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The fundamental measure approach to classical density functional theory has been shown to be a powerful
tool to predict various thermodynamic properties of hard-sphere systems. We employ this approach to determine
not only one-particle densities but also two-particle correlations in binary and six-component mixtures of hard
spheres in the vicinity of a hard wall. The broken isotropy enables us to carefully test a large variety of
theoretically predicted two-particle features by quantitatively comparing them to the results of Brownian dynamics
simulations. Specifically, we determine and compare the one-particle density, the total correlation functions, their
contact values, and the force distributions acting on a particle. For this purpose, we follow the compressibility
route and theoretically calculate the direct correlation functions by taking functional derivatives. We usually
observe an excellent agreement between theory and simulations, except for small deviations in cases where local
crystal-like order sets in. Our results set the course for further investigations on the consistency of functionals
as well as for structural analysis on, e.g., the primitive model. In addition, we demonstrate that due to the
suppression of local crystallization, the predictions of six-component mixtures are better than those in bidisperse
or monodisperse systems. Finally, we are confident that our results of the structural modulations induced by the
wall lead to a deeper understanding of ordering in anisotropic systems in general, the onset of heterogeneous
crystallization, caging effects, and glassy dynamics close to a wall, as well as structural properties in systems with

confinement.
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I. INTRODUCTION

In order to study the structure or dynamics of simple fluids
or liquids, usually model systems consisting of particles that
interact according to simple pair potentials are considered. A
large variety of phenomena can be explored in such model
systems, e.g., interfaces between different fluid phases [1] or
between a liquid and a vapor [2-5] as well as phase transitions
between fluids and solids [6—8]. Furthermore, glassy dynamics
or jamming effects can be observed for such systems at large
packing fractions or low temperatures [9—12]. The relation
of the slowdown of dynamics and structural properties is the
subject of ongoing research (see, e.g., [13-20]).

One of the most important particulate model systems is
the simple hard-sphere (HS) system, where overlaps of two
particles are not allowed and spheres do not directly interact
if they do not overlap. HS systems not only serve as a simple
model system, but also are used as reference systems. For
example, the structure of simple fluids with more complex
interactions often is compared to the structure of HSs with
an effective diameter [21-23]. Furthermore, the dynamics of
spheres with purely repulsive, finite-ranged interaction can be
mapped onto the dynamics of HSs [24-26].

In this paper we investigate an HS system in the vicinity
of a hard wall. We usually consider a bidisperse system
that does not crystallize, but also present some results for
monodisperse and six-component dispersions. Since we are
especially interested in the anisotropic order induced by the
wall, we not only study the one-particle density, but also
determine the two-particle correlation functions. The structural
modulations and local ordering in the vicinity of a wall is of
great interest in order to understand the onset of heterogeneous
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crystallization [27,28] and in order to obtain deeper insight
into the influence of local order on the complex dynamics
close to a wall [14,29-31] or even in confinement [32,33]. In
this paper we also use the broken symmetry of the system
in order to quantitatively test the two-particle predictions of
the fundamental measure theory (FMT) approach to classical
density functional theory (DFT) via the compressibility route
as explained in the following.

DFT was originally developed by Hohenberg and Kohn for
an electron gas at zero temperature [34] and later extended
for nonzero temperatures [35]. In the meantime, DFT for
classical systems has been formulated and it has turned out
to be a powerful tool in order to predict thermodynamic
properties of classical systems, especially in the field of soft
matter, e.g., for fluid many-body systems [36—38]. DFT even
was employed to study crystallization [6,39—44], interfaces
between a crystal and a fluid [6,7,45] and complex ordering of
particles due to interactions with multiple length scales [46—
49] or external potentials [50-52], as well as to explore
dynamical phenomena [50,52-56].

A fundamental approach in order to obtain a suitable free
energy functional for an HS system was introduced by Rosen-
feld with the so-called FMT [57]. Different versions of FMT
have been presented in the meantime [40—42,58,59,60], includ-
ing the functional known as the White Beak mark II (WBII)
functional [42], which has been extensively employed and
tested in order to predict one-particle densities [6,7,42,44,61].
Two-particle correlations are attainable via the test-particle
and the compressibility route, which lead to consistent results
in the case of the exact (but unknown) free energy functional.
Here we use the compressibility route and the WBII functional
in order to calculate two-particle correlations in a system
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that is not isotropic due to the proximity of a wall. The
theoretical predictions are compared to the results obtained
from Brownian dynamics (BD) simulations. We observe an
excellent agreement as long as local crystal-like structures are
avoided.

The paper is organized as follows: In Sec. II the model
system is introduced and explained. The simulation details
are presented in Sec. III. In Sec. IV we discuss how the
one- and two-particle correlations are obtained within our
FMT approach. The results are presented and compared to
our simulation data in Sec. V. Finally, we conclude in Sec. VI

II. MODEL SYSTEM: SPHERES CLOSE TO A WALL

We consider multicomponent mixtures of HSs suspended
in a homogeneous solvent next to a flat hard wall. The
solvent is integrated out and only contributes to the stochastic
overdamped Brownian motion of the colloidal particles. We
investigate monodisperse, binary, and six-component mixtures
in equilibrium, which we access with both classical DFT
and BD computer simulations. For the latter, the number of
particles of each species v is fixed, i.e., at a 50:50 mixture in
the case of a binary system. In the grand canonical framework
of DFT all species are assumed to have the same averaged
number densities in a reference bulk system. In the case of the
binary system, the spheres have diameters o7 and 0, = 1.40
in order to avoid crystallization effects [62].

The wall is located in the xy plane at position z = 0 (see
Fig. 1). To express two-particle correlations, we consider
one sphere at position (x’,y’,z’) as the reference particle
such that the positions (x,y,z) of all other particles can be
expressed in cylindrical coordinates relative to the reference
sphere. As a consequence, two-particle correlations depend
on the distance 7' of the reference sphere to the wall,
the distances z of the other particles to the wall, and the
distance r = [(x — x')> + (y — )/’)2]]/2 between the particles
and the reference sphere measured parallel to the wall. All
other coordinates are integrated out due to symmetry. As a
consequence, no crystallization or other symmetry-breaking
ordering parallel to the wall is resolved.

FIG. 1. (Color online) Sketch of two hard spheres of different
species, v and V', close to a hard wall. Their respective positions 7
and 7’ (not shown) define their relative distance A = 7’ — 7. Particle
diameters are o, = 2R, and o, = 2R,,. We employ cylindrical
coordinates z, r, ¢ around the left (green) sphere.
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We compare one- and two-particle statistical averages. For
example, the one- and two-particle densities are defined as

po(F) = <Z 5(F — 7v,i>>, ey

/
PG T = <Z 8(F — 708G — ru/,i/>>, @)
ii’
where (...) denotes the ensemble average (canonical in
simulations and grand canonical in DFT). The primed sum
;i runs over all species v and v’ and particlesi = 1... N,
with i # i in the case of v = V'. The packing fraction is given

by ¢ = Zv oy = Zv %UVSPW

II1I. SIMULATIONS
A. Brownian dynamics

To test the theoretical calculations we employ BD simu-
lations (see, e.g., [63]) which are based on the overdamped
Langevin equation,

yu?v,i(t) = ﬁ,i({?v’,l, e v?v’,NV/}v’zl,Z,...) + gu,i(t)s (3)

where y, is the friction constant that we consider to be
proportional to the diameter o, of the spheres. The force
fv.i includes all forces due to pair interactions and the
external field. In addition, a random Gaussian force gv,i(t)
is acting on the particles. The first moment of the distribution
of random forces is 0, whereas the second moment fulfills

the fluctuation dissipation relation, i.e., (&,,-(t)é'}, A1) =

2v,kg T8, 8;i8(t — t') 1, with kgT being the p_goduct of the
temperature 7 and Boltzmann constant kg, &1 being the

N PR
transpose of &,, and I the three-dimensional unit matrix.
8(t — t') and §8,,,8;; stand for the Dirac § distribution and two
Kronecker §, respectively.

We employ a cubic simulation box with side length [,
periodic boundary conditions in the x and y direction, and
walls at z =0 and z = /. We use N = 32000 particles, such
that the box is large enough to avoid confinement effects such
as nontrivial correlations of particles with both walls.

B. Hard-sphere limit

Molecular dynamics [24] and BD studies [64] have shown
that with decreasing temperature all properties of a system
with finite-ranged and purely repulsive interactions approaches
well-defined limiting values that coincide with the properties
of hard-sphere mixtures and therefore is called the HS limit in
the following.

In our simulations we apply the soft and purely repulsive
pair potential

e A \2
uo(A) = 12— 50)" A <oun
0 otherwise,

“

where 0,y = (0, + 0,/)/2 is the intermediate diameter and the
prefactor ¢ sets the energy scale. At sufficiently low temper-
atures, where ¢/kgT > 1, the particle overlaps become very
small and particles interact like HSs. We consider our system
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FIG. 2. (Color online) Equation of state for a binary and equimo-
lar hard-sphere (HS) system, i.e., pV/(NkgT) as a function of
the total packing fraction ¢. Triangles are based on calculations
within DFT using the WBII approximation (see Sec. IV) and the
solid (red) line is based on predictions from the extended Carnahan-
Starling (eCS) equation [66,67]. Filled circles denote the results of
Brownian dynamics simulation in the HS limit. Inset: The normalized
probability distribution of finding two particles with an overlap d for
different temperatures in a double-logarithmic representation.

to be in the HS limit if the average overlap of two interacting
particles is smaller than 5%. The double-logarithmic inset
in Fig. 2 shows how the probability distribution P(d) of
overlaps d converges with decreasing temperature against a
very narrow §(d)-like distribution. In the main plot in Fig. 2 we
show the equation of state of a binary HS mixture, calculated
by means of our DFT as well as from the predictions of
Boublik [65] and Mansoori et al. [66]; the latter is also known
as the extended Carnahan-Starling equation of state [67]. We
compare these curves with the measured virial pressure from
our BD simulations in the HS limit. Due to the small remaining
overlaps in our simulations, we usually obtain a very slightly
deviating pressure in comparison to the theoretical predictions,
while it is known that the structural [21-23] as well as the
dynamical [24-26,64] properties are even closer to the HS
system. The formalism of the theoretical DFT calculations are
presented in the next section.

IV. DENSITY FUNCTIONAL THEORY

In this section we discuss classical DFT within the
framework of FMT [57,68] leading to direct particle corre-
lations [37,69,70]. The Ornstein-Zernike (OZ) relation links
them with the total correlations between particles. We intro-
duce the theory for a multicomponent HS system in a geometry
where isotropy is broken due to the wall.

A. DFT for multicomponent systems

In the framework of (classical) DFT [37,69], a func-
tional, Q[{p,}]= Q(T,V,{1t,};[{py}]), of the sets {p,} of
one-particle densities p, and {u,} of chemical potentials
u, for species v =1...n can be defined at fixed external
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potential V*' = %" V' such that the grand canonical po-

tential = Q(T,V,{w,}) is obtained when the set {p?} of
equilibrium one-particle densities is used as an input. The
functional can be written as

Qo)) = Flipu)] - Z / P WGP, (5)
V=1
where the intrinsic free energy functional F and the intrinsic
chemical potentials v, as unique functionals of the one-
particle densities p, have been introduced.

The grand canonic functional in Eq. (5) has the property to
be minimized by the equilibrium one-particle densities, thus,
its functional derivative vanishes for each species v/, i.e., for
all v/,

§Q2{pu}]

- =0. (6)
30v (") 1p,1=109)

Accordingly, the intrinsic chemical potentials read

- SF[{pv}]
Yo )] = Sl (7)

Spv(r')
Furthermore, the free energy of the system is defined as the
sum of the intrinsic free energy J and the energy due to the

external potential,

F=7[{p}] +Z / SYGEHVEGHdF . (8)

v'=1
On the other hand, the free energy also follows from

the grand canonical potential via a Legendre transform,
Q=F -, pvN,. Together with Eq. (7), this leads to

to = VG + o (73 [100)]), ©)

which in [37] is termed “the fundamental equation in the theory
of non-uniform liquids”. Together with the representations of
the intrinsic chemical potentials in Eq. (7), one can use Eq. (9)
as an implicit equation to determine the equilibrium densities
p,(,eq) if the intrinsic free energy functional F[{p,}] is known.

The case of the noninteracting particles of an ideal gas is
well known: The intrinsic free energy is

Pl = kT 3 | 2ot lin (o, 83) = 1],

v'=1

(10)

which leads to the equilibrium density profiles ,o,(,eq) ) =
2y exp(—B V() with the fugacities z, = exp(Bu,)A,>, the
(irrelevant) thermal wavelengths A, and the inverse tempera-
ture B = 1/kgT, containing the product of the temperature T
and Boltzmann constant kg.

In the case of systems with interacting particles, it is
common to split the intrinsic free energy functional

Flipo)l = U} + F*[{p,}] (11)

into the known ideal-gas part from Eq. (10) and an overideal
excess part F**° which includes all particle interactions.
Consequently, putting Egs. (7), (10), and (11) together, the
dimensionless intrinsic chemical potential becomes

B3 o)D) = In (o A2) = PG oD, (12)
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where

, L L3)
G = —B——— (13)
Spv(r’)
is the first member of a hierarchy of direct correlation functions
which contain full information on the structural properties of
the corresponding system. The next member of the hierarchy
reads
S F*[{pu}]
” r’ _'// I =P 14
@75 ) = —B a9
By inserting Eq. (12) into Eq. (9), we get a formal solution
for the density profiles which reads

PV =z exp (VG + e (F s [{00]])). (15)

This equation provides an iterative procedure for minimizing
the grand canonical functional: Starting from random initial
density profiles, Eq. (15) can be applied repeatedly in order to
approach the equilibrium density profile numerically (Picard
iteration).

B. Ornstein-Zernike relation

The pair-distribution function is given via the one- and
two-particle densities as defined in Eqs. (1) and (2) by (see,
e.g., [70])

@) 7
2) = =/ Py (r,r")
g (rr’) = ———or (16)
o Pv(”)pw(” /)

The total correlation function 4 is defined by

WOF 7)) = gl (F.F ) — (17)
It is related to the direct correlation function c (r 7') as
defined in Eq. (14) via the OZ relation [70],
WGP =cDFEF) + Z / AGRD)
V=1
X pur ")y, " F )T (18)

Forestalling results from DFT calculations that are ex-
plained later, both kinds of correlation functions are illustrated
in Fig. 3 for a monodisperse and a binary system in bulk. In
the binary system, four combinations between small and large
particles exist, where the mixed combinations small-large and
large-small are identical in bulk. The direct correlations are
calculated using FMT as described in the next subsection. We
obtain the total correlations via the OZ relation by employ-
ing the direct correlations and their corresponding density
profiles. This method via the direct correlations is called
the compressibility route. Alternatively, total correlations can
be obtained from Eq. (16) via the test-particle route, where
the two-particle density ,ofv) is determined by the additional
calculation of the one-particle density profile around the first
particle represented by an external field. Both routes would
be consistent when the exact free energy functional was used.
The compressibility route has advantages over the test-particle
route when long-ranged mean-field Coulomb interactions are
involved, whose direct correlations can be Fourier transformed
analytically.
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FIG. 3. (Color online) (a) Direct and (b) total correlation func-
tions in bulk for one- and two-component (50:50) hard-sphere systems
with volume fraction ¢ = 0.5. In the two-component case, the
correlations between possible combinations of species are labeled 11
(small-small), 21 (large-small), and 22 (large-large). All correlations
are determined from our DFT calculations in combination with the
OZ relation; for comparison we also show the analytically known
Percus-Yevick (PY) result for the one-component system [71]. Inset in
(a): Sketch showing that if a small particle 1 is inside a larger particle
2, its center point can move within the shaded (gray) area without
changing the intersection volume of the spheres. As a consequence,
there is a plateau in the 21 curve between the two filled (red) circles.

C. Fundamental measure theory

To calculate a total correlation function from the OZ relation
in Eq. (18), it is necessary to close it. A well-known example
for such a closure is the Percus- Yevick approximation

P(#) ~ (1 — exp(Bu(¥))g?(7), (19)

where u(7) is the pair interaction potential. For HSs, this
approximation has been solved analytically by Wertheim [71].
The results are included in Fig. 3.

In DFT, the direct correlations are explicitly given by
Eq. (14) via a second-order functional derivative of the
excess free energy functional. Thus, the OZ relation could be
closed if the excess free energy functional F** were known.
Unfortunately, the exact form of the functional is, in general,
unknown [35]. However, many approximations exist. For hard
particles and, especially, for HSs, FMT has been established
as a quantitative benchmark theory [45].

In FMT [57,68] the excess free energy is expressed via the
local excess free energy density @, i.e.,

BF*Upu}l = / (F)dr. (20)
v

The function @ is typically constructed to recover the correct
Mayer f function in the limit of low density such that the exact
excess free energy is recovered in this limit [57]. Extrapolation
to higher densities leads to different versions of the FMT.
Besides the original version of Rosenfeld [57], we mention,
in particular, the extended deconvolution FMT for anisotropic
convex-shaped hard particles [72] and the White Bear and
WBII versions [41,42,58] for HSs, which should include
tensorial corrections to recover the exact zero-dimensional
limit [40]. Moreover, FMT can be derived from the virial
series [73,74]. For our work we have chosen the WBII version
with its tensorial correction, because it has been employed to
accurately predict not only the freezing transition in HS [6]
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but also phase coexistence and the involved crystal-fluid

interface [7]. Its excess free energy density reads
®(F) = —ng In(1 — n3) 21

niny — 1 n2

1
+(1+§@@m») p—

! 4
+< — §n3¢3(n3)>

y l’l% — 3712172 . ﬁz + %(ﬁg . (172 . ﬁz — tl‘(;jl)g)) 22)
247 (1 — n3)? ’

<> <>
where tr(A) denotes the trace of the argument A and the two
functions ¢;(n3) are

6n3 — 3n3 + 6(1 — n3) In(1 — n3)

$ha(nz) =— T —,  (23)
n;
6ns — 9n? 4+ 6n3 4+ 6(1 — n3)? In(1 — n3)
R SO
3

with the so-called weighted densities n,. These weighted
densities are given by the convolutions

na(F) = Z / o (F YW F —Fdr (25)

V=1

The convolutions weight the one-particle densities p,, of
each species v’ with so-called weight functions w ,) The
latter represent fundamental geometric measures like volume
(o = 3 for three dimensions), surface area (¢ = 2 for two
dimensions), mean diameter (¢ = 1 for one dimension), and
curvature (¢ = 0 for zero dimensions) of a single-particle
geometry. For HS mixtures the weight functions of each
species v read [40,57]

wP(F) = O(R, — |F]), (26)
w?(F) = 8(R, — |F]), 27)
wi(F) = v — IFD), (28)
Oy — =
wmn—Mﬁa&—mx (29)
@WD=%M&—WL (30)
r
0@ = =L ser, — 17, 31)
v |F| 4T R,
@ ForT T R
w, ) =—=5 — = )8R, — [F]. (32)
I7| 3

where R, = o,,/2 denotes the radius of a sphere with diameter

<>

o,. Furthermore, the tensor product 7 - 77, the unit matrix I,
and the transposed 77 of a vector 7 have been used.

Via the framework of DFT the equation of state with pres-
sure p = —2/V can be determined, as already exemplarily
presented in Fig. 2 for a two-component HS mixture together
with simulations results.
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As for all FMT functionals with an excess free energy
density that depends only on the weighted densities n,, the
direct pair-correlation functions, as defined in Eq. (14), are

(2) = 2N —>//
—DF ) = z / anaanﬁ

(ﬂ)(* "

—rhdr”.  (33)

X wl()a)(F " —Pw

In bulk, the derivative with respect to the weighted densities
becomes independent of the spatial coordinate and the direct
correlation function can be calculated analytically [41,45,57].
For our anisotropic system, we report in the next section a
semianalytical form for general multicomponent mixtures in
the framework of FMT.

D. Numerical details of FMT and OZ calculations
in restricted geometries

We approach the equilibrium density profiles by repeatedly
applying Eq. (15). During each iteration step i, the right-hand
side of Eq. (15) is applied to the actual set I'; = {p,}; of
density profiles to achieve a new set I'}*" from the left-hand
side of Eq. (15). The new profiles are mixed with the actual
ones to generate a set I';;; by adding a fraction o from
the new ones in I'’*¥ and a fraction 1 — « from the recent
ones in I';. This procedure is repeated until the largest local
deviation between all the new and the respective recent density
profiles becomes smaller than a threshold €. We have started
each Picard iteration from the bulk density profiles, where we
simply neglect the wall. Typically after around 2500 iteration
steps the profiles reached an accuracy of € = 107°, while the
mixing parameter changed from an initial value of @ = 1073
to a final @ = 10~* during the iteration.

As a flat wall is introduced into the system, due to the
symmetry of the structure close to that wall, all density profiles
p, as well as all derivatives 3°® /(dn,dn ) in Eq. (33) depend
solely on the spatial coordinate z perpendicular to the wall.
Furthermore, the direct correlation functions depend only on
three coordinates, i.e., cfv) (r,z,7/), as discussed in Sec. II.

For numerical reasons, we sample our functions at a dis-
tance L between the wall and the bulk fluid and at equidistant
discrete points z; = id,, withd, = L/M fori =0,...,M —
1. When we consider intervals I; = [z; — %dz,zi + %dz], we
can split the integration volume V = R> on the right-hand
side of Eq. (33) into slices V; = R? x I; and rewrite the direct
correlation functions as

(2) - a2 D(z;)
—ew )N Z Za:Z ongong 4

X / w@GE" —PHwPE" —Fdr.
Vi
In order to calculate the direct correlation functions, it is
necessary to compute the integral in Eq. (34), which, for given
combinations of particle species and weight functlons depends
solely on the interval I and the distance A =7’ — 7. Thus, we
define auxiliary functions

Wi (1L A) = / wE WG = Aydr", (35)
R*x1
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which we precompute analytically whenever possible. This

reduces the computational cost significantly. For further details

about the calculations of Eq. (35) we refer to Appendix B.
Finally, the knowledge of the density profiles p, and of

the direct correlations c( ), enables us to determine the total

correlations h(w) via the OZ relation from Eq. (18). It is useful
to solve this relation partially in Fourier space to exploit the
symmetries of our system. For this purpose, we define an
in-plane Fourier or Hankel transform (see Appendix A) by
{ h(2)

vy’

(.2, z)}(K)_h(z)(K 2,7)

2w 5
/ f rhfw),(r,z,z’)

x e KN dpdr, (36)

which only assigns the radial components of a function and
usually is employed to obtain structure factors of layers parallel
to a symmetry-breaking wall (cf. [1]). With such a transform,
the OZ relation from Eq. (18) can be rewritten in the form

He{n) (2. 2)}(K)

=H, | zz)}(K)—i-ZNZ/ pv(Z")

V=1
x [ (22O, (.2 D) (K2

For several values K, we determined the total correlations from
this equation using an iterative numerical scheme (see also
Appendix A). In order to cope with numerical circumstances,
we define our discrete lattice for the radial coordinate r in
a way that the value » = 0 is avoided in real space. For this
reason, in this work we solely provide data where the radial
component is very close but not equal to 0.

(37)

V. RESULTS

In this section we quantitatively compare the results
that we obtain from our multicomponent DFT and the BD
simulations. First, we focus on one-particle densities. Second,
we bear in mind the anisotropy in our system and consider
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the two-particle correlations. Consequently, all these results
are employed in order to quantitatively analyze the contact
properties of particles. These contact values are directly related
to the anisotropic force distribution acting on a particle. As a
result, the net force for a particle can be determined (cf. [75]).
The nonuniform distribution of forces leads to the differences
between effective diffusion coefficients in different directions.
Finally, we demonstrate the impact of polydispersity by a
comparison between our findings for a binary and a six-
component mixture. In this context we discover a significant
improvement in the agreement between the predictions of DFT
calculations and the results of BD simulations for an increasing
number of particle species.

A. One-particle density profiles

In Fig. 4 we show density profiles of both DFT calculations
and BD simulations for small and large particles in the binary
(50:50) mixture of HS with diameters oy and 0, = 1.40] as
described in Sec. II. The bulk densities have been fixed such
that the corresponding total packing fractions are deep in the
liquid phase (¢ = 0.3), close to the fluid-crystal transition in
monodisperse systems (¢ = 0.48), and in the regime where
glassy dynamics is observed (¢ = 0.54). The most obvious
differences between DFT calculations and BD simulation
results occur in the second-layer peak of the density profiles.
Especially in the profiles of higher bulk densities, the second-
layer peak splits up into two peaks in the case of the simulation
results (circles in Fig. 4) or they just contain shoulders in the
case of the DFT predictions (solid lines). Each local peak or
shoulder can be connected by a particular stacking of particles
belonging to different species, as illustrated by the sketches at
the bottom of Fig. 4. Note that local crystal-like ordering is not
precisely captured in our DFT approach because we assume
translational invariance along the wall. As a consequence,
as soon as such locally ordered structures are preferred by
the system, our DFT predictions become less accurate, even
though the overall structure is not yet a crystal. Accordingly,
the overall agreement between simulations and theory is very
good for low packing fractions.

(b)

pa(z)o}

Z/(Tl

be [fo loe

FIG. 4. (Color online) Density profiles of (a) small and (b) large particles in binary (50:50) mixtures of HSs with diameters o; and
0, = 1.40 in the vicinity of a flat hard wall (at z = 0). Circles represent simulation data, whereas results of DFT calculations are represented
by solid lines. To enhance readability, density profiles are shifted upward for different packing fractions by 0.5 (¢ = 0.48) and 1.0 (¢ = 0.54)
and the dashed lines denote the bulk values. The small sketches at the bottom illustrate distinct packings of spheres.
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B. Two-particle correlations

In DFT, the two-particle or pair correlations can be obtained
via the test-particle or the compressibility route. For the first,
density profiles are determined around a fixed test particle
which results in an effective two-particle density. We follow the
compressibility route, where the direct correlation functions

(2) , from DFT are used to close the OZ relation from Eq. (18).
Us1ng the WBII functional, we 0bta1n the density profiles p,
and direct correlation functions cw,, where we calculate the
latter directly via Egs. (34) and (35) for our inhomogeneous
system. An advantage of the compressibility route over the
test-particle route is that no boundary effects in direction r
parallel to the wall are involved in the calculation of direct
correlations. Moreover, the latter are short-ranged for HSs and
can be Fourler transformed numerically for arbitrary sets of
vectors k in Fourier space. Thus, the full structure factor S (k) is
attainable without restrictions resulting from a finite extension
in the r direction.

1. Direct correlations

The direct correlations are shown exemplarily in Figs. 5-7
for the binary mixture of HSs. First, in Fig. 5, we compare the
(2) values for the four combinations between the two species
(small small, large-small, small-large, and large-large). The
position of the reference particle is fixed at 7/ = 1.507 and the
direct correlations are plotted as functions of the position of
the other particle, where the position is expressed in the natural
cylindrical coordinates (r,z). In addition, we show the profile
along the z axis together with each plot. While the correlations
between two large or two small particles differ only by a con-
stant factor and by the length scale, the correlations between
a small and a large particle depend on which particle is used
as the reference particle. In both cases the direct correlation
functions do not have one clear minimum. While in the case
of a small reference particle there is a plateau with an extent of
0.40 in the z direction, in the case of a large reference particle
there are two distinct minima, at z ~ 1.307 and z ~ 1.70.
Note that in bulk, both correlation functions between large
and small particles are identical [see Fig. 3(a)] and possess
a plateau for r < 0.20; where the direct correlation function
is constant. The plateau is due to the fact that the intersection
volume of the two spheres does not change as long as the small
particle is located completely inside the large one as sketched
in the inset in Fig. 3(a). Therefore, the value of the integral in
Eq. (33) does not change and the observed plateau develops.
Back to the anisotropic case in Fig. 5, a similar explanation
holds: When the position of a small particle is fixed, as in
Fig. 5(b), the integration volume V in Eq. (33) is restricted
to the shape of this particle as long as the small particle is
completely contained inside the larger one. In contrast, when a
large particle is fixed, as in Fig. 5(c), the previously mentioned
integration volume depends on the position of the small
particle. Therefore, the result of the integral in Eq. (33) depends
on the relative positions of the particles via the derivative
of the excess free energy density ®. The resulting direct
correlation function is similar to the self-correlations between
two small particles, because the relevant combinations of
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FIG. 5. (Color online) Direct correlation functions obtained from
DFT using Eqgs. (34) and (35) for the binary HS mixture as explained
in the text. The reference particle is fixed at z7 = 1.50;. For a
second particle at position r, z we show the direct correlations (a)
&, between small and small, (b) c3, between large and small,
(c) ¢, between small and large, and (d) ¢, between large and
large particles. Note that the second index always denotes the fixed
reference particle. The total volume fraction is ¢ = 0.5. Below the
contour plots the profiles along the z axis with » = 0 are shown
[represented by solid (red) lines in the contour plots].

weight functions w® that enter Eq. (33) give the same results
in this case (for further details see Appendix B 3, case 3).

In Fig. 6 we compare slice cuts of the direct correlation
profiles along the z axis for various positions 7z’ of the reference
particle. Additionally, we draw the envelope to all shown
profiles. Figures 6(a) and 6(c) demonstrate the similarity
between small-small and small-large correlations, mentioned
in the previous paragraph.

InFigs. 5(c) and 6(c), we observe a splitting of the minimum
of the direct correlation function into two minima. The splitting
occurs for the parameters where the direct correlation functions
reach a local maximum in the corresponding envelope of
the profiles as can be seen in Fig. 6(c). This suggests that
there exists a z-dependent maximal correlation for a particular
combination of species. In Fig. 7 we show a series of direct
correlation functions with varying position z’ of the reference
particle. These positions are marked by vertical lines, and
obviously, the absolute minimum of the direct correlations
is located in the vicinity of these positions. Specifically, the
global minimum of the direct correlation functions shown in
Fig. 7 can be found at z > 7’ in Figs. 7(a), 7(b), and 7(e)
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FIG. 6. (Color online) Direct correlation profiles along the z axis
as shown in Fig. 5, but for various positions z’ of the reference particle.
The profiles from Fig. 5 with z = 1.50 are shown by solid bold lines.
Again, the correlations are between (a) small and small, (b) large and
small, (c) small and large, and (d) large and large particles. In addition,
the envelopes of all profiles are shown. Dashed horizontal lines show
the positions of the minima in (b) and (c), which are equal.

but at z < 7’ in Figs. 7(c) and 7(f). In Fig. 7(d) the minimum
is split into two local minima on both sides of the center of
the reference particle. This behavior can again be understood
from studying the corresponding profiles in Fig. 6(c), where
the shape of the region around the minimum of each profile
always follows the maximal possible correlation, given by the
envelope. The anisotropic arrangement of the direct correlation
functions around the center of the reference particle will lead
to anisotropic forces as we show later.

2. Total correlations

Starting from the direct correlations and one-particle den-
sities determined with DFT, we calculate the total correlations
between two particles using the OZ relation from Eq. (37).
As mentioned in Sec. IV B, this equation is exact, but
we have to deal with numerics in order to perform this
transformation. Especially, the finite number of Fourier modes
in our discretization gives rise to artifacts. As we can see
in Fig. 3(b) for a bulk fluid, the resulting total correlation
functions show unphysical values differing from —1 inside
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(a) hﬁ) (r,z,2' = 0.501)

(b) p® r,z,2 = 0.50;
3 21(\ A W ) 3.5
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FIG. 8. (Color online) Total correlation functions hf)zv),(r,z,z’) for
a reference particle at position 7' = 0.50,, between (a) small and
small, (b) large and small, (c) small and large, and (d) large and large
particles, where the second particle denotes the reference particle.
The packing fraction is ¢ = 0.5 in the bulk limit and each plot is
split up into data from Brownian dynamics (BD) simulations (top)
and DFT results (bottom), where the total correlation functions were
determined via the OZ relation. Note that in the case of the DFT
calculations all numerical artifacts at forbidden positions (inside the
wall and inside the reference particle) have been reset to —1.

the core. Note that this behavior not only originates from
numerical inconveniences during solving the OZ relation but
also depends on the inconsistency of the approximate excess
free energy functional we have used. Such inconsistencies
are common for all approximate functionals and can only
be resolved by the exact functional, which in general is not
known [35]. In our case the specific artifacts in the forbidden
regions could be avoided by employing the earlier-mentioned
test-particle route via the two-particle density in Eq. (16),
which does not show the deviations from —1 in forbidden
regions, per definition. However, this route is expected to
show deviations in other regions of the profiles where the
compressibility route might work more precisely, because the
forced hard potential of the test particle is not consistent with

o3 (r,2,2)
0

-10
-20
-30
-40
-50
-60
-70

FIG. 7. (Color online) Direct correlation functions cﬁzz)(r,z,z’) as shown in Fig. 5(c) for a large reference particle at different positions z/,
which are marked by vertical lines at (a) 0.5, (b) 0.7, (c) 1.0, (d) 1.5, (e) 2.0, and (f) 2.3.
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FIG. 9. (Color online) Total correlations h(lzl) (r,z,7") between small and small particles with diameter o,. The reference particle is fixed at a
position 7" and the position of the other particle is given in cylindrical coordinates (r,z). The hard wall is located at z = 0. Brownian dynamics
(BD) data are shown in the first and third rows; DFT results, in the second and forth row. In the top two rows a low packing fraction, ¢ = 0.3,
is employed, while a high-density case, with ¢ = 0.54, is shown in the bottom two rows. Each column denotes a different position z’ of the
reference particle (z'/o; = 0.5, 1.1, or 1.5). All numerical artifacts at forbidden positions have been removed and reset to —1 in the case of
DFT results. The speckled pattern in the lower density simulation data arises from poorer statistics at the location of local minima in the density
close to the z axis with » = 0. Vertical lines in the bottom row indicate the positions of the profiles shown in Fig. 10.

the properties of the approximate functional, e.g., increased
correlations in the particle core.

Similarly to Fig. 5, we show the total correlation functions
for all possible pairs of particles in Fig. 8. In addition to
our results determined with DFT and the OZ relation, we
plot the total correlations obtained from BD simulations
via the test-particle route, which is natural for simulations.
Simulation results are presented at the top of each plot; at
the bottom the immediate comparison to the DFT results is
shown. In general, both DFT calculations and BD simulations
show a good agreement for all total particle correlations.
However, as noted in the case of the direct correlation
function in the previous subsection, the corresponding local
structures are usually underestimated by DFT predictions

whenever local ordering occurs. For example, deviations can
be seen in Figs. 8(a) and 8(b), where simulations lead to
stronger correlations between the fixed reference particle and
a second particle at (r & loj, z = 2.107). In this position,
particles in the second layer of a local fcc or bec structure
are located. Such orderings occur more often for higher
packing fractions and they are not incorporated in our DFT
approach.

In Fig. 9 a small reference particle is fixed at different
positions 7' and the total correlations with another small
particle at position (r,z) are shown. Besides the previously
discussed small deviations, the comparison between DFT
calculations and BD simulations in general reveals a good
quantitative agreement.
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FIG. 10. (Color online) Profiles of the total correlation function
Y along the vertical lines drawn in Fig. 9 and located at the second
layer of particles (z = 1.5507). The packing fraction of the system is
¢ = 0.54 and the slice cuts are shown for three positions z’ of the fixed
reference particle. Solid lines denote DFT data and circles represent
results from the respective Brownian dynamics (BD) simulations. For
DFT all total correlations at forbidden positions have been reset to
—1 and the curves have been shifted by 0.0, 1.0, 2.0, and 3.0 (from
bottom to top).

In order to study possible deviations in more detail, we
show the profiles along the vertical lines in the bottom rows in
Fig. 9 separately in Fig. 10. Note that these data are taken at the
rather high packing fraction ¢ = 0.54, where glassy dynamics
sets in. Nevertheless, the overall agreement is still good. The
most pronounced differences occur close to particle contact.
In the simulation data this behavior is affected by two effects:
on one side, the slight softness of the repulsive interactions
and, on the other side, the uncertainty of the actual position
of the reference particle due to the discretization of the z axis.
In the next subsection, we study contact values and resulting
forces on the test particle in more detail.

C. Contact values and anisotropic forces

Anisotropy in structure results in an anisotropic distri-
bution of forces acting on a particle. Obviously, such an
anisotropic distribution can result in a nonvanishing net
force. The force distribution and the net force depend on

8, 1P oo
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the total pair correlations at particle-particle contact. For this
reason, we explored the value of the total pair-correlation
functions A5 = g% — 1 at particle-particle contact. Note
that the condition of contact effectively reduces the amount of
independent parameters by one, i.e., (z,z’) instead of (r,z,z’).

In Fig. 11 we present the contact values along the surface
of a small reference particle in a binary mixture, which
is located at several distances from the wall. Starting in
Fig. 11(a) with wall contact, the reference particle is slowly
detached from the first layer at the wall in Figs. 11(b)
and 11(c) until it reaches the second layer in Fig. 11(d). For
these different positions, we compare results obtained from
our BD simulations with the results calculated from DFT
and the OZ relation. We find reasonable overall agreement.
However, aside from statistical noise, some details of the
data reveal significant differences: First, in Fig. 11(a) the total
correlations h$%"(z,z’) obtained from the simulations exhibit
a very pronounced maximum at around (z — z')/oy &~ 0.71
in the case of the two systems with higher densities. The
contact values obtained from DFT also possess maxima at
these positions, but they are less pronounced. Probably, this is
again due to the neglect of local structure parallel to the wall in
our theory. Indeed, the simulation data show some entropically
favored contact correlations which are most obvious by the
stronger oscillations in Fig. 11(d).

As mentioned before, anisotropies in structure also cause
anisotropic force distributions. To determine these forces, we
first consider a reduced Helmholtz free energy, which depends
only on one so-called reaction coordinate. Typically, such
a reduced free energy is achieved from the free energy of
a multiparticle ensemble by integrating out all coordinates
except for the reaction coordinate [76]. Then this coordinate
can be used to describe transitions and reactions within a
statistical manner [77]. In our case, we want to disassemble the
force on a single particle in the presence of a flat wall, where
layers of particles form. In this situation, the natural choice for
the reaction coordinate is the z coordinate of a considered test
particle of species v, such that the reduced free energy can be
written as [76]

F*(z) = —kpT In(py(2)) — ks T In(X). (38)

The second term on the right-hand side of Eq. (38) incorporates
the partition function ¥ of the thermodynamic system but does

(a) . z :0‘45(71 , ‘ (b)8 ‘z’:().‘?(rl ‘ (0)8 I‘z :14101" (d)8 ?/:1;5(71 ‘
QﬁDFﬂgg— 16l 6L o6l B
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FIG. 11. (Color online) The total correlation function /4{{"(z,z’) at contact of a small reference particle at position z’ with a small neighbor
particle at wall distance z. The position of the reference particle 7’ is (a) 0.501, (b) 0.701, (c) 1.1, and (d) 1.50,. Data from Brownian dynamics
(BD) simulations (circles) and DFT results (lines) are shown for packing fractions ¢ = 0.30 (bottom curves), 0.48 (middle curves), and 0.54
(upper curves), as marked in (b). Sketches at the top illustrate certain arrangements of neighbor particles with the respective (z — z’) positions.
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not depend on z. Typically, Eq. (38) is called the potential of
mean force and it can be connected formally to the mean force
fv.z(2) in the z direction by a derivative with respect to the
reaction coordinate z; i.e.,

Fred 1 )
for) = —w — o 2ne@) g,
z a9z

Now the Lovett-Mou-Buff-Wertheim equations [2,78] can
be used to connect the gradient of the density profile, and
therefore the resulting mean force, with the two-particle direct
correlations by

f z(z)—anBTZ/rc(z)( rz.z apa”Z(Z)dzdr. (40)

Via an orthogonality relation for the density-density correla-
tions, which is a statement of the OZ relation [1,70], this mean
force can also be connected with the pair-correlation functions,
leading to [78]

n r
foad) =21k T Y o0 / PR (2.2 1)
v=I

v/

Note that Egs. (39) and (41) provide an exact relation between
a one- and a two-particle correlation, because Eq. (41)
corresponds to the first member of the Born-Green-Yvon
hierarchy [75,79].

In Fig. 12(a), we plot the net forces obtained from
our theoretical calculations via Egs. (39) and (40); in
Fig. 12(b), we compare the results of Egs. (39) and (41).
In both figures, we additionally plot the forces directly
obtained from our BD simulations for comparison. Clearly,
the net forces that are theoretically obtained via the density
profiles as in Eq. (39) match the simulation results very well.
However, at high densities we observe a significant deviation
between the curves at around z = 1.907, where the small
test particle can stack exactly on top of one large particle
that is in contact with the wall and where local ordering
might have a pronounced influence on the particles structure.
Employing Egs. (40) and (41) leads to forces that deviate
from the simulation results for z < 1.90;. These differences
are probably due to the thermodynamic inconsistency of the
functional, which, for example, manifests in the differences
between the compressibility and the test-particle route. Note
that Eq. (39) corresponds to the test-particle route, because it
solely involves the density profiles, while Egs. (40) and (41)
involve the direct correlations. The latter seem to capture
the behavior around z = 1.90, better, while the results from
Eq. (39) have a better agreement close to the wall.

Besides numerical inaccuracies, Eqgs. (40) and (41), in
principle, are equivalent. Note, however, that only Eq. (41),
where the forces are calculated using the pair correlations,
offers direct access to the specific contributions of each
particle species to the directional distribution of the net force.
Such species-resolved contributions are shown in the inset in
Fig. (12)(b). In order to obtain this information from Eq. (40),
where the forces depend on the direct correlation functions, one
first has to determine the impact of one particle on another by
integrating over all possible amounts of intermediate particles.

The results in the inset in Fig. 12(b) show that, close to
the wall, the large particles push the small test particle more
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FIG. 12. (Color online) Normalized force f;, on a small test
particle at position 7z’ in the z direction, which originates from
the surrounding particles in a binary mixture at packing fractions
¢ = 0.5 (blue line) or 0.3 (red line). Data from Brownian dynamics
(BD) simulations are plotted with circles. For comparison, different
methods to predict the force distribution from DFT are shown:
Employing the potential of mean force as in Eq. (39) leads to
the dotted lines, the solid lines in (a) denote the force distribution
calculated from the direct correlations as in Eq. (40) for both packing
fractions (¢ = 0.5 and 0.3), and the solid line in (b) corresponds to
the distribution determined via the pair correlations as in Eq. (41)
for the larger packing fraction (¢ = 0.5) only. Inset in (b): Separated
contributions from small (1 — 1) and large (2 — 1) particles to the
mean force at ¢ = 0.5.

strongly to the wall than the small particles do. If the test
particle is moved away from the wall, first the contribution
from the small particles reverses its direction such that they
start pushing the particle away from the wall. For the larger
particles the reversal of force direction occurs at a larger
distance from the wall. Between the positions of these two
reversals of directions, the resulting net force is small.

D. Comparison among one-, two-, and six-component mixtures

For an increasing number of components in a mixture,
local ordering is suppressed even at high densities. As we
show in the following the signatures of local structures in
one- or two-particle correlations are smeared out with an
increasing number of components. As a consequence, DFT
calculations that neglect some types of local ordering become
more accurate for such an increasing number of components.

In Fig. 13 we demonstrate this effect for a packing
fraction of ¢ = 0.5, where a one-component [Fig. 13(a)], a
two-component [Fig. 13(b)], and a six-component [Fig. 13(c)]
system have been used. The binary mixture is the same as
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FIG. 13. (Color online) Two- and one-particle correlations at a
packing fraction of ¢ = 0.5 for (a) a one-component, (b) a two-
component, and (c) a six-component mixture, where the distribution
of particle diameters is explained in the text. All plots compare data
from our BD simulations and DFT. (al, b1, cl) Total self-correlation
functions h(lzl)(r,z,al /2); (a2, b2, c¢2) accompanying density profiles
p1(z). The latter are shown normalized with the respective bulk
density p;.

discussed throughout this work, with particle diameters o)
and o, = 1.407, while the multicomponent system contains
an equimolar mixture with particles of six discrete sizes:
o1, 1.1oy, 1.201, 1.301, 1.401, and 1.50;. In Figs. 13(al),
13(b1), and 13(c1) we show the total self-correlation function
h(lzl)(r,z,z’) of the smallest particles, where one particle is in
contact with the wall. Obviously, for the monodisperse case
the peaks are very pronounced, and due to the high packing
fraction of ¢ = 0.5 and the induced anisotropy, crystal-like
structures are visible already on the two-particle level. As
expected, major differences occur between DFT calculations
and simulations in this case, e.g., at the position indicated
by the arrow in Fig. 13(al). However, the peaks due to
local orderings are less pronounced if more components are
considered. Therefore, Figs. 13(b1l) and 13(c1) show a much
better agreement between simulations and theory. This result
is confirmed by Figs. 13(a2), 13(b2), and 13(c2), where we
compare the density profiles obtained from simulations and
DFT. The smoothing of these profiles, while increasing the
number of components, is the result of the increasing number
of possible configurations of different stackings next to the
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wall. As a consequence, the peaks are smeared out for an
increasing number of components and the splitting of a peak
can no longer be observed in the case of a more homogeneous
spectrum in the polydispersity distribution. Nevertheless,
Figs. 13(b1) and 13(c1) already show the trend that prominent
peaks in the pair correlations still occur in the polydisperse
situation even for the second shell of surrounding particles.
These peaks are retained even if the averaged correlation
functions h;(r,z,7') = %Zﬁzl hﬁ)(r,z,z’) (not shown here)
would be plotted instead of the self-correlations between
solely the smallest particles. Obviously, these peaks represent
the most probable positions of next-neighboring particles, no
matter what size they are.

VI. CONCLUSIONS

Using comparisons to BD simulations, we have quanti-
tatively explored the strengths and weaknesses of the WBII
FMT approach within DFT in predicting one- and two-particle
correlations within HS systems. In order to study anisotropic
situations, we broke the symmetry and explored the behavior
in the vicinity of a hard wall. Especially in the case of our
six-component systems, DFT led to excellent predictions even
at high packing fractions. However, in the case of mono-
or bidisperse systems, DFT did not necessarily resolve the
formation of local order. We have demonstrated that the
compressibility route of DFT can be employed to calculate
two-particle correlations, contact values, and forces acting on
a particle, even in the investigated strongly anisotropic situa-
tions. Our research sets the course for further investigations of
structural properties, e.g., within the primitive model, where
long-ranged particle interactions are involved. Furthermore,
it demonstrates the interest in further detailed studies on the
consistency of functionals.

Our finding that, particularly at packing fractions above
¢ = 0.5, two-particle correlations can be well predicted might
turn out to be important to understand the relation of structure
and dynamics of such systems. For these large packing
fractions the dynamics tends to become very slow. Such a
dramatic slowdown of dynamics usually is termed glassy
dynamics and its relation to structure is the subject of intensive
research [16,19,75,80-86]. Advanced theories that deal with
glassy dynamics, e.g., mode coupling theory [81,83], its
generalization [86], and similar approaches [80,82,85], rely
on the knowledge of the structure of the system. Our work
demonstrates that FMT is a suitable approach to obtain a
reliable input for these theories even in the case of anisotropic
geometries, e.g., in the vicinity of a wall. Furthermore, a
comparison of our results to simulations of soft particles away
from the HS limit probably is interesting, especially for large
packing fractions, where the softness of the particle might
change the behavior significantly [87,88].

In principle, our DFT calculations can be extended to
describe the orderings of particles in gravity [89,90] or of
particles possessing charges [91], which might be confined
by charged surfaces [92]. Such extensions lead to systems
with many important applications, e.g., the formation and
in-plane structure of electric double layers [93] or interfaces
like the liquid-vapor one [5]. The knowledge of structural
correlations in the so-called (restricted) primitive model might
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lead to advanced insights into the properties of modern devices
like supercapacitors [93-95], blue engines [91,96,97], and
thermocapacitive heat-to-current converters [98].
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APPENDIX A: SOLVING THE ORNSTEIN-ZERNIKE
RELATION

Starting with the direct correlation functions C(Vzv) deter-
mined from FMT, we obtain the total pair-correlation functions
hszv) by solving the OZ relation as defined in Eq. (18)
numerically. If the involved correlation functions are rescaled
by a factor v/ p,(¥)p.,(¥’), the result is 0 in all locations that
must not be reached by a particle. Therefore, it is sufficient
to solve the OZ relation only outside of the wall, even if the
original direct correlations might be nonzero inside the wall.

As shown in Eq. (37), we solve the OZ relation numerically
in Fourier space, where convolutions become simple products.
In our case, we consider functions with radial symmetry, i.e.,
functions f(x,y) with x = r cos(f) and y = r sin(9) that do
not depend on 6. Then their Fourier transforms are

F(f)(ky ky) = %/R G, y)e R Rgxdy, (Al

which, in polar coordinates after the integration over 8, lead to

F(f)(s) = /0 rf(r)Jo(srydr. (A2)

This result corresponds to a Hankel transform (or Bessel
transform) as introduced in Eq. (36), which in general is
defined by [99,100]

Fyu) = H{f@®)} =/ f(@O)Jv(unydt, (A3)
0

where F,(u) is called the Hankel transformed function of order
v of the function f if the integral exists. The function f can
be a complex-valued function and J, denote Bessel functions
of the first kind, which, for integer v, are given by [99-101]

J ( ) — i i —1(vT—x sin(r))d (A4)
v{X o e T.

T

The inverse Hankel transform is given by

f@)=H "F,u)}= / h Fy(u)J,(ut)udu. (AS5)
0
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We employed the Hankel transform, which, for numerical
calculations, is available in the Gnu Scientific Library (GSL)
and whose calculation scheme follows the work of H. F.
Johnson [99] and D. Lemoine [100].

APPENDIX B: THE WEIGHT-CORRELATION
FUNCTIONS IN FMT

In this Appendix we derive the terms that are used in FMT
for a multicomponent system in order to obtain the direct
correlation functions. From Eq. (34) we know that the direct
correlation functions in FMT on a discrete numerical grid read

o (_} _)/) N M-1 82®(Zi)W(aﬁ)(]_- & BI
G ED S i, i ), (BI)
i—0 o B o

where A = 7 — 7, z; are the discrete and equidistant sample
points along the z axis separated by d,, the weight-correlation
functions W (1,7) were defined in Eq. (35), and I; is a
corresponding interval, I = [z1,28], with z; = z; — (F), —
1d. and zg = z; — (7). + 1d., which contains z;. Note that
we employ r, = (¥), as shorthand for the x component of the
vector 7 in Cartesian coordinates spanned by {é,,é,.¢,}.

The weight-correlation functions Wﬁ’s ) (1,F) are represen-
tations of convolutions of the translational-invariant weight
functions w® and w'® from Egs. (26)~(32) on the interval
1. These weight functions have nonvanishing values solely on
the volume S, or on the surface 9.5, of a sphere of species v
with radius R,. Thus, we cogsider two spheres, A and B, with
centers in the origin and at A.

In order to calculate a function Wlf“fﬁ ) as given in Eq. (35),
its integration interval I must have certain properties. To
guarantee these properties, the interval I can be split into parts
Iand I, with Iy N I, = @ and I = I, U I, such that

W1, A) = WP, A) + WP, A). (B2)

Subsequently, splitting / in an appropriate way into intervals
I; guarantees the following necessary properties after splitting:

(a) Either the weight-correlation function vanishes in the
interval [; [W%;)(I,-,A) = 0] or both spheres, S4 and Sp,
contain at least one point with z component z for each point
zintheinterval I; (Vz € I;, V, := R?* x {z}: V. N S, # ¥ and
V,N Sp #9D).

(b) Either the intersection dS4 N 95y of both spheres, 9.5
and 3Sp, contains, for all z in I;, at least one point 7 with z
component r, or it contains, for all z in the inner kernel I°,< , no
point 7 with z component r,.

Note that the whole intersection line 9S54 N 8§B can be
contained in one slice, V. := R? x {z}, when Allé. (for
visualization see Fig. 14). We do not consider the special
situation where the spheres touch in a single point, which
would contribute only to the point of the direct correlation
function at particle contact, whose value is not defined.

As can be seen from its definition in Eq. (35), the absolute
value of the weight-correlation function W&‘f) does not change
if the spheres S4 and Sp exchange their positions and the
interval [ is adapted in an appropriate way; i.e., I = [z,zr]
must be adapted to I’ = [(A); — zr,(A); — z.]. However,
the sign of the function changes when one of the involved
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A

FIG. 14. (Color online) Sketch of the intersection of two spheres A and B with radii R4 and R at a center-center distance of A. The sketch
contains notations and parametrizations for (a) the intersection in the xy plane and (b) the intersection line, both illustrated at the right. Note

thatin (b) |C] = A, and A = Ay + Ap.

weight functions is antisymmetric and sign(wy4 )sign(wg) < 0;
in our FMT approach, only the vectorial weight functions
are antisymmetric. Therefore, an exchange of the two spheres
leads to

W/(ff)(l,ﬁ) = sign(wif))sign(wg}))ng:‘)(l/,ﬁ). (B3)
For this reason we calculate only combinations with o > B,

according to theorder 3 > 2 > 1> 0 > 2> 1> 2. Further-
more, from the definition of the weight functions it follows
that

(al) 1 (@2)

Wy = Low, (B4)
(«0) 1 (@2)

Wag = RS Wag (B5)
(@) 1 ed

wob = owed. (B6)

In summary, we have to calculate only the weight-correlation
functions for the following combinations:

(@f) € ((33).(32).(32).(32),

(22).(23).(22).(33).(32).(22)}).  (B7)

All other combinations can be obtained by the relations
mentioned above.

If the support of Wifjf) and the volume V = R? x I do
overlap (have a nonvanishing intersection), three cases are left
for this volume V.

(1) Sphere B inside sphere A
Sphere B is completely encapsulated by sphere A (or vice
versa), i.e., without loss of generality,

S4NSEpNY=SNVand S, NSz NY =¢.

(2) Partial intersection
Different spheres with only partial intersection, i.e., without
loss of generality,

39S, NdSg NV %0, but S4 # Sp.

(3) Two equal spheres
Equally sized spheres are at the same position,

Sa = Sp.

In the following sections we calculate the weight-
correlation functions Wfﬁf) in these three cases for all
combinations of weight functions mentioned in Eq. (B7).
During this calculation, we use the in-plane radii r4 and rp
of the spheres intersecting with a plane V, perpendicular to
the z axis, i.e., of the circles V, NS4 and V, N Sp as shown
in Fig. 14(a). In our three cases, these radii are well defined
for all z € I with planes V, within the volume V = R? x I of
integration and read

ra(z) =/ R — 2%, (B8)

rp(2) =/ R} — (D), — 2)%. (BY)
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Keep in mind that appropriate splitting must guarantee the
earlier-mentioned properties after Eq. (B2).

1. Case 1: Sphere B inside sphere A

This case occurs only when A is larger than B and when B is
fully encapsulated. In this situation, the unit vectors pointing
from the centers of sphere A or B towards their respective
surfaces can be parametrized for z € [; with cylindrical
coordinates (y,z) by

Ra(y.z) 1 [ra@cos(y)
—— = 5 | ra@sin(y) |, (B10)
Ry R4 Z
5 —rp(z)cos(y)
B0 _ L[ rpsing) |, @i
Ry R z—(4A),

where r4(z) and r(z) are given by Egs. (B8) and (B9).
For all combinations, where the weight function of the

larger encapsulating sphere is not wf), neither weight function

intersects and one trivially obtains WX?S”S ) = 0; we neglect
the case where the encapsulated sphere touches the outer one
in a single point. For the remaining combinations of weight
functions the first two weight-correlation functions read

ZRr
33
Wi = / nri(z)dz
ZL

= [nkgz + %((&)Z - z)3]

- (B12)
=L
Wis = / O(R4 — [FNS(Rp — |F — Al

Vi

(B13)

Since sphere B is encapsulated inside of sphere A, the ®
weight in Eq. (B13) is equal to unity for the integration volume
of interest. Furthermore, a linear parameter change for the
xy integration in this equation and a change to cylindrical
coordinates (r cos(y),r sin(y),z) lead to

2 o)
Wiy = /1 /0 /0 r8(Rp — /12 + (z — (R),D)drdydz.

(B14)

In order to perform the integrals in Eq. (B14), we use the

equality 5 )
r —r;
NEGEDY e

for a continuously differentiable function g(r) with the finite
set {r;} of simple 0’s and the derivative g'(r) = dg/dr. In
Eq. (B14) the argument of the § distribution has the simple zero
ri =rp(z) and |g'(r1)] = r/Rp. Accordingly, the previous
result of Eq. (B14) becomes

(B15)

WS =27 Rg(zg — 21). (B16)

Similarly, it follows that

. ZR 2 00 .
Wy = / /0 /0 Ryd(r — rp(2))Rp(y.2) drdydz
L

N 1 N R IR
=2meé, 2 —(A)z )

=L

(B17)
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32 A A s
W;B) = ®eé+eé,®e)

z

<R

T R2 1 5 3
XR_B BZ+§(( ): —2)

=L
N R 2 1 - R (f (32)
+(e, ® ez)R—B[—g((A)z - Z)S]z=u - gWAB )

(B18)

where the outer product &; ® é; between &; and é; is defined
as the matrix product é; - é}T, with T indicating a transposed
vector.

2. Case 2: Partial intersection

In this case, both sphere A and sphere B intersect each other
and the intersection occurs at z positions with z; < z < zg.In
order to calculate the weight-correlation functions Wf,af ) we
distinguish two cases.

(2a) At least one of the corresponding weight functions
incorporates a ® weight: & o =3 > .

(2b) No ®-weight function is involved: < 3 > o > B.

a. Case 2a: Partial intersection, o = 3

In this case, we employed numerical integration in order
to determine Wf‘al‘f ) following some analytical calculations.
According to previous discussions, A, :=(A), < |A| and

Ayy = 1/(ﬁ),% —i—(ﬁ)f, > 0. Thus, the vectors R, and Rp,

which point from the center of the spheres S4 and Sp to their
surface (at position z), can be parameterized by (see Fig. 14)

Ra(@a) = Ca + ra(@)(Dea cos(@a) + Dy sin(@a)), (B19)

Rp(¢p) = C + rp(z)(Des cos(pp) + Dyg sin(gp)), (B20)

where

Ca=z6.,Cp=(z—A)e., (B21)
Des = AL/ (A, + Aye)) = =Dy, (B22)
Dys = &, X Dep = —&, x Dep = Dyp. (B23)

The in-plane radii 74 and rp are used as defined in Eqs. (B8)
and (B9). From the law of cosines it follows that

2 2 2
rA+Axv_rB

ra COS(Q"A) = T, DA € (0,7'[), (B24)
Xy
r123 + Aiy - ri
rp cos(pp) = A s € (0,m), (B25)
xy

where the correlated angles ¢4 and ¢ become 7 for vanishing
radii r4 and rp, respectively.

In the case of two ® weights, the intersection area of the
kernel is given by two caps of the corresponding intersecting
circles as illustrated in Fig. 14(a). The area D of such a cap
is given by the fraction ;—7‘/; of the corresponding circle with a
triangle subtracted or added, depending on the opening angle

of p:if ¢ < Z, the triangle is subtracted; otherwise, it is added.
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With & = | sin(g)|r, the area follows with

D = or? — r*cos(¢) sin(p). (B26)

Thus, the weight-correlation function for two ® weights
follows with

PHYSICAL REVIEW E 92, 042310 (2015)

Referring to calculations from Egs. (B14)—(B16) in case 1,
we, furthermore, get

1 (2} ZR
Wi = / / Rpdydz =2 / gsRpdz.  (B28)
L

Using the parametrization of Rp from Eq. (B20), we obtain

3 2R ¢B
Wy = / / Rp(p)dedz
L —¢B

W,E\Sl:;) — /ZR(ri(Z)((PA _ Sil’l((pA)COS((pA)) =2 /" [(0863 + VB(Z)BCB Sin((pB)]dZ~ (B29)
+ ré(z)(goB _ sin(goB)cos((pB)))dz (B27) Using, furthermore, the equalities fsinz(x)dx =
5= isin(Zx), fcosz(x)dx =3+ }1 sin(2x), and

f sin(x) cos(x)dx = —% cos?(x), it follows that

|
(W2 ),; f / & — (R (Rp(9));dedz — f f Ry~ a,Jdgodz (B30)
= / Ry [wB(CB) (CB), +rg(2) Sln(<ﬂ3)(C3)z(Dc3)] + r5(2) sin(@p)(Dep); (CB),
l
+(r3(z>)2(“’ - sln(zgoB))(DCg),(Dm), + (rB(z»z(? - - sln(zgoB))(DfB»(DcB),]dz = 3% WSy -

(B31)

Finally, we calculated the remaining integral over the
interval I; = [z.,zg] in Egs. (B27)—(B31) numerically on a
discrete grid of 16 points. Keep in mind that zz — z; < d,,
which is the numeric resolution chosen for the determination
of the direct correlation function in Eq. (34).

b. Case 2b: Partial intersection, o < 3

In the interval of interest, I; = [z.,zg], a unique intersec-
tion circle between the surfaces 9.5, and 9 S exists. Note that
the whole intersection circle might lie in one plane, R? x {z.},
if A | .. Otherwise, the distance A must have nonvanishing
contributions orthogonal to é,.

The intersection circle, as sketched in Fig. 14(b), can be

parameterized by the vector
71(t) = C + D.rycos(t) + Dyrysin(t), (B32)

~/R2 — A% = sin(¥4)R, follows from
A A =
2R A cos(P4) with A =|A| and from

where the radius r; =
2 _ p2 2
Ry = Rj + A° —
AA = C_QS(Z?A)RA.
For A } ., the vectors in the parametrization read

) A RL—R2-A[Ds
C=A—=-L2_"A_— |A/]|, (B33)
N —2A2 A.
- 6. x A 1Ay
Dy=—“—— = A, (B34)
le; x Al A)‘y 0
- —AA
. DyxA 1 x B
D =—"—= AyA. (B35)
IA| Ay A\ _a2
xy

(

Moreover, |lq)s X A| = |5|, because E)S 1 é and |5X| =1.
By definition, it also follows that Dy L D.. To map the
parameter ¢ into the given interval I; we, furthermore, solve
z = (#1(¢)), and find

_ RA-RI-A?
—2A2
—2A

A;
cos(t) = A. (B36)

xy

Thus, the interval I; = [z,,zg] corresponds to the intervals
[t1,22] and [—1,, — 1], due to the symmetry properties of the
cosine. .

In the case where A || é,, when the whole intersection circle
is located in one zﬁslice at z = z., we set ghe vectors in the
parametrization to C = z.é;, Dy = &y, and D, = é,. Then the
whole circle is caught by the above-defined intervals [7;,1,]
and [—f, — ] withty =0and 1, = 7.

Now, we consider the weight-correlation function,

IR R .
Wiy =f // S(R4 — [F)S(Rs — IF — A]dF. (B37)
ZL

Splitting the vector P into parallel and orthogonal com-
ponents 7 || A and 7, L A and convertlng to cylindrical

coordinates (r cos(y),r sin(y),c = |C|) on the Euclidean base
(D¢, Dy,C/c), we find

W = fR f_ 7 fo r8(ga()8(ga(r)drdyde

+/R/2/0 r8(ga(c)é(gp(r)drdydce, (B38)
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with the argument functions gs(c) = Ry — ~/r> +c2 and  together with |gj(co)l = r/Rp. Second, we apply the same

2s(r) = Rp — /r2 Y- &)2’ where the conditions con- identity to the first § distribution with argument g4(c), where

. . . we already replaced the parameter r with the value which is
cerning the z integration from Eq. (B37) have been transferred y rep . P " S .
. . . set by the r integration over the second § distribution, leading
to conditions of the y integration.

In this tilted geometry, we first apply the identity from  t0 ga(c) = R2A - \/202 + ﬁ% —(c—~ |A])?, with the simple
Eq. (B15) to the second § distribution with argument gz(r)in ~ Zzero c¢o = (R A R + [A[9)/(2|A]) and the corresponding

Eq. (B38) and achieve the simple zero ry = v R% —(c— |5|)2 |g}a(co))l = |Al/Ry. Accordingly, we find

|
—h o p R L RIR
w = f / f A8 5(c — co)d(r — rydrdydc + / / / A28 5(c — co)d(r — rydrdyde, (B39)
RI- Jo A Ry Jo A
which leads to the final result,
RAR
Wy = ==L — 1), (B40)
|A
The vectorial and tensorial weight-correlation functions are calculated in a similar manner. For this purpose, we define vectors
Ra(t) =7(1) and Rp(t) = A(t) — A (B41)

which point from the centers of the spheres A and B to a point on the intersection line 954 N d.Sp, which is parameterized by .
In combination with Eq. (B39) we obtain

5, RuaRp [ R RiRy (2R
W@ _ RaRsg / B(V)dy 4 RaRs / B(V)dy
_ |

AB —

Al Jo, Rs A Rp
RA = - g . 1
=230 = By + mDesinl,. (B42)
Sn RaRg [ ((Rs(y)i (Rs(v)); 8 RaRs [ ((Rs())i (Rs(y)); 8
(W/E\Z;)).. _ Ra B/ (Re(y))i (Rp(¥)); LA PR Al B/ (Rp(y)i (Rp(y));  8ij dy. (B43)
A e\ Rs Rg 3 Al Ju \ Rs Rs 3
. RiR —1 I_é i ﬁ . RsR h I-é i I_é j
(W/(f;))‘. _ Ral 3/ (Ra(y)i ( B(J/))dejL ARz (Ra(y)i ( B(V))/dy’ (B44)
Joal J o Ra Rp Al Jy Ra Rs
(wiih) _ Raks f" Raly)i (Rey); R B
AB Jijk |A| —n RA RB RB 3
RsR (R i R (R 8j
4 RaRs (Ra(y)i [ (Re(y)); (Re(¥ )k Sjk dy, (B45)
A Jo o Ra Ry Ry 3
( (‘533) ZRA_'RB /” Raij 8 V[ R dy
AB Jijki A Jo, R? 3 R2 3
RaRs [ [Rar)y 85 [ (R S
L Ra B/ ( A()Z/)),, ATE B(Jz/))kl T (B46)
|A| I RA 3 RB 3

(

These situations are addressed, when, in the discussion in

where  Ra(y) = Ra(y) @ Ra(y) with the tensor prod- Sec. V B 1, the correlations between a small and a large particle

uct ®, (Ra(y)); = (Ra(y)i(Ra(y));, and (Rp(y))ij =  are called similar to the self-correlations of the small particles.
(R B(y)),-(I_é 8(y));. The analytical form of Eqs. (B43)—(B46) In this discussion all cases with @ < 2 were neglected. In cases
follows from straightforward integration. with o« = 2, we find
IR
Wis' = / / / 8(Ra — V/r? + 22)8(Ry — Ru)dF.
7L

3. Case 3: Two equal spheres

In the last case, sphere B is equal to sphere A. This case (B47)

of equal spheres corresponds to a limiting case of the first two
cases such that we do not need additional calculations. For ~ Thisresultcorresponds to Eq. (B13) incase 1, where « = 3 and
example, case 1 already covers all situations where o = 3. B = 2, because the ® weight of sphere A completely contains
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the weight function of sphere B and, as a consequence, is
irrelevant. Note that here the naming of spheres A and B was
switched.

All remaining situations with @ < 2 can be mapped onto the
situation where o = 2, because all weights with « < 3 are §
weights and differ only in a prefactor. This applies even for the
vectorial and tensorial weights: for example, wheno = 8 = 2,

PHYSICAL REVIEW E 92, 042310 (2015)

both vectors always point to the same point on the surface
of both spheres such that they are parallel. Accordingly, the
result is equal to the result obtained for ¢« = 8 = 2. Similarly,
a vectorial and a tensorial weight can be reduced to a scalar
and a vectorial one, two tensorial ones can be reduced to two
scalar ones, etc. In conclusions, all combinations of § weights
can be mapped onto the o« = 2 situation.
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