At first, we only consider
the droplets growth due to the water flux impinging on the
droplets themselves and we disregard the nucleation of new
droplets. The constant flux density � impinging on a length
2Ri covered on the fiber by the particle i results in a growth law

d

dt

(
4

3
πR3

i

)
= 2Ri�. (1)

We integrate Eq. (1) in time, from t to t + �t , finding

Ri(t + �t) =
√

��t

π
+ R2

i (t). (2)

We calculate the time intervals �ti for binary merging events
between adjacent droplets i and i + 1, by solving the system

xi+1 − xi = (1 + ε)[Ri+1(t + �ti) + Ri(t + �ti)], (3)

where xi and xi+1 are the positions of the respective centers
(note that they move only when the droplets merge). We take
the minimum of these time intervals, �tmerge = min �ti , as a
first estimate of the time step to advance the system in time.
This time step corresponds to the first merging event that
would take place if there was no nucleation and no water
deposited between the droplets. We calculate the volume of
water Vgap,i deposited on the gaps between adjacent droplets
i and i + 1 during the time �tmerge, by integrating

dVgap,i

dt
= �[xi+1 − xi − Ri+1 − Ri] (4)

between t and t + �tmerge.

C. Nucleation of droplets

In each time step we determine if one or more nucleation
events could happen during the time interval �tmerge. To this
aim, we consider the existence of a cylindrical precursor
film, surrounding the parts of the fiber where no droplets are
present. The precursor film grows in time by deposition of
mass and may eventually develop into a surface tension-driven
instability. Stability analysis [36] for a fiber of radius Rf

reveals that perturbations with a wavelength λ > 2πRf are
unstable. The most unstable perturbation, i.e., the fastest
growing perturbation, has a wavelength λ∗ = 2

√
2πRf [36].

Therefore, λ∗ can be regarded as a characteristic wavelength
of the system. Necklace-shaped chains of droplets have been
observed in experiments on fibers, where equispaced droplets
appeared at a distance λ∗ from each other [36]. In our model,
we consider that a nucleation event can take place between two
droplets i and i + 1, during the time �tmerge only if the gap
length li between such droplets, is larger than the characteristic
wavelength of the first unstable perturbation λ∗. The gap length
is defined as li(t) = xi+1 − xi − (1 + ε)(Ri+1 + Ri), and, in
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order to have a nucleation event, it has to be

li > λ∗ = 2
√

2πRf . (5)

From the length of the gap li , we determine the number of
possible equispaced nucleation sites in the gap, Ni = �li/λ∗�.
Additionally, we impose a minimum droplet size Rmin, for
the nucleation event to take place. We approximate the film
between the droplets i and i + 1 as a cylinder with volume

Vfilm,i = π
[
(Rf + ei)

2 − R2
f

]
li , (6)

where ei is the thickness of the film. We check if the amount
of liquid Vgap,i deposited in the gap li during the time �tmerge

is large enough to satisfy the following condition:

Vfilm,i = V 0
film,i + Vgap,i � 4

3πR3
minNi, (7)

where V 0
film,i is the volume of the precursor film in the ith gap

at the beginning of the time step �tmerge, and Vgap,i is derived
by integrating Eq. (4) over �tmerge. In nucleation processes, the
critical droplet radius required to have a nucleation site can be
calculated as [37] Rnucl = 2σ/[ρLRV T ln(pV /p∞)], in which
σ is the surface tension between the liquid and the vapor, ρL

is the density of the liquid, T is the temperature expressed
in Kelvin, RV is the universal gas constant for water vapor,
pV /p∞ is the supersaturation rate, with pV the pressure of the
vapor and p∞ the pressure of the saturated vapor. In our model
we adopt the minimum droplet size as Rmin = Rnucl. For typical
environmental temperatures (20–40 ◦C) and supersaturation
rates pV /p∞ � 1.001 we have Rnucl < 1 μm. If Eq. (5) and
Eq. (7) are both satisfied, a new nucleation event takes place. If
Eq. (5) is satisfied but Eq. (7) is not, we consider the volume of
water Vgap,i deposited on the ith gap as increasing the thickness
of the cylindrical precursor film, and we store the information
until the next time step. If neither Eq. (5) nor Eq. (7) is satisfied,
we consider the amount of water deposited on the gap Vgap,i

as collected by the droplets adjacent to the bridge itself. In
particular, this water volume will be collected by the largest

droplet, due to the Laplace pressure pL [36]. Such a pressure
depends on the local curvature, and, in the case of a spherical
droplet of radius R, it is given by pL = 2σ/R.

D. Merging of droplets

We advance the system in time, by evolving it accordingly
to the estimated �tmerge: we grow the droplets, we insert the
new nucleated ones, and we merge the droplets when they
approach each other within their interaction ranges. In order
to do so, we replace the two merging droplets with a new one,
with a mass equal to the sum of the masses of the merging ones.
Its center is located in the center of mass of the two droplets.
In the simulation we explicitly prevent triple merging events
between neighboring droplets. Though rare, such unphysical
events could occur in the described numerical scheme, due to
the collection of liquid from the adjacent water bridges. When
triple merging is at hand at the end of the estimated time step
�tmerge, we halve the estimated time step, and we evolve the
system accordingly.

III. SCALING THEORY FOR DROPLETS ON A FIBER

In Fig. 2 we show the time evolution of the droplets and their
coverage of the fiber surface. The horizontal colored segments
represent the areas covered by the droplets on the fiber at a
certain time t . Different colors reflect the different ages of
the droplets at the specific time t . In black (blue online) we
represent newly created small droplets, and the color fades
(turning to yellow, then red online) as the droplets become
older. When two droplets merge, they release two regions of
length ∼R1 + R2 − (R3

1 + R3
2)

1/3
. For sufficiently big droplets

the released space is large enough to host new droplets. The
opening gaps become larger with the increase of the largest
droplets. Eventually, new droplets nucleate and grow in the
gaps, forming a hierarchical structure in the droplet size

FIG. 2. (Color online) Time evolution of the space occupied by the droplets for ε = 2%, � = 1000 μm2/s, N0 = 1.5 × 105, and Rf =
Rmin = 1 μm. The different colors represent the different ages of the droplets at the considered time instant, and they vary from dark (blue
online) for the youngest and still very small droplets to light gray (yellow [red online]) for the oldest and hence largest droplets. The central
panel is a magnification of the area indicated by the black frame in the left panel, and the right panel shows a magnification of the frame in
the central panel. They are both displayed on a logarithmic scale with the origin corresponding to the instant when the free area started to be
populated (i.e., the bottom side of the black frame in the previous panel).
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FIG. 3. Droplet number density for ε = 2%, Rf = Rmin = 1 μm,
� = 1000 μm2/s, Lf = 1 m, N0 = 1.5 × 105. The solid black line
represents n(s,t). The dashed black line is a fitting line for the
polydisperse scaling range of the droplets, and it has a slope −τ

on the log-log scale. The gray solid line represents the cutoff for the
large droplets f̂ [s/
(t)]. The gray dashed line represents the cutoff
for the small droplets: ĝ(s/s0). The two vertical dash-dotted lines
delimit the scaling range. For small droplets (s < λ∗) the distribution
is dominated by ĝ(s/s0). For large droplets (s/
(t) > 1%), the
distribution is dominated by f̂ [s/
(t)]. In this range, we can identify
a monodisperse bump, corresponding to the oldest droplets, and
a gap, corresponding to the times where the spaces released by
merging droplets were not large enough to allow the nucleation of
new droplets. The present graphs are derived by averaging the droplet
size distributions over 10 time instants and over five simulations with
different but equivalent initial conditions. The considered instants are
in the self-similar regime (t > 1000 s), and they are chosen in such a
way to have 100 points per time decade.

distribution. After a sufficiently long time, self-similar droplet
patterns emerge: pictures taken at different time instants look
alike, apart from length rescaling (cf. Fig. 2). This is reflected
in a power-law size distribution of the medium-sized droplets
[15,22,24–27], characterized by an exponent τ (see Fig. 3), the
polydispersity exponent. On the other hand, the largest (oldest)
and the smallest (newest) droplets have a different behavior.
Their physics is captured in cutoff functions which describe the
termination of the power law for large and small droplets [21].
The small-scale cutoff accounts for the minimum droplet size
Rmin and the characteristic length of the surface tension-driven
instability in the precursor film λ∗. The large-scale cutoff
comprises a bump and a gap (see Fig. 3). The bump represents
the oldest droplets in the system (first droplet population). The
gap originates from the times where the openings generated
between the first droplets were still too small to admit a second
wave of nucleation.

A. Size of the largest droplet, �(t)

We consider the following simplified setting, in order to
give an estimate of the growth law in time of the largest droplet
size 
(t). At time tn, we take a chain of monodisperse droplets
of radius Rn and size 
(tn) = R3

n, in contact with each other
(see Fig. 4). At time t∗n , the droplets have merged two by
two, therefore 
(t∗n ) = 2
(tn). Since the merging process is

FIG. 4. Sketch of the simplified model adopted for deriving
the time growth law of the size of the largest droplet 
(t). The
exponent of such a time growth is calculated based on the assumptions
that the droplets are monodisperse and in touch with each other.
The considered mechanisms governing the growth are the droplet
coalescence two by two and the deposition of water from a uniform
external flux per unit length �.

almost instantaneous, t∗n 	 tn. After merging, the droplets start
to grow as an effect of the deposition of a uniform water flux
per unit length, �, on the fiber. Due to mass conservation, at
times tn and tn+1, it must be 2R�t = 4

3πR3. Hence,


 =
(

3�

2π

)3/2

t z with z = 3/2. (8)

The so-calculated exponent z is in agreement with both
experimental findings [38] and theoretical predictions [15].
The prefactor ( 3�

2π
)
3/2

has to be regarded as a lower bound.
Since the merging is assumed to happen instantaneously, the
largest droplet in the system at time t∗n 	 tn will most likely be
a droplet that has just originated from a merging. Hence, the
upper bound for the prefactor will be 2( 3�

2π
)
3/2

.

B. The droplet number density n(s,t)

The droplet number density n(s,t) is defined as the number
of droplets of size s at time t per size interval ds of
droplets and unit length of the substrate, where s = r3 is
the size of a droplet with radius r . In our case, n(s,t)
has the units of [m]−4. Consequently, the Buckingham-Pi
theorem [39] ensures that the droplet number density can
be expressed as n(s,t) = s−θf (s/
(t),s/s0), where f (x) is a
dimensionless scaling function, s0 characterizes the cutoff for
the small droplets, 
(t) is the maximum droplet size at time
t , and θ = (D + d)/D [22] is an exponent depending on the
dimensionality of the droplets D and of the substrate d. Here
we consider the case of three-dimensional droplets, D = 3,
growing on a one-dimensional fiber, d = 1. Therefore, from
merely dimensional considerations one infers that θ = 4/3.

The classical scaling theory for breath figures [15,22]
established that, in the late regime, the droplet size distribution
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becomes self-similar: there is an increasing scaling range be-
tween s0 and 
(t), characterized by a polydispersity exponent
τ (Fig. 3). This suggests that the function f (s/
(t),s/s0) can
be factorized into a power law [s/
(t)]θ−τ and two cutoff
functions, f̂ [s/
(t)] and ĝ(s/s0), accounting for the large
and the small scales, respectively. For their asymptotics we
request that f̂ (x) = f̂0 = const for x 
 1, and that ĝ(x) = 1
for x � 1.

Thus, the droplet number density is expressed as

n(s,t) = s−θ

(
s


(t)

)θ−τ

f̂

(
s


(t)

)
ĝ

(
s

s0

)
. (9)

In the framework of the renormalization group theory
[40,41], one would expect τ to be a universal constant,
depending only on the dimensionality of the system and not
on microscopic details [14–16,22,24–28,31]. The value of τ

is related to the decaying exponents characterizing the time
evolution of the porosity and the number of droplets, by
consistency reasons (see Secs. III C and III D). This poses some
limitations to the range of the physically acceptable values of
τ . Within such range, a theoretical derivation of τ has been
proposed by Blackman and Brochard [31]. In Sec. III E we
will revisit it, and then we will compare the expected value of
τ to our numerical results (Sec. IV).

C. The number of droplets per unit length, N(t)

The total number of droplets N (t) at time t per unit length
of fiber can be written as

N (t) =
∫ ∞

0
n(s,t) ds. (10)

To evaluate the integral we substitute Eq. (9) into Eq. (10), and
we define a new variable x ≡ s/
(t). We replace the function
inside the integral with a proper combination of step functions,
using the fact that f̂ (x) should contribute to the shape of the
droplet distribution only for large droplets, being a constant f̂0

otherwise. Similarly, the role of ĝ(x) is to provide a cutoff for
small droplet sizes. Therefore, it takes the value ĝ(x) = 1 for
all but the smallest values of x. Consequently,

N (t) = f̂0 
1−θ

∫ xN

sN /
(t)
x−τ dx

= f̂0

1 − τ

1−θ

{
x1−τ

N −
[

sN


(t)

]1−τ}
, (11)

where xN 	 1 and sN 	 s0 are constant. Substituting Eq. (8)
into Eq. (11) we find

N (t) 	 f̂0

1 − τ

[
x1−τ

N − s1−τ
N(

3�
2π

t
)z(1−τ )

](
3�t

2π

)z(1−θ)

, (12)

and for t → ∞ the number of droplets hence decays in time
as

N (t) ∼ t−z′
, (13a)

with an exponent

z′ =
{
z(θ − 1), if τ � 1,

z(θ − τ ), if τ > 1.
(13b)

We note that the values of the exponent z′ do not depend
on the specific choice of sN , provided that there is a sufficient
scale separation between xN and sN/
(t). The case of τ � 1
corresponds to a monodisperse droplet population. The cor-
responding trivial exponent z′ = 1/2 can also be found from
the consideration that an ideally monodisperse population of
droplets of size 
 will cover the whole length of the fiber
Lf , in the limit t → ∞. Therefore, in such a case, one would
have 1 ∼ N
1/3 ∼ Nt1/2, such that N ∼ t−1/2. In particular,
this exponent describes the decay of the number of large
droplets populating the bump of the roughly monodisperse
large droplets in the large-scale cutoff function (Fig. 3). For a
polydisperse droplet population τ > 1, and Eq. (13b) sets an
upper limit for the range of the physically acceptable values
of τ . The size of the smallest droplets is fixed and the larger
droplets grow. Hence, the total number of droplets must decay
and z′ > 0 [see Eqs. (13)]. Since z > 0, it must be 1 < τ < θ .

D. The porosity, p∗(t)

The porosity p is defined as p = 1 − Ad/Atot, where Ad

is the wetted area covered by the droplets and Atot is the
total area of the substrate. For one-dimensional fibers these
quantities correspond to the wetted length and the total length
of the fiber, respectively. It is convenient to define an effective
porosity p∗ that keeps into account the interaction ranges of
the droplets

p∗ = 1 −
N∑

i=1

Ai(1 + ε)/Atot. (14)

Here Ai(1 + ε) is the effective area occupied by the ith droplet,
i.e., for a one-dimensional substrate, Ai = 2Ri , with Ri the
radius and (εRi) the interaction range of the ith droplet. In the
general case Ai ∼ s

d/D

i such that the effective porosity is

p∗(t) ∼ 1 −
∫ ∞

0
n(s,t) Csd/D (1 + ε) ds , (15)

where C is a constant depending on the geometry of the system.
Following a procedure similar to the one adopted to calculate
the number of droplets per unit length N (t), and introducing
the exponent θ = (d + D)/D, we find

p∗(t) = 1 − f̂0

θ − τ
C (1 + ε)

∫ xp

sp/
(t)
xθ−τ−1 dx, (16)

where again xp 	 1 and sp 	 s0, even though they may slightly
differ from the integration limits used to calculate the total
number of droplets, xN and sN . After few algebraic steps, we
derive

p∗(t) = 1 − f̂0

θ − τ

[
xθ−τ

p − sθ−τ
p(

3�
2π

t
)z(θ−τ )

]
C (1 + ε). (17)

In the late regime, t → ∞, we expect p∗(t) 	 0, because
the number of gaps decays together with the droplet number,
Eq. (13b), and the length of the gaps is bounded in our system.
Hence, 1 − f̂0 C (1 + ε) xθ−τ

p /(θ − τ ) = 0 and

p∗(t) 	 f̂0 sθ−τ
p

(θ − τ )
(

3�
2π

t
)z(θ−τ ) C (1 + ε). (18)
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Therefore, in the late-time scaling regime, the effective
porosity decays in time as

p∗(t) ∼ t−k with k = z(θ − τ ). (19)

Note that this exponent takes the same value as the exponent
z′ determined for the N (t), when τ � 1 [cf. Eqs. (13)]. This
indicates that the porosity can be viewed as the number of gaps
(coinciding with the number of droplets for a one-dimensional
system) multiplied by a characteristic gap size, which takes a
constant value in the long-time limit.

Interestingly, this result also holds when considering only
droplets larger than a fixed finite size sc > s0, i.e., smaller
droplets are considered part of the larger gaps. One can check
by straightforward calculations that only the prefactors of the
asymptotic power laws are affected by this change of the lower
cutoff.

E. Expected value of τ

The value of τ has been theoretically determined by
Blackman and Brochard [31] from an analysis of the scaling of
Smoluchovski’s equation [30] for droplet coagulation, which
is then evaluated in a renormalization group framework under
the assumption that the particle number and the porosity must
obey the same time dependence.

The derivation of Blackman and Brochard [31] relies on
the assumption that the collision rate ṅcoll(s1,s2; t), i.e., the
number density of droplets of size s1 and s2 that collide at time
t per unit length per unit time, factorizes into the product of
single particle distribution functions and a geometrical factor:

ṅcoll(s1,s2; t) ∼ n(s1,t)
n(s2,t)

N (t)

(
s
−1/D

1 + s
−1/D

2

)
, (20)

where ncoll(s1,s2; t) is the number density of collisions per unit
length of substrate between two droplets of size s1 and s2, from
time 0 to time t ; n(s1,t) is the number density of droplets of
size s1 per unit length of substrate at time t , and it represents
the probability density of having a droplet of size s1 at time
t (the normalization constant Lf can be seen as equivalent
to the number of knots in a Boltzmann lattice); n(s2,t)/N(t)
is the probability density of having a neighboring droplet of
size s2, uncorrelated to the size s1. The term (s−1/D

1 + s
−1/D

2 )
represents the speed at which the edges of the two adjacent
droplets approach each other, by effect of the mass deposition
through �. In order to demonstrate this, in the case of D = 3
and d = 1, one can write such speed as −l̇1, where the gap
between the two adjacent droplets is l1 = x2 − x1 − (R2 +
R1)(1 + ε). By substituting Eq. (2) and taking the derivative
with respect to time, one then finds Ṙi ∼ s−D

i .
The total collision rate per unit length of substrate at time t ,

Ṅcoll(t) = ∫ ∞
0 ṅcoll(si,sj ; t) dsi dsj is expected to scale as [31]

Ṅcoll(t) ∼ N (t). By equating such a scaling assumption and
Eq. (20), upon substitution of Eq. (13), a relationship is found,
among τ , d, and D. A similar procedure is repeated, keeping
into account Acoll(t), the change in the substrate area covered
by the droplets per unit length, due to collision events, instead
of Ncoll(t). The combination of the relationships among τ , d,
and D obtained through such a scaling analysis yields [31]
that τtheor = 7/6 for the growth of three-dimensional droplets

FIG. 5. Time evolution of the maximum droplet size (same
parameters as in Fig. 3). The black solid line represents the values
inferred from our simulations. The black dashed line has a slope
of 3/2 on the double logarithmic axes, proving that 
 ∼ t3/2, and
it represents the function y = (3�t/2π )z. The gray solid line is a
reduced plot, obtained by dividing 
 by the right-hand side of Eq. (8).

on a fiber. We refer the reader to Ref. [31] for the details of the
derivation.

IV. RESULTS

A. Setup of simulations and growth of the largest droplets

All simulations start from an initial condition where
N0 = 1.5 × 105 droplets form an equispaced necklace at the
distance λ∗ from each other; the length of the fiber Lf

is adapted accordingly. The initial conditions differ by a
slight polydispersity of the droplet radii, which are chosen as
r0,i = Rmin(1 + 0.01 Irand,i) where 1 � i � N0, and Irand,i are
random numbers in the interval 0 � Irand,i � 1. We select the
characteristic size of the distribution, 
(t), to be the maximum
droplet size at time t . As predicted by Eq. (8), it scales as

 ∼ ( 3�

2π
t)

z
, with z = 3/2 (Fig. 5). The asymptotic value of 2

in the reduced plot indicates that most likely the largest droplet
in the system has recently undergone a collision.

B. Scaling of the droplet number and the porosity

We check the consistency of the exponents for p∗(t) and
N (t) by inspecting Eq. (19) and Eq. (13b), respectively.

In order to improve the statistics, we run five simulations
for each case, with different but equivalent initial conditions.
To this aim, we take different seeds in the random number
generator used to create the initial distribution of the radii. The
curves p∗(t) and N (t) for different random numbers seeds all
lie on top of each other, and they have the same scattering of
the data (see Figs. 6 and 7). The five runs produced data at
time instants which were not perfectly in phase, due to the
event-driven nature of the model. Therefore, we use the curves
p∗(t) and N (t), produced by overlapping the individual curves
of the five runs, to extract the exponents k and z′ respectively.

In Fig. 6 we show the time evolution of the modified
porosity p∗(t), for five equivalent initial conditions. The
following parameters were used: ε = 2%, Rf = Rmin = 1 μm,
� = 1000 μm2/s. The lower lines (black) represent the total
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FIG. 6. (Color online) Time evolution of the effective porosity
(same parameters as in Fig. 3). The lower lines (black) represent the
total effective porosity, as defined in Eq. (14), for five simulations with
different but equivalent initial conditions; the upper lines (gray, solid)
represent the partial effective porosity p̄∗ = 1 − A∗/Atot, where A∗ is
the sum of the areas (lengths) covered by the droplets of size s > λ∗3.
The gray dashed line represents the line used to fit the porosity p̄∗,
and it has a slope −k = −0.332 ± 0.003, on the log-log axes. From
this we estimate τ = 1.112 ± 0.002.

effective porosity, as defined in Eq. (14). The upper lines
(gray, solid) represent the partial effective porosity p̄∗ =
1 − A∗/Atot, where A∗ is the sum of the areas (lengths) covered
by the droplets of medium and large size. Specifically, we keep
into account only the droplets of size sc > λ∗3, and we use
these curves to find the exponent k. As pointed out at the end
of Sec. III D, this choice does not affect the resulting exponent,
but it reduces the fluctuations related to the microscopic

FIG. 7. (Color online) Time evolution of the number of droplets
per unit length (same parameters as in Fig. 3). The dark gray thin lines
(blue online, uppermost right, denoted as “TOTAL” in the legend)
represent the total number of droplets N (t), for five simulations with
different but equivalent initial conditions. The light gray thin lines
(green online) represent the number of the small droplets, with s �
λ∗3 and its large oscillations. The medium-gray thick lines (red online)
represent the number of large and medium size droplets, with s > λ∗3;
upon fitting, we derive a decaying exponent z′ = 0.329 ± 0.002. The
black lines represent the number of the large droplets, with s/
(t) >

0.753; their decaying exponent is 0.503 ± 0.026 	 1/2, in agreement
with the theoretical prediction for a monodisperse droplet population.

details of the nucleation of new droplets. The gray dashed
line shows the best fit of the slope −k calculated from fitting
the modified porosities p̄∗ of the five simulations. For the
considered parameters, we obtain k = 0.332 ± 0.003.

In Fig. 7 we show the time evolution of the number of
droplets, for the same data of Fig. 6. The dark gray thin
lines (blue online) represent the total number of droplets
N (t). The black lines represent the number of the large
droplets: s/
(t) > 0.753; by fitting them we estimate a
decaying exponent of 0.503 ± 0.026 	 1/2, in agreement
with the theoretical prediction for a monodisperse droplet
populations [see Eq. (13b), for τ � 1]. The light gray thin lines
(green online) depict the number of the small droplets, with
s/
(t) < xN0(t) and xN0(t) = λ∗3/
(t). They suffer from
large oscillations, reflecting the repopulation of large areas
that are episodically released by the merging of large droplets.
The gray thick lines (red online) show the number of droplets
of medium and large size, with s > λ∗3, as defined above. We
use these lines to find the exponent characterizing the decay of
the number of droplets in time z′ = 0.329 ± 0.002. From Eq.
(13b) and Eq. (19), we expect k = z′, which is verified within
the estimated error; the relative error on the average value is
∼0.4%. From Eq. (19), we derive the polydispersity exponent
of the droplet size distribution τ = 1.112 ± 0.002, which is
within the physically acceptable range 1 < τ < θ .

C. Droplet number density

We calculate n(s,t) from our numerical data by dividing
the range of the sizes s into Nbins bins of width �sj , centered
around sj , where j = 1, . . . ,Nbins. At each time instant, we
then calculate the droplet number density n(sj ,t) by counting
how many droplets lie in the respective bins, (sj − �sj/2) <

s∗ < (sj + �sj/2), and dividing the respective numbers by
(Lf �sj ), where Lf is the total length of the fiber. We then
take the average of the resulting droplet size distributions
over 10 time instants and over five simulations with different
but equivalent initial conditions, each one with initial droplet
number N0 = 1.5 × 105. The considered time instants are in
the self-similar regime (t > 1000 s), and they have been chosen
in such a way to have 100 points per time decade. In particular
they belong to the time range 1000 s < t < 2000 s.

The resulting distribution n(s,t) is shown in Fig. 3 (black
solid line). The gray solid line and the gray dashed line
represent our numerical estimate of the cutoffs for the
large droplets f̂ [s/
(t)] and for the small droplets ĝ(s/s0),
respectively. They are obtained from Eq. (9), with the specific
choice for the cutoff asymptotes f̂ [s/
(t)] = f̂0 = const for
s/
(t) � 1%, and ĝ(s/s0) = 1 for s � λ∗.

In Fig. 8 we show the droplet number density rescaled
in such a way to make it dimensionless. The black solid
line represents the quantity n(s,t)sθ . With the gray solid
line we introduce a further rescaling n(s,t)sθ [s/
(t)]τ−θ ,
in order to verify the estimate of τ = 1.112 from the fit of
the effective porosity. The gray dashed line depicts the same
quantity, rescaled with the theoretical prediction τtheor = 7/6
[31]. The gray solid line is horizontal, in the range of sizes
corresponding to the self-similar regime, while the gray dashed
line has a slight positive slope. Consistently, our data support
a polydispersity exponent considerably smaller than expected,
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FIG. 8. Droplet number density n(s,t) (same parameters as in
Fig. 3). The black line represents n(s,t)sθ . The gray solid line
represents the same quantity rescaled: n(s,t)sθ (s/
)τ−θ , with τ =
1.112, from the porosity fit: such an estimate seems to be consistent,
since the plotted curve is horizontal, in the self-similar range (medium
size droplets). The gray dashed line represents the same rescaled
quantity with τtheor = 7/6 [31]: such a value is not consistent, since
the plotted curve is not horizontal, in the range of self-similar
sizes. The present graphs are derived by averaging the droplet size
distributions over 10 time instants and over five simulations with
different but equivalent initial conditions. The considered instants are
in the self-similar regime (t > 1000s), and they are chosen in such a
way to have 100 points per time decade.

but still matching the values obtained from the decay of the
porosity (Fig. 6) and the droplet number (Fig. 7). The good
agreement fully supports the classical scaling results relating
the power-law dependencies of these quantities [13,16,27,31].

D. Parameter dependence of τ

We repeated the procedure to calculate τ and to verify its
accuracy, varying several parameters, in order to clarify its
nature in terms of universality. In particular, we considered
its dependence on the interaction range ε between droplets,

the nucleation radius Rnucl, the fiber radius Rf , the impinging
water flux per unit length �, and the monodispersity of the
nucleated droplets chain. The variation of the latter has been
realized by randomly redistributing different percentages of
the water volumes Vgap,i accumulated on the ith gap, among the
new nucleated droplets on the same gap. We found that changes
in both the impinging flux � and the monodispersity of the
nucleated droplets do not affect the exponent τ , in line with
expectations (see Sec. III). However, the exponent τ exhibits
a clear dependence on the interaction range, as it grows with
ε [see Fig. 9(a), solid line]. The ratio between the nucleation
radius Rnucl and the characteristic length of the perturbation
λ∗ also has an influence on τ . In particular, τ decreases with
increasing Rnucl/λ

∗ [see Fig. 9(b), solid line].
Remarkably, all measured values of τ are substantially

different (4%–8%) from the theoretical prediction [31] de-
manding τtheor = 7/6 (see Fig. 9, dashed lines). The difference
is significant, since it exceeds 10 times the estimated error of
the exponent.

The dependence of the τ exponent on the interaction range
ε can be explained as follows. Having larger interaction
ranges ε implies having a larger area released upon merging.
One can see this by considering two merging droplets of
radius R1 and R2, with interaction range εR1 and εR2,
respectively. Just before the merging, they cover an area A =
2(R1 + R2)(1 + ε). After the merging the covered area will be
A′ = 2(1 + ε)R′, where R′ is the radius of the new generated
droplet. Therefore, the released area, i.e., the generated gap,
will be �g = 2(1 + ε)(R1 + R2 − R′). Larger generated gaps
imply an enhancement in the nucleation process, because
more space and more water volume are available for the new
droplets. On the other hand larger gaps imply a delay in further
merging processes. Such effects are particularly relevant when
the merging droplets are large, i.e., when (R1 + R2 − R′) is
large. For increasing values of ε, one can then expect an
increase in the number of small droplets and a decrease in
the number of large droplets. Since −τ represents the slope of
the size distribution of the droplets n(s,t) (see Fig. 3), this will
result in higher values of τ [see Fig. 9(a), solid line].

FIG. 9. The exponent τ as a function of (a) the interaction range, ε, and (b) the ratio among the radius of the nucleated droplets Rnucl and
the characteristic length of the perturbation originating the droplets chain λ∗. The solid lines represent the values of τ inferred from the fit of the
effective porosity. The dashed line is the theoretical value predicted by the classical theory for breath figures [31] τtheor = 7/6. The parameters
in (a) are Rf = Rmin = 1 μm, � = 1000 μm2/s, and N0 = 1.5 × 105, while for (b) we used ε = 0%, � = 1000 μm2/s, and N0 = 1.5 × 105.
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The dependence of τ on the ratio Rnucl/λ
∗ can be explained

through the following qualitative argument. We consider
the case where the nucleation radius Rnucl changes, but the
characteristic length of the perturbation λ∗ remains constant,
as well as all the other parameters. Given a certain newly
generated gap of size l0

i , the number of possible nucleation sites
Ni inside such a gap does not change with Rnucl, but only with
λ∗, since Ni = �l0

i /λ
∗�. The time interval �t during which Ni

droplets can nucleate is the time required to reduce the gap size
from l0

i to Niλ
∗. After that time, only Ni − 1 droplets will have

the space to nucleate inside the gap. However, the water volume
required to have a nucleating chain of Ni droplet is larger
for larger Rnucl and criterion (7) may not be matched during
the time interval �t . Therefore, for larger Rnucl, a smaller
number of new droplets will appear, before the gap closes.
Overall, a lower number of small droplets will be present in
the system, hence a larger number of big droplets, due to mass
conservation. Therefore, for increasing Rnucl/λ

∗, the exponent
τ will decrease [see Fig. 9(b), solid line].

E. Origins of the discrepancy with τtheor = 7/6

The theoretical prediction [31], τtheor = 7/6, is based on
the assumption that the collision rate between two droplets

of size s1 and s2 can be factorized as described in Eq. (20).
When one adopts the hypothesis that τ takes a universal value,
this approximation can be conveniently chosen to calculate the
values of τ . When τ depends on the microscopic details of the
dynamics, as observed in Fig. 9, such an assumption must be
tested for the data at hand.

To determine the collision rate for our numerical data, we
count the number of collisions per unit length per unit size in
two different time intervals �t1 = t1 − t0 and �t2 = t2 − t1,
both in the self-similar regime of the droplets. In order to
have a better statistics, we average the sets of results from five
simulations with equivalent initial conditions. These numerical
data are then compared to the integral of Eq. (20) between t

and t + �t . Upon substitution of the expressions for n(s,t)
and N (t) given by Eqs. (9) and (13), respectively, we find

�ncoll(s1,s2; t,�t) ∼ H̃ (s1s2)(1−3τ )/D
(
s

1/D

1 + s
1/D

2

)
× [(t + �t)3τ/2−1 − t3τ/2−1] (21a)

where H̃ = f̂

(
s1


(t)

)
ĝ

(
s1

s0

)
f̂

(
s2


(t)

)
ĝ

(
s2

s0

)
.

(21b)

FIG. 10. (Color online) Reduced number density of collisions per unit length �n∗
coll, during two different time intervals �t1 = t1 − t0 (left)

and �t2 = t2 − t1 (right), with t0 = 480.5 s, t1 = 1035.3 s, t2 = 1308.9 s (same parameters as in Fig. 3). To a good approximation, the plotted
quantities are independent of time. However, they show a nontrivial dependence on s1 and s2.
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FIG. 11. (Color online) Cross sections of the data displayed in
Fig. 10 (a) along the main diagonal and (b) perpendicularly to it,
during two different time intervals �t1 (dashed lines) and �t2 (solid
lines). (a) Along the main diagonal, sharply defined maxima appear
at sizes s∗

i (with i = 0, 1
2 ,1,2,3). (b) Perpendicularly to the main

diagonal, along the lines s1s2 = (s∗
0 )2 (black lines) and s1s2 = (s∗

2 )2

(light gray lines, green online), there are maxima at the diagonal
s1/s2 = 1, dips to its left and right, and a plateau for | log10 s1/s2| � 3.

Consequently, Eq. (20) implies that

�n∗
coll = �ncoll(s1,s2; t,�t)

H̃ (s1s2)(1−3τ )/D
(
s

1/D

1 + s
1/D

2

)[
(t+�t)

3τ
2 −1 − t

3τ
2 −1

]
=const. (22)

Hence, the reduced number density of collisions per unit
length of substrate �n∗

coll should be independent of the time
t and the sizes of the colliding droplets s1, s2. In Fig. 10
we plot the reduced number density of collisions per unit
length of substrate �n∗

coll during the intervals �t1, �t2. In
particular, we use the same set of data of Fig. 3, and we
take t0 = 480.5 s, t1 = 1035.3 s, t2 = 1308.9 s. We find that
�n∗

coll is indeed invariant in time, to a good approximation (see
Fig. 11). However, in variance with the assumed expression
for the collision rate, Eq. (20), it depends on s1 and s2. In
Fig. 11(a) we show a cross section of Fig. 10 along the
main diagonal s1 = s2 = s, for both the first time interval
�t1 (dashed line) and the second time interval �t2 (solid
line). In other words, we display the reduced number of
collisions between droplets of the same size. The data present
pronounced, very sharp peaks, which do not move in time.
The first peak, at s∗

0 , corresponds to an enhanced probability
of having a collision between droplets originating at the same
moment, upon nucleation in the same gap, when they reach
the size s∗

0 = (λ∗/2)3 (see Fig. 4). The second highest peak
corresponds to an enhanced probability of collision between
droplets of size s∗

1 = λ∗3. Following the mechanism described
in Fig. 4, we infer that this peak accounts for collisions
between droplets generated at the same moment in the same

droplet chain that have already collided once. An interpretation
along the same lines can be given for the peaks appearing at
s∗

2 = (2λ∗)3 and s∗
3 = (4λ∗)3. With our simulation parameters,

s∗
0 = 87 μm3 and s∗

1 = 700 μm3, s∗
2 = 5613 μm3 and s∗

3 =
44 900 μm3. The intermediate peaks appearing between the
main ones can be related to alternative merging mechanisms
between droplets originated at the same moment in the same
droplet chain. For example, the peak between s∗

0 and s∗
1 ,

corresponds to a size s∗
1/2 	 (3/2λ∗)3, suggesting a mechanism

where every second droplet of the chain has already merged
with its neighbor and the next merging takes place between
droplets of alternated sizes λ∗/2 and λ∗. For colliding droplets
larger than s∗

3 , such mechanisms are not relevant anymore,
thus suggesting the appearance of a self-similar area, where
the system has lost memory of the microscopic details of the
nucleation.

Figure 11(b) displays further cross sections of Fig. 10
during �t1 (dashed lines) and �t2(solid lines). These cross
sections are perpendicular to the main diagonal, and they
show the peaks appearing Fig. 11(a) at s∗

0 (black lines) and s∗
2

(light-gray lines, green online). The data display a recurring
structure, with a peak corresponding to the main diagonal and
a dip just next to it. Such a structure is present along the
whole main diagonal, as soon as the droplets are large enough
to allow for secondary nucleation in the emerging gaps. The
peak corresponds to the collisions between droplets of the
same size. The dip surrounding the peak can be explained
through the concept of self-similarity itself. The global droplet
size distribution n(s,t) can be regarded as a superposition
of bimodal droplet size distributions, with the same shape
displayed in Fig. 3 but different values of 
. If we consider
a generic portion of the area occupied by the droplets, where
the largest size is 
∗, the rescaled droplet size distribution of
such an area will present several droplets of similar size 
∗
(see the bump in Fig. 8), from which the peaks centered on
the main diagonal in Fig. 10 originate. Such local droplet size
distribution will also present a gap similar to the one of Fig. 3,
from which the dips of Fig. 11(b) originate.

We conclude that the factorization of the collision rate ṅcoll

Eq. (20), based on the assumption of the distribution of the
droplets sizes s1 being uncorrelated to the distribution of the
sizes of the neighbors s2, does not hold for our data.

V. CONCLUSIONS

So far, only few numerical [26,42,43] and experimental
works [38] have specifically addressed breath figures on a
one-dimensional substrate. Performing repeatable and con-
trollable experiments for droplets on a fiber presents technical
difficulties, such as keeping the temperature of a thin fiber
constant. Quasi-one-dimensional settings have been realized
by means of scratches on a plate [38], which allowed for better
control of the temperature of the substrate.

From the classical theory of breath figures it is known
that the size distribution of droplets on a substrate becomes
self-similar after some time that the system evolves; therefore
it can be described by means of scaling laws, at least in the
intermediate range of droplets sizes (the polydisperse range).
In particular, two scaling exponents appear: θ and τ . The value
of θ can be inferred from dimensional analysis, while the value
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of the polydispersity exponent τ is nontrivial. The present work
investigated the dependence of this exponent on the micro-
scopic details of the system, in order to verify the recent finding
[21] that τ might not be universal, as commonly assumed.
We developed an event-driven model for three-dimensional
droplets on a one-dimensional substrate (fiber). We included
the following details: the growth of the droplets by mass
deposition from an impinging flow of supersaturated vapor,
the precursor film between adjacent droplets, the nucleation
process by surface tension driven instability, and the merging
of adjacent droplets. We calculated τ , as well as the exponents
characterizing the decay in time of the porosity and the number
of droplets. The relations among these three exponents derived
in the classical scaling analysis [13,16,27,31], hold also for our
model. As expected, we found that the exponent τ does not
depend on the impinging mass flow and on the monodispersity
level of the nucleation process. However, it does depend on
the interaction range ε of the droplets and on the ratio between
the nucleation radius Rnucl and the spacing λ∗ between the
nucleating droplets. In particular, τ grows with increasing
interaction ranges ε and decreasing ratios Rnucl/λ

∗. Our results
contradict the expectation that the exponent τ should be
universal. Additionally, the values of τ that we inferred from
our simulations differ by 10 standard deviations from the
theoretical prediction τtheor = 7/6 [31]. Such a prediction was
based on the assumption that the probabilities of having two
neighboring droplets of prescribed sizes are uncorrelated. We

analyzed the distribution of the collisions respect to the sizes
of the colliding droplets, and we showed that this assumption
is inaccurate when one keeps into account the microscopic
details of the system.

Our observations pose new questions on the nonuniversal
nature of the polydispersity exponent τ , such as the specific
mechanisms underlying its parametric dependence as well
as its quantitative values. These questions have been raised
here for a setting where the flux impinging on the droplets
is proportional to the wetted length on the fiber, i.e., a
situation where the droplet growth is limited by the diffusive
mass transport to the fiber. Alternatively, one could also
consider a setting where the droplets grow in proportion
to their total surface area. The classical expectation was
that this change of the microscopic details of the droplet
growth should not affect the value of τ . In order to test this
expectation and to address the emerging questions, further
numerical simulations should be developed, as well as a new
theoretical framework accounting for the nonuniversal nature
of τ .
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