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Linear and nonlinear magnetic properties of ferrofluids
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Within a high-magnetic-field approximation, employing Ruelle’s algebraic perturbation theory, a field-
dependent free-energy expression is proposed which allows one to determine the magnetic properties of ferrofluids
modeled as dipolar hard-sphere systems. We compare the ensuing magnetization curves, following from this free
energy, with those obtained by Ivanov and Kuznetsova [Phys. Rev. E 64, 041405 (2001)] as well as with new
corresponding Monte Carlo simulation data. Based on the power-series expansion of the magnetization, a closed
expression for the magnetization is also proposed, which is a high-density extension of the corresponding equation
of Ivanov and Kuznetsova. From both magnetization equations the zero-field susceptibility expression due to
Tani et al. [Mol. Phys. 48, 863 (1983)] can be obtained, which is in good agreement with our MC simulation
results. From the closed expression for the magnetization the second-order nonlinear magnetic susceptibility is
also derived, which shows fair agreement with the corresponding MC simulation data.
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I. INTRODUCTION

Dipolar fluids consist of particles which carry a permanent
dipole, be it a magnetic one or an electric one. The most
prominent examples of the first group are magnetic fluids,
while the second group typically corresponds to molecular
liquids. Magnetic fluids are colloidal suspensions of single
domain magnetic grains dispersed in a solvent [1]. In order
to keep such systems stable against aggregation the grains
have to be coated with polymers or surfactant layers or they
are stabilized by electric double layer formation in the case of
water-based ferrofluids. (Of course, there are fluids which con-
sist of molecules carrying a substantial permanent magnetic
dipole. One of the most significant representatives of these
materials is oxygen, which exhibits strong paramagnetism [2].)
In the case of dipolar molecular liquids the electric dipole
moments stem from the electronic structure of the molecules.
Concerning magnetization versus electric polarization, there
is an important difference between these two types of fluids.
By applying sufficiently high magnetic fields, for magnetic
fluids it is possible experimentally to reach a magnetically
saturated state, in which all dipoles are aligned in the direction
of the external field H [3]. Therefore magnetic fluids in
applied external magnetic fields allow one to study the strongly
nonlinear dependence of the magnetization M on the field H.
In the case of electrically dipolar liquids saturation cannot be
reached with experimentally accessible electric field strengths
[4]. (The strong electric fields may destroy the molecules,
electric breakdown can occur, and there are technical dif-
ficulties to generate very strong electric fields.) Therefore
molecular liquids exposed to typical external electric fields
exhibit only a weak nonlinear behavior [5]. Accordingly, in
the literature the dielectric constant (or permittivity) of dipolar
liquids is determined on the basis of linear response theories
[6–11]. This means that in practice only the electric field
dependence of the polarization for small electric fields matters.
In order to understand the linear and nonlinear behavior
of magnetic fluids, it is necessary to determine the whole

magnetization curve M(H ), where H = |H| and M = |M|.
Commonly, however, from the magnetization one infers the
magnetic susceptibility or, more precisely, the initial magnetic
susceptibility or zero-field magnetic susceptibility,

χ0 =
(

∂M

∂H

)
H=0

. (1)

Here χ0 is a scalar susceptibility, assuming that the direction
of the vector M is the same as the direction of the vector
H. (For magnetic fluids this assumption is well satisfied.)
The difference between electrically and magnetically dipolar
fluids is also reflected by the development of their theoretical
description. Within the mean spherical approximation (MSA)
Wertheim [8] obtained an analytical equation only for the
dielectric constant of dipolar fluids. Later, when his theory
was transferred to magnetic fluids [12], this linear response
theory turned out to be insufficient for the description of
magnetic fluids and had to be extended by determining the
full magnetization M(H ) [13–15]:

M = mρ L

{
βmH + 3[1 − q(Kη)]

mρ
M

}
(2)

and [see Eq. (1)]

χ0 = χL

q(−Kη)
. (3)

In Eq. (2) ρ = N/V is the number density of the magnetic
particles, η = πρσ 3/6 is the dimensionless packing fraction
with the hard-sphere diameter σ , m is the strength of the
permanent dipole moment of the particles (see Sec. II below),
β = 1/(kBT ) is the inverse temperature with the Boltzmann
constant kB , and

L(x) = coth(x) − 1/x (4)

is the Langevin function with L(x → 0) = 1
3x. In Eq. (3)

χL = βρm2/3 (5)
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is the Langevin susceptibility (see below), q(x) = (1 +
2x)2/(1 − x)4 is the reduced inverse compressibility function
of the hard-sphere fluid, corresponding to the underlying
model of dipolar hard spheres with diameter σ . According
to MSA theory, Kη and thus the dimensionless parameter K

in Eqs. (2) and (3) is determined by the implicit equation

4πχL = q(2Kη) − q(−Kη), (6)

which determines K in terms of χL and η (see Ref. [16]).
Equation (3) follows from Eqs. (1) and (2). We note that within
the framework of MSA the dimensionless parameter K turns
out to be given by the expression

K =
∫ ∞

σ

dr12
hD(r12)

r12
, (7)

where hD(r12) is a certain angular projection of the total
correlation function of the dipolar hard-sphere systems as
function of the interparticle distance.

For dipolar hard-sphere fluids a more reliable, perturbative
description was given by Ivanov and Kuznetsova [17] such
that their magnetization equation is valid for wider ranges of
the number density and the dipole strength:

M(H ) = ML(He) = mρL(βmHe),

He = He(H ) (8)

= H + 4π

3
ML(H ) + (4π )2

144
ML(H )

dML(H )

dH
,

with

ML(H ) = mρL(βmH ). (9)

In Eq. (8) He is the effective magnetic field strength
which takes into account that the magnetization modifies
the field within the liquid. The Langevin magnetization ML

is defined by Eq. (9) [compare Eq. (2)] and renders the
Langevin susceptibility χL = (∂ML/∂H )|H=0. We note that
the Hamiltonian of dipolar hard-sphere systems in an external
field depends parametrically on σ,m, β, V, and H so one
might expect that Eqs. (8) and (9) exhibit, inter alia, a
dependence on σ which, however, is not the case. The reason
is that the approximation for the pair-correlation function,
the integral of which underlies these equations, contains only
contributions linear in the dipole-dipole interaction potential.
In order to avoid the occurrence of demagnetization these
integrals are calculated for infinitely elongated ellipsoidal
samples. In this case only the leading asymptotic behaviors
of the hard-sphere potential [uHS(r → ∞) = 0] and of the
corresponding Boltzmann factor [exp[−βuHS(r → ∞)] = 1],
which do not depend on σ , contribute to the corresponding
integrals determining Eqs. (8) and (9). Taking into account
higher-order contributions from the dipole-dipole interaction
render, however, a dependence of Eqs. (8) and (9) on σ . The
corresponding zero-field magnetic susceptibility follows from
Eq. (1):

χ0 = χL

[
1 + 4πχL

3
+ (4πχL)2

144

]
. (10)

With suitable fits for the parameters these results are in good
agreement with experimental data. However, simulation data
corresponding to higher values of the Langevin susceptibility

and of the density render a magnetic susceptibility which
differs significantly from Eq. (10). We note that expanding
Wertheim’s [8] MSA susceptibility [Eq. (3)] in terms of χL up
to third order also yields Eq. (10). Considering the dipolar
hard-sphere (DHS) fluid, Jepsen [18,19] and Rushbrook
[20,21] have augmented the Debye-Weiss equation by a use of
a third-order Langevin susceptibility term:

χ0

1 + 4πχ0/3
= χL − 15π2

9
χ3

L. (11)

It turns out that in Eq. (11) the expansion of χ0 in terms of χL

up to third order reproduces Eq. (10). Although the validity
of Eq. (10) has thus been proven in various ways, its range
of applicability is not satisfactory. Tani et al. [9] carried out
perturbation theory in order to calculate the dielectric constant
of dipolar hard-sphere fluids. Their results render a density-
dependent correction to Eq. (10):

χ0 = χL

[
1 + 4π

3
χL −

(
4π

3

)2

χ2
L + Idd	(ρ)χ2

L

]
, (12)

where

Idd	(ρ) =
∫

d3r2d
3r3

3 cos2 γ3 − 1

(r13r23)3
g(3)

σ (r12,r13,r23). (13)

In Eq. (13) g(3)
σ is the three-point correlation function of the

hard-sphere fluid and γ3 is the interior angle at vertex 3
in the triangle formed by hard spheres 1, 2, and 3. Using
the superposition approximation (see below), Tani et al. [9]
calculated the corresponding integral for various densities and
expressed it in terms of a Pade approximant:

Idd	(ρ∗) = 17π2

9

[
1 − 0.93952ρ∗ + 0.36714(ρ∗)2

1 − 0.92398ρ∗ + 0.23323(ρ∗)2

]
, (14)

with ρ∗ = ρσ 3 as the reduced number density in terms of the
hard-sphere diameter σ . In the low-density limit one has

lim
ρ→0

Idd	(ρ∗) = 17π2

9
, (15)

so in this limit Eqs. (12) and (14) reduce to Eq. (10). (Using the
weak-field version of an algebraic perturbation theory, Eq. (12)
also can be derived rigorously [11].) The main disadvantage of
this theory by Tani et al. is that it does not provide polarization
or magnetization curves M(H ).

The main goal of the present analysis is to construct a
perturbation theory for dipolar hard-sphere systems which
yields magnetization (and polarization) curves which are
consistent with Eq. (12). We accomplish this goal of
calculating the magnetic properties of magnetic fluids by
following a free-energy route, in contrast to Ivanov and
Kuznetsova [17], who derived the magnetization curve based
on the Bogolyubov-Born-Green-Kirkwood-Ivon formalism,
using the angular dependence of the single-particle orientation
distribution function. The knowledge of the field-dependent
free energy has the advantage that other properties, such
as magnetostriction, the compressibility factor, and the field
dependence of the phase diagram, can also be studied.
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II. MICROSCOPIC MODEL

We consider DHS fluids. Their particles share the same
diameter σ and at their center the same point dipole moment
of strength m. The fluids are characterized by the pair potential

uDHS
ij (ri ,rj ,ωi,ωj ) = uHS(ri ,rj ) + uDD

ij (ri ,rj ,ωi,ωj ), (16)

where uHS and uDD
ij are the hard-sphere and the dipole-dipole

interaction pair potential, respectively. The hard-sphere pair
potential is given by

uHS(ri ,rj ) = uHS(|ri − rj | = rij ) =
{∞, rij < σ

0, rij � σ
. (17)

The dipole-dipole pair potential is

uDD
ij (ri ,rj ,ωi,ωj ) = uDD

ij (rij ,ωi,ωj )

= −mimj

r3
ij

D(ωij ,ωi,ωj ), (18)

with the rotationally invariant function

D(ωij ,ωi,ωj ) = 3[m̂i(ωi) · r̂ij ][m̂j (ωj ) · r̂ij ]

− [m̂i(ωi) · m̂j (ωj )], (19)

where the center of particle i (j ) is located at ri (rj ) and
carries a dipole moment of strength mi = m (mj = m) with an
orientation given by the unit vector m̂i(ωi) [m̂j (ωj )] with polar
angles ωi = (θi,φi) [ωj = (θj ,φj )]; rij = ri − rj with rij =
|rij | connects the center of particle i and the center of particle
j . For a single magnetic dipole an external magnetic field gives
rise to the following additional contribution to the interaction
potential:

uDF
i (ωi) = uDF

i (θi) = −mi · H = −mH cos θi . (20)

The angle θi measures the orientation of the ith dipole relative
to the z axis (see above). This implies that in Eq. (20) the
field H is chosen to point to the z direction, without loss of
generality. The potential energy U of the system is the sum
of the interparticle interaction energy and the external field
contribution UDF:

U (rN,ωN ) = UDHS(rN,ωN ) + UDF(ωN ), (21)

where

UDHS(rN,ωN ) =
∑
i<j

[
uHS(ri ,rj ) + uDD

ij (ri ,rj ,ωi,ωj )
]

(22)

and

UDF(ωN ) = −
∑

i

mi · H = −mH
∑

i

cos θi . (23)

In Eqs. (21)–(23) the notations rN≡ (r1,r2, . . . ,rN ) and
ωN≡ (ω1,ω2, . . . ,ωN ) are used.

III. THEORY

In spatial dimension d = 3, for a dense fluid the explicit
calculation of the configurational partition function of the
interaction energy is not feasible [16]. However, using cor-
relation functions and various expansion methods, for model
systems one can obtain valuable approximations thereof. For a

DHS fluid in an external field the configurational contribution
to the partition function is

Qc = 1

N ! �N

∫
d3rNdωN

× exp
[−βUDHS(rN,ωN ) − βUDF(ωN )

]
, (24)

where � = ∫
dω = 4π . Here and in the following the pref-

actor 1/�N compensates the overcounting of orientational
configurations as being distinct such that Qc reduces to
the familiar configurational partition function in the limit
where the interaction potentials do not depend on ω. The
configurational contribution to the partition function Qc is
not dimensionless because the translational and rotational
contributions are not factored in here.

In the following we describe a perturbation theory in which
the dipolar hard-sphere system without external field is used
as the reference system. The configurational contribution to
the partition function of this reference system is

Q0 = 1

N ! �N

∫
d3rNdωN exp

[−βUDHS(rN,ωN )
]
. (25)

In an external field the partition function for ideal (nonin-
teracting) dipoles can–according to Langevin–be calculated
analytically:

QL = 1

�N

∫
dωN exp

[−βUDF(ωN )
]

= 1

�N

∫
dωN exp

[
βmH

N∑
i=1

cos θi

]
=

(
sinh α

α

)N

,

(26)

where α = mH/(kBT ) is the Langevin parameter; note that
Qc[ UDHS ≡ 0 ] = (V N/N!) QL, where V is the volume of
the sample. Originally, Kalikmanov [10,22] and Szalai et al.
[11,23,24] proposed application of the algebraic perturbation
theory of Ruelle [25] to describe dielectric and magnetic prop-
erties of various dipolar systems. Within this approach they
considered the interaction between the dipoles and the field
as a perturbation, taking into account via the corresponding
Mayer function:

f (ωi) = exp(βmH cos θi) − 1 = exp(α cos θi) − 1. (27)

Within linear response theory it is sufficient to use a second-
order power expansion of the Mayer function in terms
of α [f � α cos θi + α2(cos2 θi)/2] in order to obtain the
corresponding susceptibility. Since here we aim at calculating
the magnetization curves, the power-series expansion of the
Mayer function is not successful. In order to improve the
convergence of the corresponding perturbation approximation,
a special normalization of the Mayer function is introduced.
The configurational partition function of the system [see
Eq. (24)] can be rewritten as:

Qc = QL

N ! �N

∫
d3rNdωN

× exp
[−βUDHS(rN,ωN )

]e−βUDF(ωN )

QL

. (28)

042314-3



I. SZALAI, S. NAGY, AND S. DIETRICH PHYSICAL REVIEW E 92, 042314 (2015)

In Eq. (28) the field-dependent exponential coefficient can be written as

1

QL

exp
[−βUDF(ωN )

] = 1

QL

exp

(
βmH

∑
i

cos θi

)
=

( α

sinh α

)N
N∏

i=1

exp [α cos θi]

=
N∏

i=1

(
α exp [α cos θi]

sinh α

)
=

N∏
i=1

[1 + f̃ (α, cos θi)] = 1 +
N∑

n=1

⎡⎣ ∑
1�i1...<in�N

f̃ (ωi1 ) . . . f̃ (ωin)

⎤⎦, (29)

where

f̃ (ωi) = α exp [α cos θi]

sinh α
− 1 (30)

is the so-called special Mayer function. Substituting this expression into Eq. (28) and dividing by Q0QL [Eqs. (25) and (26)]
yields

Qc

Q0QL

= 1 +
N∑

n=1

1

Z0

∫
d3rNdωN exp

[−βUDHS(rN,ωN )
]⎡⎣ ∑

1�i1...<in�N

f̃ (ωi1 ) . . . f̃ (ωin)

⎤⎦, (31)

where Z0 is the configurational integral of the reference system:

Z0 =
∫

d3rNdωN exp
[−βUDHS(rN,ωN )

]
. (32)

For an isotropic reference system Eq. (31) can be rewritten in terms of the n-particle reference correlation functions g
(n)
0 (rn,ωn):

Qc

Q0QL

= 1 +
N∑

n=1

1

n!

( ρ

�

)n
∫

d3rndωng
(n)
0 (rn,ωn)

n∏
i=1

f̃ (ωi), (33)

where ρ is the constant number density of the isotropic fluid and

g
(n)
0 (rn,ωn) = �n

ρn

N !

(N − n)!

1

Z0

∫
d3r (N−n)dω(N−n) exp

[−βUDHS(rN,ωN )
]
. (34)

Following Ruelle’s algebraic technique, the right-hand side of Eq. (33) can be written as

Qc

Q0QL

= exp

[
N∑

n=0

(ρ/�)n

n!
bn

]
(35)

so the configurational free energy Fc = −kBT ln Qc reads (with F0 = −kBT ln Q0 and FL = −kBT ln QL)

βFc = βF0 + βFL −
∞∑

n=0

(ρ/�)n

n!
bn. (36)

For n � 2 the corresponding coefficients bn are

b0 = 0, (37)

b1 =
∫

d3r1dω1f̃ (ω1), (38)

and

b2 =
∫

d3r1d
3r2dω1dω2

[
g

(2)
0 (r1,r2,ω1,ω2) − 1

]
f̃ (ω1)f̃ (ω2). (39)

In Eq. (36) F0 is the free energy of the dipolar hard-sphere reference system, without an external field, and FL is the Langevin
free energy of an ideal gas of dipoles in the presence of an external field. Moreover, the dependence on H enters also through
the coefficients bn via f̃ [Eq. (30)]. For determining the coefficients bn the corresponding correlation functions g

(n)
0 of the DHS

system are required. Since for this system there are no exact expressions for g
(n)
0 , we resort to an approximation introduced by

Barker and Henderson [26]. This approximation is an expansion in terms of βm2 up to second order:

g
(2)
0 (r1,r2,ω1,ω2) = g

(2)
0 (r12,ω1,ω2) = g(2)

σ (r12) + (βm2)g1(r12,ω1,ω2) + (βm2)2g2(r12,ω1,ω2), (40)
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where [see Eq. (19)]

g1(r12,ω1,ω2) = g(2)
σ (r12)

r3
12

D(ω12,ω1,ω2) (41)

and

g2(r12,ω1,ω2) = g(2)
σ (r12)

2r6
12

[D(ω12,ω1,ω2)]2 − 1

6
ρD(ω12,ω1,ω2)

∫
d3r3

1 + 3(cos γ1)(cos γ2)(cos γ3)

(r13r23)3
g(3)

σ (r12,r23,r13)

+ 1

3
ρ	(ω1,ω2)

∫
d3r3

3 cos2 γ3 − 1

(r13r23)3
g(3)

σ (r12,r23,r13). (42)

In Eqs. (40)–(42) g(2)
σ and g(3)

σ are the two-particle and three-particle correlation functions, respectively, of hard spheres with
diameter σ and γ1, γ2, and γ3 are the angles of the triangle formed by hard spheres 1, 2, and 3. The definition of 	(ω1,ω2) is

	(ω1,ω2) = m̂1(ω1) · m̂2(ω2). (43)

In Eq. (42) for g(3)
σ Barker and Henderson applied the superposition approximation:

g(3)
σ (r12,r23,r13) � g(2)

σ (r12)g(2)
σ (r23)g(2)

σ (r13). (44)

With this Eq. (42) takes the form (see Ref. [11]):

g2(r12,ω1,ω2) = g(2)
σ (r12)

2r6
12

[D(ω12,ω1,ω2)]2 − 1

6
ρg(2)

σ (r12)aD(r12)D(ω12,ω1,ω2) + 1

3
ρg(2)

σ (r12)a	(r12)	(ω1,ω2) (45)

with

aD(r12) =
∫

d3r3
1 + 3(cos γ1)(cos γ2)(cos γ3)

(r13r23)3
g(2)

σ (r13)g(2)
σ (r23) (46)

and

a	(r12) =
∫

d3r3
3 cos2 γ3 − 1

(r13r23)3
g(2)

σ (r13)g(2)
σ (r23). (47)

The angular integrals over ω1, ω2, and ω12 in Eqs. (38) and (39), which enter the expression for the free energy [see Eq. (36)],
can be calculated analytically: ∫

dωf̃ (ω) = 0, (48)∫
dω1dω2f̃ (ω1)D(ω12,ω1,ω2)f̃ (ω2) = 16π2L2(α)[3 cos2 θ12 − 1], (49)∫
dω12dω1dω2f̃ (ω1)D2(ω12,ω1,ω2)f̃ (ω2) = 128π3

5
ζ (α) − 128π3

3
, (50)∫

dω1dω2f̃ (ω1)	(ω1,ω2)f̃ (ω2) = 16π2L2(α), (51)

where

ζ (α) = 2 − 2
L(α)

α
+ 3

[
L(α)

α

]2

. (52)

In view of Eqs. (48) and (38) it is obvious that, within the expansion of the free energy [see Eq. (36)], b1 = 0. The integrands
of the spatial integrals containing the function 1/r3

12 decay so slowly that the numeric values of these integrals depend on the
shape of the integration volume. In order to avoid depolarization effects, here we consider infinitely prolate ellipsoidal sample
shapes. For calculating the corresponding integrals we follow the method presented in Refs. [27,28]. For such integrals [see the
right-hand side of Eq. (49)] one finds ∫

d3r12
(3 cos2 θ12 − 1)

r3
12

= 4π

3
. (53)

If the integrand contains in addition the hard-sphere pair-correlation function g(2)
σ (r12,ρ), then one finds the same result:∫

d3r12
(3 cos2 θ12 − 1)

r3
12

g(2)
σ (r12,ρ) = 4π

3
. (54)
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The reason that the factor g(2)
σ (r12,ρ) in the integrand does not change the numerical value of this integral is that in this

case only the asymptotic value of g(2)
σ can contribute to the integral and g(2)

σ (r12 → ∞) = 1 (see Refs. [27–29]). Due to
aD(r12 → ∞) = 8π/(3r3

12), aD also decays slowly so∫
d3r12(3 cos2 θ12 − 1)aD(r12)g(2)

σ (r12,ρ) = 8π

3

∫
d3r12

(3 cos2 θ12 − 1)

r3
12

g(2)
σ (r12,ρ) = 8π

3

4π

3
= 32π2

9
. (55)

The integrands of the remaining integrals decay sufficiently rapidly so it is possible to replace the ellipsoidal shape of the
integration volume by that of a sphere. From the point of view of our theory a particularly important integral is Idd	 [Eq. (13)],
which contains the rapidly decaying function a	(r12) and appears as the contribution ∝ g2 [see the last terms in Eqs. (40) and
(45)] to b2 [Eq. (39) and cf. Eq. (61)]:

Idd	(ρ) =
∫

d3r12a	(r12)g(2)
σ (r12,ρ) =

∫
d3r12d

3r3
3 cos2 γ3 − 1

(r13r23)3
g(2)

σ (r13,ρ)g(2)
σ (r23,ρ)g(2)

σ (r12,ρ), (56)

where we have used the expression in Eq. (47). This integral can be calculated analytically only at ρ = 0, for which gσ (r12) = 1
so Idd	(ρ = 0) = 17π2/9 [Eq. (15)]. In the Introduction we mentioned that Tani et al. [9] have calculated this integral at various
densities (using pair-correlation functions obtained from MC simulations) and they transformed their data in terms of a Pade
approximation, which is given in Eq. (14). The last remaining integral stems from the first term in Eq. (45) and has a rapidly
decaying integrand:

Idd =
∫

d3r12
g(2)

σ (r12,ρ)

r6
12

= 4π

∫ ∞

σ

dr12
g(2)

σ (r12,ρ)

r4
12

. (57)

The density dependence of this integral was first determined by Larsen et al. [30]:

Idd (ρ) = 4π

3
+ 2.8287ρ∗ + 0.8331(ρ∗)2 + 0.0317(ρ∗)3 + 0.0858(ρ∗)4 − 0.0846(ρ∗)5, (58)

which is also based on MC simulation data for the hard-sphere pair-correlation function g(2)
σ (r12,ρ). Collecting the results in

Eqs. (37) and (58), Eq. (36) renders the free energy of DHS fluids in an external field:

Fc

NkBT
= F0

NkBT
− ln

(
sinh α

α

)
− 2π

3
βρm2L2(α) − ρβ2m4

[
1

10
ζ (α) − 1

6

]
Idd (ρ)

+8π2

27
ρ2β2m4L2(α) − 1

6
ρ2β2m4L2(α)Idd	(ρ). (59)

The magnetization follows from Eq. (59) as

M = − 1

V

(
∂Fc

∂H

)
N,V,T

, (60)

leading to

M(H ) = ρmL(α) + 4π

3
ρ2βm3L(α)L′(α) + 1

10
ρ2β2m5ζ ′(α)Idd (ρ) − 16π2

27
ρ3β2m5L(α)L′(α)

+1

3
ρ3β2m5L(α)L′(α)Idd	(ρ), α = βmH, (61)

where L′(α) = dL(α)/dα and ζ ′(α) = dζ (α)/dα are the corresponding derivatives. Due to Eqs. (1) and (60) the zero-field
magnetic susceptibility can be expressed in terms of the configuration free energy:

χ0 = − 1

V

(
∂2Fc

∂H 2

)
H=0

. (62)

According to Eqs. (62) and (59) the zero-field (initial) magnetic susceptibility of the system is

χ0 = χL

[
1 + 4πχL

3
+ (4πχL)2

144
f (ρ)

]
, (63)

where

f (ρ) = 9

π2
Idd	(ρ) − 16. (64)

Here we have used L(0) = 0, L′(0) = 1/3, L′′(0) = 0, and ζ ′′(0) = 0. It is reassuring to see that Eq. (63) together with Eq. (64)
is identical to Eq. (12). Thus we have succeeded in determining the whole magnetization equation [Eq. (61)] such that it contains
Eq. (12) as a limiting case.
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IV. MONTE CARLO SIMULATIONS

We have carried out Monte Carlo simulations for DHS
fluids using NV T ensembles in order to test the relia-
bility of the above perturbation theory. The long-ranged
dipolar interactions have been dealt with the reaction-field
method with conducting boundary conditions [31]. Boltzmann
sampling [31] and periodic boundary conditions with the
minimum-image convention [31] have been applied. For the
simulation of the magnetization, after 40 000 equilibration
cycles, 0.6–0.8 million production cycles were used, involving
N = 512 particles. In our simulations with an applied field the
equilibrium magnetization of the system is obtained from

M = 1

V
〈M〉H , (65)

where

M =
N∑

i=1

mi (66)

is the total dipole moment of the system of volume V .
From the simulations without external field we have obtained
the zero-field magnetic susceptibility from the corresponding
fluctuation formula

χ0 = β

V

(〈M2〉0 − 〈M〉2
0

)
, (67)

where 〈...〉0 denotes the thermal average for H = 0. The
(second-order) nonlinear magnetic susceptibility (see Ref. [5])
is

χ2 = 1

3!

(
∂3M

∂H 3

)
H=0

= β3

90V

(
3〈M4〉0 − 5〈M2〉2

0

)
. (68)

The simulations were started from a hexagonal close packing
lattice configuration with randomly oriented dipoles. For
the simulation of the linear (χ0) and the nonlinear (χ2)
susceptibility N = 256 particles have been used. After 40 000
equilibration cycles 2–4 million production cycles were used.
Statistical errors were determined from the standard deviations
of subaverages encompassing 0.2 million cycles.

V. NUMERICAL RESULTS AND DISCUSSION

In the following we consider reduced quantities. To this
end we define m∗ = m/(

√
kBT σ 3) as the reduced dipole

moment, H ∗ = H
√

σ 3/(kBT ) as the reduced magnetic field
strength, M∗ = M

√
σ 3/(kBT ) as the reduced magnetization,

and χ∗
2 = χ2(kBT /σ 3) as the reduced nonlinear magnetic

susceptibility and χ0 is dimensionless and ρ∗ = ρσ 3 is the
reduced density; accordingly, α = mH/(kBT ) = m∗H ∗. The
Langevin susceptibility χL is dimensionless and given by
χL = ρ∗(m∗)2/3.

Before discussing the magnetization and susceptibility
results, we remark on the field dependence of the free energy
given by Eq. (59). The field-dependent first three terms of
Eq. (59) are the same as the corresponding terms in the
high-field approximation theory given in Ref. [24], where
the second-order expansion of the dipole-dipole interaction
Mayer function is used. If one expands the free energy into
a second-order power series in terms of α = mH/(kBT ) =

m∗H ∗ (concerning the magnetization this corresponds to the
linear response theory) one obtains a low-field free-energy
expression which agrees with that in Ref. [11]. From Eq. (59)
one finds the magnetization given by Eq. (61). We note that
in terms of the dipole-dipole interaction energy in Ref. [32]
Kalikmanov, similarly to Ref. [24], also proposed a second-
order high-field approximation. However, there is an error in
his calculation of an integral (containing a term linear in uDD)
with the consequence that the term 4π

3 ρ2βm3L(α)L′(α) [see
the second term in Eq. (61)] is missing from his Eq. (4.8). The
correct expression for Eq. (4.8) in Ref. [32] is

M = ρmL(α) + 4π

3
ρ2βm3L(α)L′(α)

+ 1

10
ρ2β2m5ζ ′(α)Idd (ρ), (69)

which agrees with Eq. (61) up to the first three terms.
The thermodynamic properties of DHS fluids in applied

magnetic fields were studied recently by Elfimova et al.
[33–35]. They calculated the corresponding second and third
(field-dependent) virial coefficient up to and including the third
order of the dipolar coupling constant λ = m2/(kBT σ 3) =
(m∗)2. Using the virial expansion of the dipolar free energy the
total configurational free energy of the system can be written
as

Fc

NkBT
= F HS

c

NkBT
− ln

(
sinh α

α

)
+ 	B2ρ + 1

2
	B3ρ

2, (70)

where 	B2(λ,α,σ )=B2(λ,α,σ )−BHS
2 (σ ) and 	B3(λ,α,σ ) =

B3(λ,α,σ ) − BHS
3 (σ ) are the differences between the second

and third virial coefficients of the field-dependent DHS system
and those of the HS system. F HS

c is the configurational free
energy of the HS system. Using the virial coefficients given
in Ref. [33] they proposed a logarithmic expression for the
Helmholtz free energy:

Fc

NkBT
= F HS

c

NkBT
− ln

(
sinh α

α

)
− ln

[
1 − 	B2ρ + 1

2

(
	B2

2 − 	B3
)
ρ2

]
. (71)

The first two terms of the series expansion of the logarithmic
expression in Eq. (71) renders the last two terms in Eq. (70).
According to Eq. (59) our free energy is a second-order
expression in terms of the dipolar coupling constant λ ∼ m2,
while Eq. (71) is a third-order expression in terms of λ. Because
the field-dependent first-order terms in Eqs. (59) and (70)
are the same [i.e., −2πρ∗λL2(α)/3] there is agreement be-
tween the two equations for small dipolar coupling constants.
Concerning a comparison for larger values of λ, due to the
present lack of corresponding simulation data for the free
energy we do not compare Eq. (59) with Eqs. (70) and (71),
but instead we compare the field and density dependencies
of the corresponding compressibility factor Z and of the
magnetization, because for these quantities MC simulation
results are available. (We note that in Ref. [36] for H = 0
Elfimova et al. have compared their DHS free energy with MC
simulation data and reasonable agreement has been obtained.)
The compressibility factor follows from the configurational
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FIG. 1. (Color) Compressibility factor Z = pV/(NkBT )
[Eq. (72)] of DHS systems as a function of the reduced number density
ρ∗ for various dipolar coupling constants λ = m2/(kBT σ 3) = (m∗)2

and dimensionless field strengths α = mH/(kBT ) = m∗H ∗. The red
full lines correspond to the results of the present perturbation theory
[Eqs. (59) and (72)]. The brown dotted lines [Eqs. (71) and (72)]
and the green dash-dotted lines [Eqs. (70) and (72)] represent the
theories of Elfimova et al. [33]. The symbols are MC simulation data
from Ref. [33].

free energy as

Z(ρ,λ,α) = ρ
∂

∂ρ

(
Fc

NkBT

)
. (72)

In Eq. (59) for the DHS free energy F0 we have used the
perturbation theoretical expression of Larsen et al. [30]. In all
three free-energy expressions [Eqs. (59), (70), and (71)] the
free-energy part of the hard-sphere system is described by the
corresponding Carnahan-Starling expression [37]. In Fig. 1
we provide a comparison between the compressibility factors,
as defined in Eq. (72), calculated from Eqs. (59), (70), and
(71). For the dipolar coupling constant λ = 1 Figs. 1(a) and
1(b) show that the compressibility factor calculated from our
theory [Eqs. (59) and (72)] agrees well with the corresponding
simulation data and with the theories of Elfimova et al.
[33]. Upon increasing the dipolar coupling constant to λ = 2,
Figs. 1(c) and 1(d) demonstrate that the agreement with the
simulation data and with both theories due to Elfimova et al.
deteriorates, especially for high dimensionless field strength
such as α = 2. For these values of λ and α the agreement
between the three theories is satisfactory only for low densities.

In the following we compare our theoretical findings
concerning the magnetization [Eq. (61)] with our Monte Carlo
simulation data. Figures 2(a)–2(d) display the magnetization
curves as obtained from three theories for four values of
the Langevin susceptibility χL. Figure 2(a) shows that at
low density and for the Langevin susceptibility of χL =
1.675 our theoretical findings are in good agreement with
the MC simulation data. The theory given by Ivanov and
Kuznetsova [17] [see Eq. (8)] underestimates the simulation
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FIG. 2. (Color) Low-density magnetization curves as function of
H ∗ = H

√
σ 3/(kBT ) for DHS fluids for four values of the Langevin

susceptibility χL = ρ∗(m∗)2/3. The reduced number densities and
dipole moments also vary in accordance with the respective fixed
value of the corresponding Langevin susceptibility. The red full lines
correspond to the results of the present perturbation theory [see
Eq. (61)]. The black dashed lines represent the theory due to Ivanov
and Kuznetsova [17] [see Eq. (8)] while the brown dotted lines and the
green dash-dotted lines correspond to the two free-energy expressions
[Eqs. (71) and (60) and Eqs. (70) and (60)] due to Elfimova et al. [33].
The symbols are our MC simulation data. The size of the error bars
of the MC data equals the symbol sizes.

data for magnetic field strengths H ∗ < 5. The magnetization
calculated from the free-energy expression in Eq. (71) also
shows good agreement with our MC simulation data. However,
the magnetization data obtained on the basis of the third-order
virial expansion directly [Eq. (70)] exhibit less agreement with
our MC simulation data. Both theories due to Elfimova et al.
[33] slightly underestimate the simulation data. The increase
of the Langevin susceptibility from χL = 1.675 to χL = 1.885
changes the agreement between the theories and the simulation
data. According to Fig. 2(b) both theories, Eq. (61) and
Eq. (8), underestimate the simulation data within the range
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0.2 < H ∗ < 5. However, our theory is in better agreement
with the simulation data than that of Ivanov and Kuznetsova.
Within the range 0 < H ∗ ≤ 1 the theory due to Elfimova et al.
[33] [obtained from Eq. (71)] yields the best agreement with
the MC simulation data. The direct virial theory by Elfimova
et al. [35], which produces an unphysical local maximum of
the magnetization, again exhibits less agreement with the MC
simulation data. This maximum is caused by the truncation of
the virial expansion [see Eq. (70)]. The so-called logarithmic
free-energy theory contains, instead, contributions of higher-
order terms in the virial expansion and therefore renders a
better approximation. Figure 2(c) shows the result of a further
increase of the Langevin susceptibility to χL = 2.618. Close to
the elbow of our magnetization curve the level of quantitative
agreement is reduced, but on the whole Eq. (61) provides
a better description than Eq. (8). For this parameter value
and for strong fields both theories due to Elfimova et al. (see
Eqs. (70) and (71) [33,34]) underestimate the corresponding
MC simulation data: The direct virial expansion retains the
local maximum. Upon increasing the Langevin susceptibility
further to χL = 3.77 an unphysical maximum also appears in
our magnetization curve [see Fig. 2(d)]. This is caused by the
truncation of the series expansion in Eq. (36) leading to the
absence of higher-order terms. Our approximation consists of
truncating the series expansion of the free energy in terms
of the number density ρ after the second-order term [see
Eqs. (36)–(39)]. The cluster expansion proposed by Huke
and Lücke [38,39] suffers from similar problems due to using
only the lower-order terms in that expansion for obtaining the
magnetization curves. We note that the original perturbation
theory due to Ivanov and Kuznetsova [17] also struggled
with these difficulties. However, with a resummation of the

perturbation theory and by introducing a new effective field
expression they obtained Eq. (8), which does not exhibit
these difficulties. The range and the magnitude of the un-
physical behavior of the magnetization curves is widening
upon increasing the density or the Langevin susceptibility.
For these parameters the theory of Ivanov and Kuznetsova
[Eq. (8)] and the logarithmic free-energy theory of Elfimova
et al. [Eq. (71)] give the best agreement with the MC
simulation data. Here, the direct virial free-energy expansion
[Eq. (70)] is unsuitable for the description of the mag-
netization data. Considering Figs. 2(a)–2(d) we conclude
that our theory [Eq. (61)] provides reasonable quantitative
agreement with the corresponding MC simulation data for
χL � 3.

We note that at low concentrations and for high dipolar
coupling constants, in ferrofluids there is a strong chain
aggregation formation which leads to a significant increase
of the magnetic response [40]. Within the MC simulations
this phenomenon appears for DHS fluids at low densities,
which cannot be described by the aforementioned theories.
This behavior is clearly pronounced in Figs. 2(b) and 2(c), for
which the dipolar coupling constants are λb = (m∗

b)2 = 9 and
λc = (m∗

c )2 = 6.25.
In order to extend our theory to larger values of the density

and of the Langevin susceptibility, and thereby eliminating
unphysical behaviors, we follow the method of Ivanov and
Kuznetsova [17] and propose a new version of Eq. (61) which
is based on the concept of an effective field strength. As
a first step, in Eq. (61) we neglect the third term which
is smaller than the other terms and does not contribute to
the initial susceptibility. Accordingly, the remaining terms
are:

M(H ) � ρmL(α) + 4π

3
ρ2βm3L(α)L′(α) − 16π2

27
ρ3β2m5L(α)L′(α) + 1

3
ρ3β2m5L(α)L′(α)Idd	(ρ). (73)

Using the expression for the Langevin magnetization [see Eq. (9)] Eq. (73) can be written as

M(H ) = ML(H ) + 4π

3
ML(H )

dML(H )

dH
− 16π2

9
χLML(H )

dML(H )

dH
+ χLIdd	(ρ)ML(H )

dML(H )

dH

= ML(H ) + dML(H )

dH

[
4π

3
ML(H ) − 16π2

9
χLML(H ) + Idd	(ρ)χLML(H )

]
= ML(H ) + dML(H )

dH

[
4π

3
ML(H ) +

(π

3

)2
f (ρ)χLML(H )

]
, (74)

where f (ρ) is given by Eq. (64). Using the Taylor expansion
ML(H + 	H ) = ML(H ) + [ dML(H )

dH
]	H , Eq. (74) can be

rewritten as

M(H ) = ML(He),
(75)

He(H ) = H + 4π

3
ML(H ) + (4π )2

144
f (ρ)ML(H )χL,

postulating that Eq. (75) is valid beyond its first-order Taylor
expansion. This postulated expression eliminates the unphys-
ical local maximum in the magnetization curves which are
caused by the field derivatives of the Langevin function. If we
compare the semitheoretical Eq. (75) with the semitheoretical

Eq. (8) from Ivanov and Kuznetsova, then we find two
differences in the expression of the effective field strength.
First, in Eq. (75) the Langevin susceptibility χL appears in the
effective field while in Eq. (8) the derivative dML/dH turns
up. These two quantities are related:

χL =
[
dML(H )

dH

]
H=0

. (76)

The ensuing difference results in a better low-field behavior of
Eq. (75), but at high field strengths Eq. (8) provides a better
description. [In the last term in Eq. (8) the derivative is evalu-
ated at the actual H , whereas the last term in Eq. (75) is taken
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FIG. 3. (Color) Magnetization curves as function of H ∗ =
H

√
σ 3/(kBT ) for DHS fluids at a fixed value of the Langevin

susceptibility χL = ρ∗(m∗)2/3 for two high number densities: ρ∗ =
0.6 (a) and ρ∗ = 0.8 (b). The red full lines correspond to the results
of the present theory [see Eq. (75)]. The black dashed lines represent
the theory due to Ivanov and Kuznetsova [17] [see Eq. (8)] while the
brown dotted lines and the green dash-dotted lines correspond to the
two free-energy expressions [Eqs. (71) and (60) and Eqs. (70) and
(60)] due to Elfimova et al. [33]. The symbols are our MC simulation
data. The size of the error bars of the MC data equals the symbol
sizes.

at H = 0.] The second difference consists of the appearance
of the function f (ρ) in Eq. (75), which also contributes to a
better low-field behavior. Figure 3 shows the corresponding
low-field magnetization results for the Langevin susceptibility
χL = 10.053. For the reduced density ρ∗ = 0.6 and the
reduced dipole moment m∗ = 2 the field dependence of the
magnetization given by Eq. (75) and by Eq. (8) in comparison
with our MC simulation data are displayed in Fig. 3(a). In order
to compare the various theories, the magnetization calculated
from the free-energy expressions of Elfimova et al. [33] [see
Eqs. (70) and (71)] is also displayed in Fig. 3. One infers
that, at this density for field strengths H ∗ < 0.2, Eq. (75)
exhibits a better agreement with the simulation data than the
corresponding equation due to Ivanov and Kuznetsova [17].
However, in the range 0.2 � H ∗ Eq. (8) provides a better
approximation than Eq. (75). A similar behavior can be seen
in Fig. 3(b). Both virial-expansion-based theories strongly
underestimate the corresponding MC simulation data, which is
not surprising because at high densities the contribution of the
higher-order terms is very important. These observations lead
to the prediction that, at higher densities and compared with
the corresponding MC simulation data, the linear and nonlinear
susceptibilities obtained from Eq. (75) are more accurate than
those obtained from Eq. (8).

It is important and satisfactory to see that both Eq. (61)
and the semitheoretical Eq. (75) yield the same expression in
Eq. (63) for the zero-field susceptibility. An important property
of this expression in Eq. (63) is that in the low-density limit it
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FIG. 4. (Color) Zero-field magnetic susceptibility χ0 of DHS
systems as a function of the Langevin susceptibility χL = ρ∗(m∗)2/3
for two number densities: ρ∗ = 0.6 (a) and ρ∗ = 0.8 (b). The red full
lines correspond to the results of the present perturbation theory [see
Eq. (63)], which is in agreement with the earlier results of Tani et al.
[9]. The black dashed lines represent the theory due to Ivanov and
Kuznetsova [17] [see Eq. (10)] while the brown dotted lines and the
green dash-dotted lines correspond to the two free-energy expressions
[Eqs. (71) and (62) and Eqs. (70) and (62)] due to Elfimova et al. [33].
The symbols are our MC simulation data.

reduces to the expression for the susceptibility due to Ivanov
and Kuznetsova [17] [see Eq. (10)], because

lim
ρ→0

f (ρ) = 1. (77)

[For further details see Eqs. (15) and (64).] In the following
we compare Eq. (63) due to our theory and Eq. (10) from
Ref. [17] with our MC simulation data. Recently, Camp
et al. [41] studied the effect of polydispersity on the initial
susceptibility of ferrofluids by MC simulation and theoretical
methods. We note that their susceptibility simulation data for
monodisperse systems are very close to our simulation data,
although the densities they used were lower by 4.5% than
the densities ρ∗ = 0.6 and ρ∗ = 0.8 used by us. Figure 4
shows the dependence of the zero-field susceptibility χ0 on the
Langevin susceptibility χL for two densities as obtained from
Eqs. (63) and (10) and from the Monte Carlo simulations [see
Eq. (67)]. For comparison of the various theories, the zero-field
susceptibilities calculated from the free-energy expressions
due to Elfimova et al. [33] [see Eqs. (70) and (71)] are displayed
in Fig. 4, too. One can see that the theory of Ivanov and
Kuznetsova provides a master curve [Eq. (10)] which is the
same for different densities. However, from Figs. 4(a) and 4(b)
one infers that at higher densities our perturbation-theoretical
equation [see Eq. (63)] shows better agreement with the
corresponding MC simulation data than Eq. (10). The master
curve due to Ivanov and Kuznetsova is valid only within
the range 4πχL � 6. For higher Langevin susceptibilities the
density correction due to the function f (ρ) in Eq. (63) has to
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be taken into account. The zero-field susceptibilities calculated
from the direct virial and the logarithmic expression for the
free energy show good agreement with the MC simulation
data only within the range 0 ≤ 4πχL � 4, using the second
and third virial coefficients up to their order ∼λ3. However,
as verified by Elfimova et al. [34], using B2 and B3 from
the direct virial free energy up to their order ∼λ2 renders
for the zero-field susceptibility the expression due to Ivanov
and Kuznetsova [Eq. (10)]. In this case the lower-order (∼λ2)
approximation yields a better result than the corresponding
higher order (∼λ3) one.

In the following we discuss the second-order nonlinear
magnetic susceptibilities as obtained from the aforementioned
theories. The nonlinear magnetic susceptibility is defined as

χ2 = 1

3!

(
∂3M

∂H 3

)
H=0

= − 1

3!V

(
∂4Fc

∂H 4

)
H=0

. (78)

It characterizes the initial curvature of the magnetization
curve, which is an important quantity describing the nonlinear
behavior of materials [42]. It can be calculated directly from
the original equation for the magnetization due to Ivanov and
Kuznetsova [Eq. (8)]:

χ2 = − 1

45
β3m4ρ

{[
1 + 4π

3
χL + (4π )2

144
χ2

L

]3

+ 4π

3
χL + (4π )2

36
χ2

L

}
, (79)

which at low densities reduces to the Langevin term. Based on
Eqs. (75) and (78) the corresponding nonlinear susceptibility
from our theory is

χ2 = − 1

45
β3m4ρ

{[
1 + 4π

3
χL + (4π )2

144
χ2

Lf (ρ)

]3

+ 4π

3
χL + (4π )2

144
χ2

Lf (ρ)

}
. (80)

In the low-density limit (ρ → 0) Eq. (80) does not reproduce
Eq. (79) due to the difference between χL and dML/dH ; the
latter depends on the field strength and therefore produces a
contribution to the nonlinear term.

Figure 5 provides a comparison between the two theoretical
results for the second-order nonlinear susceptibility and the
corresponding MC simulation data. In order to compare the
various theories the results obtained from the free-energy
expressions due to Elfimova et al. [33] are displayed, too. As
Fig. 5(a) shows, for the dipole moment (m∗)2 = 2 our theory
[Eq. (80)] is in good agreement with the simulation data within
the studied density range. In contrast, the theory due to Ivanov
and Kuznetsova [Eq. (79)] underestimates the absolute values
of the corresponding simulation data. Upon increasing the
strength of the dipole moment to (m∗)2 = 3 the quantitative
agreement deteriorates [see Fig. 5(b)], but our approximation
is clearly better than the one due to Ivanov and Kuznetsova.
The second-order nonlinear susceptibilities obtained from the
theories due to Elfimova et al. [33] overestimate the MC
simulation data and the aforementioned theoretical results.
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FIG. 5. (Color) Nonlinear magnetic susceptibility χ2 [Eq. (78)]
of DHS systems as a function of the reduced number density ρ∗ for
two reduced dipole moments: m∗ = √

2 (a) and m∗ = √
3 (b). The red

full lines correspond to the results of the present theory [see Eq. (80)].
The black dashed lines are obtained from the magnetization equation
due to Ivanov and Kuznetsova [17] [see Eq. (79)] while the brown
dotted lines and the green dash-dotted lines correspond to the two
free-energy expressions [Eqs. (71) and (78) and Eqs. (70) and (78)]
due to Elfimova et al. [33]. The symbols are our MC simulation data
with the corresponding error bars.

VI. SUMMARY

In the present study of magnetic properties of ferrofluids
the following main results have been obtained:

(1) We have applied an extension of the algebraic pertur-
bation theory of Ruelle in order to determine the free energy
of dipolar hard-sphere fluids under the influence of magnetic
fields.

(2) From the magnetic field dependence of the free energy
[Eq. (59)] the magnetization curve [Eq. (61)] and the zero-field
susceptibility [Eq. (63)] have been obtained. For Langevin sus-
ceptibility values 4πχL � 3, at low densities these theoretical
magnetization data show better agreement with our Monte
Carlo simulation data than those obtained from the theory due
to Ivanov and Kuznetsova [17] [see Figs. 2(a)–2(d)].

(3) In order to extend our theory to larger values of the
density and of the Langevin susceptibility the concept of an
effective magnetic field strength has been applied. We have
found that the magnetization equation [Eq. (75)] which is
derived along this line is in good agreement with our Monte
Carlo simulation data only at low field strengths [see Figs. 3(a)
and 3(b)].

(4) It has been shown that both magnetization equations
[Eqs. (61) and (75)] render the same zero-field magnetic sus-
ceptibility expression [Eq. (63)], which is in good agreement
with our Monte Carlo simulation data even at high densities
[Figs. 4(a) and 4(b)]. This susceptibility expression in Eq. (63)
is a natural extension of the corresponding equation [Eq. (10)]
due to Ivanov and Kuznetsova [17].
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(5) From the magnetic field dependence of the magnetiza-
tion [Eq. (75)] an analytical equation has been obtained for the
nonlinear magnetic susceptibility of dipolar hard-sphere fluids
[Eq. (80)]. It has been found that our expression [Eq. (80)]
shows better agreement with the simulation data [see Figs. 5(a)
and 5(b)] than that obtained from the theory due to Ivanov and
Kuznetsova [Eq. (79)].

(6) We have compared our theory with recently published
results of Elfimova et al. [33–35]. We have found that, con-
cerning the compressibility factor, the latter theory provides
a better approximation [see Figs. 1(a) and 1(d)]. However,

concerning magnetic properties–mainly at high densities–our
present theory yields a description which is better than the
corresponding ones considered by Elfimova and coworkers
(see Figs. 2–5).
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