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Understanding the approximations of mode-coupling theory for sheared steady states of colloids
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(Received 21 May 2015; published 9 October 2015)

The lack of clarity of various mode-coupling theory (MCT) approximations, even in equilibrium, makes it hard
to understand the relation between various MCT approaches for sheared steady states as well as their regime of
validity. Here we try to understand these approximations indirectly by deriving the MCT equations through two
different approaches for a colloidal system under shear, first through a microscopic approach, as suggested by
Zaccarelli et al., and second through fluctuating hydrodynamics, where the approximations used in the derivation
are quite clear. The qualitative similarity of our theory with a number of existing theories show that linear response
theory might play a role in various approximations employed in deriving those theories and one needs to be
careful while applying them for systems arbitrarily far away from equilibrium, such as a granular system or when
shear is very strong. As a by-product of our calculation, we obtain the extension of the Yvon-Born-Green (YBG)
equation for a sheared system and under the assumption of random-phase approximation, the YBG equation
yields the distorted structure factor that was earlier obtained through different approaches.
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I. INTRODUCTION

Shearing a supercooled fluid is ubiquitous in nature and has
lots of technological applications [1], for example, industrial
processing, testing usefulness of materials (e.g., paints or
printing inks), mixing or separation of granular materials (in
drug industry), etc. Shear starts affecting the properties of
the system when τRγ̇ ∼ 1, where τR is the relaxation time of
fluid and γ̇ is the rate of shear. As τR for glassy materials
becomes very large [2], even a small amount of shear will
have a large effect in the properties of the system. Shear can
lead to interesting effects in a dense glassy system like the
shear induced crystallization and phase separation [3], shear
banding [4,5], shear thinning [6–10], shear thickening [11–14],
etc. But, understanding the properties of a system under
shear is a nontrivial task as shear drives the system out of
equilibrium. Considerable progress has been achieved though
in the past decade [15–19], mainly for colloidal glasses. Glass
transition is defined as the point where the relaxation time
of the system becomes of the order of 100 s. However, the
relaxation time scale for molecular glasses far away from the
transition is ∼10−12 s and that for the colloids is ∼1 ms. For
a consistent definition, the ratio of the relaxation times far
away from the transition should be comparable to that close to
the transition. From that point of view, the glass transition for
colloids should be defined when the relaxation time becomes
∼1011 s. But this is practically impossible to measure. What
this implies is that the colloidal glass is much further away
from the point of its structural arrest compared to molecular
glasses [20]. This raises the concern if a theory that has been
successful for colloidal glasses can also be applied for other
glassy systems. In any case, it is important to understand the
approximations and assumptions made within a theory to infer
its domain of applicability and how to extend it further.

Mode-coupling theory (MCT) has been very successful
in describing the supercooled and dense fluids [2,21–23].
MCT gives an equation of motion for the two-time density
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correlation function and makes several predictions that can be
tested in experiments and simulations [24–26]. The correlation
function shows a complex two step relaxation near the glass
transition point, first relaxing towards a plateau, known as the
β relaxation, and then relaxation from the plateau towards
zero known as the α relaxation. As the control parameters
like temperature (or density) are decreased (or increased) the
plateau extends and the relaxation times increase. Below a
certain temperature (or above a certain density) the correlation
function ceases to decay to zero and this is known as the
nonergodicity transition of MCT. However, no such transition
is observed in real systems or simulations and predictions
of MCT start to fail around this transition. It is argued that
activated processes, not included within MCT, are responsible
for avoiding such transition in real systems [27,28]. In a
system under shear though there is no such transition even
in the absence of any activated events as shear smears out the
transition at a time scale ∼O(γ̇ −1). Thus MCT might work
better for a system under shear.

MCT has indeed been extended for systems under
shear [15–18,29–32]. However, the approximations used in
various theories and their domain of applicability is not very
clear. Even for bulk MCT, the approximations used for the
derivation of the theory are not yet well understood [21–23]
and the role of fluctuation-dissipation relation (FDR) within
the theory is quite nontrivial [33–35]. This issue becomes even
more severe for the sheared steady state as the system is away
from equilibrium and one needs to be careful that the FDR is
not used explicitly or implicitly within the theory. It would be
desirable to have a derivation of the theory where the approx-
imations are clearer in order to understand its applicability
and limitations. Here we take up this goal. The approach in
the manner of Zaccarelli et al. [36,37] is particularly nice in
this regard where the various approximations of the theory are
quite transparent.

Starting from the Newton’s equations of motion for indi-
vidual particles of a colloidal suspension, we derive the MCT
equations using the linear-response theory. An important step
in this derivation is the form of a trial function (Sec. III)
that yields the Yvon-Born-Green (YBG) equation for the
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FIG. 1. (Color online) Schematic picture of shearing a colloidal
suspension taken within two plates. The upper plate is being sheared
in x-direction at a rate γ̇ and the velocity gradient is in y-direction.

sheared fluid. We obtain the same form of YBG equation also
through hydrodynamic approach using the approximation of
local equilibrium, and thus justify the use of the particular
form of the trial function. For further insights, we also
derive the MCT equations for a sheared fluid starting with
the equations of fluctuating hydrodynamics. Both approaches
yield identical results which are qualitatively similar (at
least, within the schematic approximation) to some of the
existing theories [15,16,19,38]. This should imply that the
applicability of linear-response theory is assumed in some of
the approximations in this set of theories even though it is not
apparently clear in their derivation.

Thus we can summarize the main achievements of the
present work as follows. (1) We have derived MCT for sheared
steady state through the use of linear-response theory that
can be justified for colloidal system under small shear. The
qualitative similarity of the theory to many existing theories
shows that linear response theory might play a role in various
approximations employed within those theories. (2) As a
by-product, we have obtained an extension of YBG equation
for sheared colloids. The rest of the paper is organized as
follows. Starting from the microscopic equations of motion
for the individual particles of a colloidal suspension under
shear, we obtain the equation of motion for the coarse-grained
density in Sec. II. We propose a trial form for sheared fluid in
Sec. III and obtain the modified YBG equation for a sheared
fluid. We justify the use of the trial function in Sec. IV
by comparing the YBG equation obtained through the use
of the proposed trial function with that obtained through
the hydrodynamic approach starting from the distribution
functions. We obtain the mode-coupling equation in Sec. V and
present another derivation of sheared MCT equations through
the hydrodynamic approach in Sec. VI. We conclude the paper
by discussing our results and their implications in Sec. VII.

II. EQUATION OF MOTION FOR THE
MICROSCOPIC DENSITY

Let us consider a three dimensional colloidal suspension
between two plates with the upper plate being sheared in
the x direction at a rate γ̇ as schematically shown in Fig. 1.
The equations describing the ith particle of the fluid under
steady shear in the frame of reference comoving with the shear

velocity are

ẋi = γ̇ yi + Pxi/m, ẏi = Pyi/m, żi = Pzi/m,

Ṗxi = Fxi − γ̇ Pyi − ζPxi, Ṗyi = Fyi − ζPyi,

Ṗzi = Fzi − ζPzi, (1)

where γ̇ y term in the x-component velocity equation of Eq. (1)
comes from the contribution due to shear, ζ is a bare damping
coefficient for the colloidal particles, and m is mass, same
for all particles. Pi = (Pxi,Pyi,Pzi) is the momentum of ith
particle and Fi is the interatomic force acting on it.

Let us now write down the equations of motion for the
individual particles in the laboratory frame of reference as

ṗxi = Ṗxi + γ̇ mẏi = Fxi − γ̇ Pyi − ζPxi + γ̇ Pyi

= Fxi − ζpxi + ζmγ̇ yi,

ṗyi = Ṗyi = Fyi − ζpyi, ṗzi = Ṗzi = Fzi − ζpzi, (2)

where the p’s are measured in the laboratory frame of reference
and the P’s are in the comoving reference frame.

Then, in the vectorial form, the equation of motion for the
ith particle in the laboratory frame of reference can be written
as

ṗ = F − ζp + ζmγ̇ yx̂. (3)

The coarse-grained density in Fourier space at wave vector k
is

ρk(t) =
∑

j

eik·rj (t). (4)

Now for a system under shear we need to take into
account the advection of wave vector. Due to shear, the system
loses translational invariance, but it is restored by a Galilean
transformation

k(t) = k(0) + γ̇ tkxŷ (5)

for the kind of shear we are taking into account, namely, shear
in x direction and the velocity gradient in y direction. For
the convenience of notation, we will omit the time index for
wave vectors below, since we are writing all the quantities at
time t only. The time derivative of the density in the comoving
reference frame will be

ρ̇k(t) =
∑

j

i(k · ṙj (t))eik·rj (t) (6)

and the second order time derivative will be

ρ̈k(t) =
∑

j

i(k · r̈j (t))eik·rj (t) −
∑

j

(k · ṙj (t))2eik·rj (t). (7)

These equations are true for all wave vectors. Again for
notational simplicity, we haven’t time labeled the wave vectors,
but a wave vector associated to a particular quantity is at the
same time as the quantity is.

Now we will use Eq. (3) to replace the r̈j (t) term
in the above equation and we will write down the
equation in laboratory reference frame. The interatomic
potential is given by U = 1

2

∑
m,m′ v(|rm(t) − rm′ (t)|) =

1
2V

∑
m,m′,k′ vk′e−ik′ ·(rm(t)−rm′ (t)). Then the force on the j th
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particle is given as Fj = −∂U/∂rj (t) and following Ref. [37]
we will obtain from Eq. (7)

ρ̈k(t) = − 1

mV

∑
k′

vk′k · k′ρk−k′ (t)ρk′(t) − ζ
∂ρk(t)

∂t

−
∑

j

(k · ṙj (t))2eik·rj (t) + ζ γ̇ kx

∂ρk(t)

∂ky

. (8)

Here we have neglected higher order terms in γ̇ . This equation
is exact but not of much use in its present form. To get useful
insight about the dynamics of the system we need to write
down an equation for the density dynamics separating the
fast degrees of freedom from the slow ones and it is at this
stage where various approximations enter. In the following,
we will use similar approximations as used for the derivation
of mode-coupling theory for a bulk fluid without shear from
the microscopic equations of motion [36,37].

III. TRIAL FORM AND THE
YVON-BORN-GREEN EQUATION

Let us first summarize the steps in the derivation of
MCT for a bulk unsheared fluid following Zaccarelli et al.’s
approach [36,37]. This will help comparing the derivation
of sheared MCT with the unsheared one. Starting from the
Newtonian equations of motion for the individual particles, we
first write down the equation of motion for the coarse grained
density. Next we use a trial form for the equation of motion for
the coarse grained density as ρ̈k(t) + 	̂kρk(t) = F̂k(t), where
	̂k is the frequency term having the dimension of the square
of frequency and F̂k(t) is the residual force, that contains both
the fast degrees of freedom and the slow ones. Minimization
of the residual force with respect to the frequency term gives
the optimized value for the frequency term. Minimization of
F̂k(t) also implies an orthogonality condition that in turn gives
the YBG (Yvon-Born-Green) equation. Finally we write down
the residual force as the sum of a damping term and noise and
use of the fluctuation-dissipation relation gives the form of the
damping coefficient.

In the last section we have obtained the equation of motion
for the coarse grained density starting from the equations of
motion for individual particles of a sheared system. Next we
need to use a trial form to write down the equation of motion for
the coarse grained density in the desired form. Let us propose
the following trial form for a sheared supercooled fluid

ρ̈k(t) + ζ

(
∂

∂t
− γ̇ kx

∂

∂ky

)
ρk(t) + 	̂kρk(t) = F̂k(t), (9)

where ζ is the bare friction coefficient, γ̇ , the shear rate, 	̂k

has the dimension of square of frequency, F̂k(t), the residual
forces. In the absence of the residual forces and shear, density
waves would have shown a perfectly oscillatory behavior,
but shear damps the waves whereas the residual forces are
responsible for deviation from an oscillatory behavior of
density waves.

This trial form for the case of sheared fluid is, of course, not
obvious and we will justify the form by deriving the YBG equa-
tion from the above equation through the standard prescription,
first suggested by Zwanzig [39], and comparing that with the

YBG equation derived from another completely independent
approach, starting from distribution function [40] or the
phase-space probability density. The YBG equation derived
from distribution function requires the approximation of local
equilibrium, which is justifiable only for small shear. We will
see that the YBG equations derived from these two completely
different approaches are the same and justify the use of the
above trial form for the case of sheared supercooled fluid.

Zwanzig calls the 	̂k’s the elementary excitations of
fluid [39] and suggests the variational principle to calculate
the actual frequencies that are the eigenvalues of the Liouville
operator. Thus we will minimize the residual force with respect
to 	̂k to get the value for the square of the frequency which
should enter the actual equation of motion. The minimization
of residual force [37,39] implies

∂〈|F̂k(t)|2〉
∂	̂k

= 0. (10)

Here all the averages are over the initial condition. Then, we
will obtain the optimized frequency from the equation

〈ρk(t)ρ̈−k(t)〉 + ζ 〈ρk(t)

(
∂

∂t
− γ̇ kx

∂

∂ky

)
ρ−k(t)〉

+	k〈ρk(t)ρ−k(t)〉 = 0, (11)

and using the assumption that the fluid obeys the equipartition
theorem at a temperature T , we obtain the frequency as

	k = k2kBT

mSk

+ ζ γ̇ kx

2Sk

∂Sk

∂ky

. (12)

This equation is true for all wave vectors and we have
the definition of the distorted structure factor as Sk(t) =
1
N

〈ρk(t)ρ−k(t)〉. The distorted quantities are calculated from
the input of the undistorted quantities and the theory gives an
explicit way to calculate these quantities as we will see below.

Minimization of the residual force immediately gives an
orthogonality condition between the residual force and the
density as

〈ρ−k(t)Fk(t)〉 = 0. (13)

Using Eq. (9) we will have the orthogonality condition as

	k〈ρ−k(t)ρk(t)〉 + 〈ρ−k(t)ρ̈k(t)〉

+ ζ 〈ρ−k(t)

(
∂

∂t
− γ̇ kx

∂

∂ky

)
ρk(t)〉 = 0. (14)

After using the detailed form of ρ̈k(t) derived above in Eq. (8),
we will get the equation as

	k〈ρ−k(t)ρk(t)〉

−
〈∑

j

(k · ṙj (t))2eik·rj (t)ρ−k(t)

〉

− 1

mV

∑
k′

vk′(k · k′)〈ρ−k(t)ρk−k′(t)ρk′(t)〉 = 0. (15)

While calculating averages like the second term in the
above equation, we have explicitly assumed that the momenta
and coordinate are uncorrelated. In general they are not, as
discussed by Cates and Ramaswamy in Ref. [41]. But if we
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insist that they are uncorrelated, we will lose the long time
hydrodynamic tail and in the limit of low inertia, which is true
in the supercooled regime of the fluid that we are interested in,
this assumption seems reasonable.

Then we can write down the above expression as

	kNSk − k2kBT

m
NSk

= 1

mV

∑
k′

vk′(k · k′)〈ρ−k(t)ρk−k′(t)ρk′(t)〉 = 0. (16)

Using the expression for 	k from Eq. (12) we will have

k2kBT

m
NSk

(
1

Sk

− 1

)
+ ζ γ̇ kxN

2

∂Sk

∂ky

= 1

mV
k2N2Skvk

+ 1

mV

∑
k′ �=k

vk′(k · k′)〈ρ−k(t)ρk−k′(t)ρk′(t)〉, (17)

where in the above expression we have isolated the k′ = k
term from the sum and all the wave vectors are at time t . The
structure factors Sk in the above expression are the distorted
ones and we have the relation between the direct correlation
function ck and the structure factor as Sk = 1/(1 − ρck), where
ρ is the uniform density of the fluid. Using this relation, we
will get the final expression as

ck = −βvk + βmζ γ̇ kx

2k2Skρ

∂Sk

∂ky

− β

k2N2Sk

×
∑
k′ �=k

vk′(k · k′)〈ρ−k(t)ρk−k′(t)ρk′(t)〉. (18)

The above equation gives the relationship between the two
point and three point correlation functions and expresses the
coarse-grained macroscopic quantity, the direct correlation
function, in terms of the microscopic quantity, the interatomic
interaction potential.

The above equation is the YBG (Yvon-Born-Green) equa-
tion for a supercooled fluid under shear. The equation is
modified from that of an unsheared fluid by the additional
second term in the right hand side. If we use RPA (random
phase approximation), the third term will drop out and we will
be left with the simpler form of the equation as

ck = −βvk + βmζ γ̇ kx

2k2Skρ

∂Sk

∂ky

. (19)

This equation expresses how the distorted structural quanti-
ties, the direct correlation function ck , and the structure factor
Sk of a sheared fluid are related to the microscopic interaction
potential vk . Now, the interatomic interaction potential vk does
not get modified much due to shear. For a bulk unsheared
fluid, we know that c

(0)
k = −βvk , where c

(0)
k is the direct

correlation function under no shear. Therefore, using this
equation in Eq. (19) we can obtain the information of the
distorted structure factor from S

(0)
k , the undistorted one. After

a formal manipulation of the equation we will obtain the

distorted structure factor as

Sk = S
(0)
k + S

(0)
k

βmζ γ̇ kx

2k2

∂Sk

∂ky

. (20)

To solve the mode-coupling equation we need the information
of distorted structure factor as input and the above equation
gives us this quantity in terms of the undistorted ones. The
same expression was obtained earlier for colloidal suspen-
sions [10,42].

IV. YBG EQUATION STARTING FROM
DISTRIBUTION FUNCTION

As we have discussed above, the use of the particular trial
form for the coarse-grained density equation of motion is not
obvious. We will justify this particular trial form by comparing
the YBG equation derived above with that derived from a
completely different approach, starting from the distribution
function [40]. In the second approach, we don’t need any other
assumptions apart from that of the local equilibrium.

We have the distribution function or phase-space probabil-
ity density f [N](rN,pN ; t), which gives the probability density
that at time t , the physical system is found around a point
(rN,pN ) in the 6N dimensional phase space. Then, we must
have, for all time t ,∫

f [N](rN,pN ; t)drNdpN = 1. (21)

The Liouville equation can be written as

∂f [N]

∂t
+

N∑
i=1

(
∂f [N]

∂ri

· ṙi + ∂f [N]

∂pi

· ṗi

)
= 0, (22)

or, more compactly,

∂f [N]

∂t
= {H,f [N]}, (23)

where {A,B} denotes the Poisson bracket:

{A,B} ≡
N∑

i=1

(
∂A

∂ri

· ∂B

∂pi

− ∂A

∂pi

· ∂B

∂ri

)
. (24)

The reduced phase-space distribution function for the n

particles, integrating out the position and momenta of the rest
of the (N − n) particles, is defined as

f (n)(rn,pn; t) = N !

(N − n)!

∫
f [N](rN,pN ; t)dr(N−n)dp(N−n).

(25)

In the laboratory frame of reference, the equation of motion
of the ith particle of the colloidal suspension under shear will
be

ṗi = Fi − ζpi + ζmγ̇ yi x̂ (26)

for the particular kind of shearing shown in Fig. 1.
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Then the N -particle distribution function will follow an
equation given as[

∂

∂t
+

N∑
i=1

pi − γ̇ myix̂

m
· ∂

∂ri

−
N∑

i=1

(ζpi −ζmγ̇ yi x̂) · ∂

∂pi

]
f [N]

= −
N∑

i=1

N∑
j=1

Fij · ∂f [N]

∂pi

, (27)

where all the quantities are written in the laboratory frame
of reference. Now, we multiply the above by N !/(N − n)!
and integrate over the 3(N − n) coordinates and 3(N − n)
momenta. Then we will get(

∂

∂t
+

n∑
i=1

pi − γ̇ myix̂

m
· ∂

∂ri

+
n∑

i=1

ζ (pi −γ̇ myix̂)· ∂

∂pi

)
f (n)

= −
n∑

i=1

n∑
j=1

Fij · ∂f (n)

∂pi

− N !

(N − n)!

n∑
i=1

N∑
j=n+1

∫
Fij · ∂f [N]

∂pi

dr(N−n)dp(N−n).

(28)

We assume that the fluid is in a steady state and locally in
equilibrium. The first and the third terms in the left hand side
will become zero in steady state. The way to see why the third
term is zero is as follows. Let us take the Fourier transform
of the above equation and then the pf

(n)
k kind of term can be

written as ∂/∂t(f (n)
k e−ik·r) and, therefore, in the steady state,

the time derivatives will have to be zero. We concentrate on
the n = 2 term to get the YBG equation. The last term in the
right hand side can be taken as the sum of (N − n) identical
terms and we can write the above equation as(

p1 − γ̇ my1x̂

m
· ∇1 + ζ γ̇my1x̂ · ∂

∂p1
+ F12 · ∂

∂p1

+ p2 − γ̇ my2x̂

m
· ∇2 + ζ γ̇my2x̂ · ∂

∂p2
+ F21 · ∂

∂p2

)
f

(2)
0

= −
∫

F13 · ∂f
(3)
0

∂p1
dr3dp3 −

∫
F23 · ∂f

(3)
0

∂p2
dr3dp3. (29)

Now, at local equilibrium, we will have

f
(2)
0 (r1,r2,p1,p2) = ρ(2)(r1,r2)fM (p1)fM (p2),

f
(3)
0 (r1,r2,r3,p1,p2,p3) =ρ(3)(r1,r2,r3)fM (p1)fM (p2)fM (p3),

(30)

where fM (p) is the Maxwell-Boltzmann distribution function
and ρ(n)(rn) is the n-particle density. Under shear, because of
the advected velocity field, the Maxwell-Boltzmann velocity
distribution function will be modified as

fM (pi) = 1

(2πmkBT )3/2
e− β

2m
(pi−γ̇ myi x̂)2

(31)

and therefore we will have

∂fM (pi)

∂pi

= − β

m
(pi − γ̇ myix̂)fM (pi). (32)

Using Eqs. (30)–(32) in Eq. (29), we will obtain

(p1 − γ̇ my1x̂)

m
·
[

(∇1 − βζ γ̇my1x̂ − βF12)ρ(2)(r1,r2)

−β

∫
F13ρ

(3)(r1,r2,r3)dr3

]

+ (p2 − γ̇ my2x̂)

m
·
[

(∇2 − βζ γ̇my2 − βF21)ρ(2)(r1,r2)

−β

∫
F23ρ

(3)(r1,r2,r3)dr3

]
= 0. (33)

This equation can be thought of as the dot product of two
2d-dimensional vectors: Pi · Q = 0. Since this equation is true
for any Pi , we must have Q = 0. Then we have

(
∇1 − β

m
ζ γ̇my1x̂ − β

m
F12

)
ρ(2)(r1,r2)

− β

m

∫
F13ρ

(3)(r1,r2,r3)dr3 = 0. (34)

From the definitions of the l-particle distribution function,
g(l)(rl), we have

ρ(l)(rl) = ρlg(l)(rl) (35)

and the force is given as Fij = −∇iv(ri ,rj ); using these we
will have from Eq. (34),

(kBT ∇1 − ζ γ̇my1x̂ + ∇1v(r1,r2))g(2)(r1,r2)

= −ρ

∫
∇1v(r1,r3)g(3)(r1,r2,r3)dr3. (36)

Next we take a dot product of the resulting equation with
∇1 and upon Fourier transforming we obtain

−kBT k2g
(2)
k + ζmγ̇ kx

∂g
(2)
k

2∂ky

= 1

ρ2V 2

∑
k′

vk′(k · k′)〈ρ−k(t)ρk−k′(t)ρk′(t)〉, (37)

where we have used the fact that ρ(3)(k,k′) + ρ(2)(k) =
〈ρ−k(t)ρk−k′(t)ρk′(t)〉. Now we use the relation g

(2)
k = (Sk −

1)/ρ and write down the above equation as

−k2Sk

ρβ

(
1 − 1

Sk

)

= −ζmγ̇ kx

2ρ

∂Sk

∂ky

+ 1

N2

∑
k′

vk′ (k · k′)〈ρ−k(t)ρk−k′(t)ρk′(t)〉. (38)

Using the relation ρck = 1 − 1/Sk between the structure
factor and the direct correlation function ck , we obtain from
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Eq. (38)

ck = −βvk + βmζ γ̇ kx

2k2Skn

∂Sk

∂ky

− β

k2N2Sk

∑
k′ �=k

vk′(k · k′)〈ρ−k(t)ρk−k′(t)ρk′(t)〉, (39)

where we have separated out the k′ = k term in the sum.
This is the YBG equation as we have obtained earlier through
a completely different approach using the trial form for the
coarse grained density equation of motion. The assumptions
used in the above derivation are that the distribution functions
for coordinate and momenta factor out and that the velocity
distribution function is governed by a Maxwell-Boltzmann
distribution function with the mean being shifted to that of the
imposed preferred velocity should hold in a steady state only
if shear is not too high. The fact that the YBG equation derived
through the use of the proposed trial form is exactly the same as
the one derived through the standard route starting from distri-
bution function justifies the particular form of the trial function
used above for the coarse grained density equation of motion.

V. MODE-COUPLING EQUATION FOR
THE SHEARED FLUID

Once we accept the trial form as in Eq. (9), obtaining the
mode-coupling equation is fairly straightforward. But as we
discussed earlier, one conceptual difficulty is the validity of the
fluctuation-dissipation relation (FDR). When in equilibrium,
the noise is related to the dissipation coefficient through the
FDR. Near the transition point, the structural relaxation time,
τ , of the fluid is quite high. Shear pumps energy into the
system at a time scale γ̇ −1 and this energy spreads in the
system through the fast degrees of freedom. If the fluid is
away from the transition point, one can safely assume FDR
since the fast degrees of freedom are too fast to be affected
by a small shear rate. For colloidal glasses, if the shear is not

too high, one can still assume the validity of linear-response
theory.

First we will divide the residual force in two parts: the
frictional memory kernel and the noise. These two quantities
are related by FDR. Thus we have

Fk(t) = −
∫ t

0
γk(t − t ′)ρ̇k(t ′)dt ′ + fk(t),

γk(t) = 〈fk(t)(t)f−k(0)〉
〈|ρ̇k(t)|2〉 . (40)

The explicit form of the noise term will be

fk(t)(t) = 	k(t)ρk(t)(t) − 1

mV

∑
k′

vk′(k(t) · k′)ρk(t)−k′(t)ρk′(t)

−
∑

j

(k(t) · ṙj (t))2eik(t)·rj (t)

+
∫ t

0
γk(t)(t − t ′)ρ̇k(t)(t

′)dt ′. (41)

Here in the noise term we don’t have the term
ζ ( ∂

∂t
− γ̇ kx

∂
∂ky

)ρk(t)(t) because of the particular trial form we
have opted. This term will get canceled in the trial form with
that coming from ρ̈k(t) when we write the latter in its detailed
microscopic form.

In the two-time correlation functions, because of the
advection of wave vectors, the wave vector k at time t = 0 gets
contribution from the wave vector k(t) at time t . Therefore,
the dynamic structure factor is defined as

Sk(t) = 1

N
〈ρk(t)(t)ρ−k(0)〉. (42)

Using Eq. (40), we will have the expression for the memory
kernel as

γk(t) = βm

k(t)2N

[
	k(t)	k〈ρk(t)(t)ρ−k(0)〉 − 	k

mV

∑
k′

vk′(k(t) · k′)〈ρk(t)−′ (t)ρk′(t)ρ−k(0)〉

−	k

〈∑
j

(k(t) · ṙj (t))2eik(t)·rj (t)ρ−k(0)

〉
+ 	k(t)

mV

∑
k′′

vk′′ (k · k′′)〈ρk(t)(t)ρ−k−k′′(0)ρ−k′′ (0)〉

− 1

(mV )2

∑
k′,k′′

vk′vk′′ (k(t) · k′)(k · k′′)〈ρk(t)−k′ (t)ρk′(t)ρ−k−k′′(0)ρk′′ (0)〉

− 1

mV

∑
k′,j

vk′(k · k′)〈(k(t) · ṙj (t))2eik(t).rj (t)ρ−k−k′ (0)ρk′(0)〉 − 	k(t)

〈∑
l

(k · ṙl(0))2ρk(t)(t)e
−ik·rl (0)

〉

+ 1

mV

∑
k′,l

vk′(k(t) · k′)〈(k · ṙl(0))2ρk(t)−k′ (t)ρk′(t)e−ik·rl (0)〉 +
〈∑

j,l

(k(t) · ṙj (t))2(k · ṙl(0))2eik(t)·rj (t)e−ik·rl (0)

〉

+
∫ t

0
γk(t)(t − t ′)

〈
ρ̇k(t ′)(t

′)
(
	kρ−k(0) + 1

mV

∑
k′

vk′(k · k′)ρ−k−k′(0)ρk′(0) −
∑

l

(k · ṙl(0))2e−ik·rl (0)
)〉]

. (43)
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Calculating the various contributions from the above terms
is quite straightforward, although a bit cumbersome. Let us
concentrate on the last three terms. The first of these terms can
be written as

	k〈ρ̇k(t ′)(t
′)ρ−k(0)〉 = 	kNṠk(t ′). (44)

The penultimate term has a three point density which will be
calculated as

〈ρ̇k(t ′)(t
′)ρ−k−k′ (0)ρk′(0)〉

= 〈ρ̇k(t ′)(t
′)ρ−k−k′(0)〉〈ρk′ (0)〉+〈ρ̇k(t ′)(t

′)ρk′(0)〉〈ρ−k−k′ (0)〉
= N2Ṡk(t ′)δk′,0 + N2Ṡk(t ′)δk′,−k. (45)

The first term doesn’t contribute anything because the δ

function kills the term through the factor sitting in front of this
three point density correlator and the second term amounts to
− n

m
vkk

2NṠk(t ′).
The last term is written as

−
〈∑

l

(k · ṙl(0))2ρ̇k(t ′)(t
′)e−ik·rl (0)

〉

= −
∑

l

〈(k · ṙl(0))2〉〈ρ̇k(t ′)(t
′)e−ik·rl (0)〉 = − k2

βm
NṠk(t ′).

(46)

These three terms, using the explicit forms of 	k and vk with
the approximation of RPA, Eq. (19), add up to zero. Following
similar manipulations we will obtain the memory kernel as

γk(t) = nβ

mk(t)2V

∑
k′(t)�=k(t)

[vk′(t)vk′(0)(k(t) · k′(t))(k(0) · k′(0))

+ vk′(t)vk(0)−k′(0)(k(t) · k′(t))(k(0) · (k(0) − k′(0)))]

× Sk−k′ (t)Sk′(t), (47)

where vk’s are to be replaced by the undistorted direct
correlation function using the YBG equation.

Now with a transformation of variable and symmetrizing
the terms, we can write down Eq. (47) as

γk(t) = nβ

2mk(t)2V

∑
k′(t)

[vk′(k · k′) + vk−k′k · (k − k′)]

× [vk′(t)(k(t) · k′(t)) + vk(t)−k′(t)k(t) · (k(t) − k′(t))]

× Sk−k′ (t)Sk′(t), (48)

where the wave vectors without any time indices are supposed
to be at time t = 0. Therefore, the mode-coupling equation
will become

φ̈k(t) + ζ

(
∂

∂t
− γ̇ kx

∂

∂ky

)
φk(t) + 	kφk(t)

+
∫ t

0
γk(t − t ′)φ̇k(t ′)dt ′ = 0, (49)

where φk(t) = 〈ρk(t)(t)ρ−k(0)〉/Sk.
The explicit form of the memory kernel is given by Eq. (48).

Now, as we have discussed earlier, the interatomic interaction
potential is not affected much by the shear and, therefore, we
will replace −βvk by c

(0)
k , the undistorted direct correlation

function which is an equilibrium relation under no shear. Then

we will have, after replacing the sum by an integral,

γk = kBTρ0

2k(t)2

∫
k′

[
c

(0)
k′ (k · k′) + c

(0)
k−k′k · (k − k′)

]
× [

c
(0)
k′(t)(k(t) · k′(t)) + c

(0)
k(t)−k′(t)k(t) · (k(t) − k′(t))

]
× Sk−k′ (t)Sk′(t). (50)

Equation (49) along with Eq. (50) constitutes the final MCT
equations for a sheared fluid. Solving these equations requires
the distorted static structure factor of a sheared fluid as input.

VI. DERIVATION OF MCT EQUATION THROUGH THE
HYDRODYNAMIC APPROACH

To have further insight into the theory, we obtain the
sheared MCT through another approach, the fluctuating
hydrodynamics. The equations of fluctuating hydrodynamics
for an isothermal fluid are the continuity equations for number
density, ρ(x,t), and momentum density g(x,t) at position x and
time t :

∂ρ(x,t)

∂t
= −∇ · (ρ(x,t)v(x,t)), (51a)

∂g(x,t)

∂t
+ ∇ · (gv(x,t)) = −∇p(x,t) + η �2 v

+ (ζ + η/3)∇(∇ · v) + f(x,t),

(51b)

where g(x,t) = ρ(x,t)v(x,t), p is the pressure, and η and ζ are
shear and bulk viscosities, respectively. We set the particle
mass to unity and therefore the mass density and number
density are the same. The noise must satisfy

〈fi(x,t)fj (x′,t ′)〉
= 2kBT (η �2 δij + (ζ + η/3)∇i∇j )δ(x − x′)δ(t − t ′),

(52)

where kBT is Boltzmann’s constant times the temperature.
The pressure term in the momentum equation comes as a pure
gradient which is sufficient when we look at a length scale
much larger than the individual molecular diameter. However,
if we look at a phenomenon occurring at the molecular length
scale, as the glass transition is, we must replace this term
by the local force density which is the local density times
the gradient of the local chemical potential, ρ(x,t)∇μ. The
functional derivative of a suitably chosen free energy F [ρ]
with respect to the local density is the local chemical potential
and therefore the force density becomes ρ(x,t)∇ δF [ρ]

δρ(x,t) . One of
the most extensively used forms of the free energy functional is
the Ramakrishnan-Yussouff (RY) [43] free energy functional
F [ρ]:

βF [ρ] =
∫

dx ρ(x)

[
ln

ρ(x)

ρ0
− 1

]

− 1

2

∫
dx dx′δρ(x)c(x − x ′)δρ(x′), (53)

where δρ(x) = ρ(x) − ρ0, ρ0 being the homogeneous back-
ground density, the first term is the ideal gas contribution,
and the second term is the contribution due to interaction.
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c(x − x ′) is the direct pair correlation function that contains
the information of the interatomic interactions.

In the supercooled regime, the velocity field is slow and we
will neglect the convective nonlinearity as well as higher order
terms in the momentum density. Thus we expand density and
momentum density as

ρ(x,t) = ρ0 + δρ(x,t),

g(x,t) = (ρ0 + δρ(x,t))v(x,t) = ρ0v(x,t). (54)

Using these simplifications, Eqs. (51a) and (51b) with the
pressure term being replaced by the force density become

∂δρ(x,t)

∂t
= −ρ0∇ · v(x,t), (55a)

ρ0
∂v
∂t

= −ρ(x,t)∇ δF

δρ
+ η �2 V

+ (ζ + η/3)∇(∇ · v) + f(x,t). (55b)

Now, we take the divergence of Eq. (55b) and use it in Eq. (55a)
to obtain the equation of motion for the density fluctuation
alone as

∂2δρ(x,t)

∂t2
= DL �2 ∂δρ(x,t)

∂t
+ ∇ ·

(
ρ∇ δF

δρ

)
− ∇ · f(x,t),

(56)
where DL = (ζ + 4η/3)/ρ0. After space Fourier transform-
ing,

∂2δρk(t)

∂t2
= −DLk2 ∂δρk(t)

∂t
+

[
∇ ·

(
ρ∇ δF

δρ

)]
k
+ ik · fk(t).

(57)
Using Eq. (53) for the free energy functional, we obtain

∂2δρk(t)

∂t2
+ DLk2 ∂δρk(t)

∂t
+ k2kBT

Sk

δρk(t)

= kBT
k
2

·
∫

q
[qcq + (k − q)ck−q]

× δρq(t)δρk−q(t) + ik · fk(t), (58)

where the wave vectors are at time t . As we have seen in the
previous section, under shear, we will have advection of wave
vector and k at time t = 0 will couple to k(t) at time t . The
force density Fk(t) is given as

Fk(t) = kBT

2

∫
q
k̂ · (qcq + (k − q)ck−q)δρq(t)δρk−q(t).

(59)

This force density, quadratic in density fluctuation, will have
large fluctuations near the glass transition. In the spirit of
the Langevin equation [44], we can divide this term in two
parts, one producing the damping and the other part being
the noise [45]. Linear response theory is applicable close to
equilibrium and the “new noise” and the damping coefficient
must be related as follows:

Fk(t) = −
∫ t

0
ds Mk(t − s)

∂ρk(s)

∂s
+ ξk(t),

Mk(t) = 〈ξk(t)(t)ξ−k(0)〉
kBT V

, (60)

where in the second equation we have explicitly used the time
dependence on k(t) to clarify the fact that this wave vector
is at time t when it’s k at t = 0. With this form of noise, we
will obtain the equation of motion for the normalized coherent
intermediate scattering function as

φ̈k(t) + DLk2 ∂

∂t
φk(t) + 	HD

k(t) φk(t)

+
∫ t

0
Mk(t − t ′)φ̇k(t ′)dt ′ = 0, (61)

with the frequency term given by

	HD
k(t) = k(t)2kBT

Sk(t)
, (62)

and the memory kernel is obtained the same as in Eq. (50)
that was obtained in the previous approach. The evolution
equations (49) and (61) differ slightly as we started from two
different starting equations, but in the large density limit they
lead to the same time evolutions with a small difference at very
short time.

We started from the equations of motion for a normal
fluid; in the case of colloid, DLk2 will be replaced by ζ ,
the friction coefficient as in the previous section. The input
structural quantities of the theory are that of a sheared fluid.
However, under the assumption of isotropic shear [18], the
distorted structure factor becomes the same as the undistorted
one. Our theory and those in Refs. [15–19] differ in minor
details but they all become qualitatively the same under the
schematic assumption. First, let us ignore the second order time
derivatives in Eqs. (49) and (61) as they only affect the short
time dynamics. Then, after taking the isotropic assumption,
we can write down the schematic equation of motion for the
correlation function as

φ̇(t) + �φ(t) +
∫ t

0
m(t − t ′)φ̇(t ′)dt ′ = 0, (63)

where �, related to 	k , gives the initial decay and m(t) =
G(γ̇ t)νφ(t)2 is the memory kernel where ν gives the interaction
strength and G(γ̇ t) is a function chosen such that it decays at
long time.G results from the fact that shear reduces the strength
of the memory as a function of time. A number of forms are
possible for G, e−γ̇ t being one of them (see [18] for more
details on this).

Here we have arrived at the theory with a series of trans-
parent assumptions and the theory is similar to those derived
earlier [15,17–19]. Some of the earlier approaches [17,31,32]
use an extension of the projection operator formalism where
certain key steps, like the factorization of the four-density
into products of two-density terms [23,46], are not apparently
clear and whether they are valid arbitrarily far away from
equilibrium is not obvious. Although our approach doesn’t
say anything about these approaches, it is interesting that we
also reach the same theory through the use of LRT. It indirectly
shows that linear response theory might be important for the
applicability of such approximations. A clear demonstration
of this will be important for better understanding of MCT, even
for a bulk unsheared system.
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VII. DISCUSSION

The goal of the present paper is to understand the
various approximations involved in the derivation of mode-
coupling theory for sheared steady states and their domain
of applicability. Such a task will be important for better
understanding of MCT in general, even for a bulk unsheared
system. In this work we obtained the theory for sheared
steady state through two different approaches, first starting
with the microscopic equations of motion of individual
particles and then through the fluctuating hydrodynamics.
The advantages of both the approaches compared to others
(for example, the projection operator formalism [23,31,32] or
the integration through transients [19]) are the transparency
of various approximations. In our derivation, we see that
one needs to make a number of approximations which can
be justified only close to equilibrium. For example, in the
first approach, the trial function is justifiable only if there is
local equilibrium and the memory kernel is obtained through
the use of linear response theory. In the second approach,
again, one needs to use linear response theory and FDR.
Within MCT, the memory kernel plays the major role and
within the schematic approximation (where one ignores the
wave-vector dependence of the correlation functions) some of
the existing theories [15,18,19] become equivalent to ours. As
we discussed in the Introduction, a colloidal glass is far away
from its structural arrest compared to a molecular glass [20]
and one can justify the use of linear-response theory for such
a system when the shear is small. But one needs to be careful
in applying these theories in general for systems arbitrarily
far from equilibrium. One interesting question will be how to
correctly treat the various currents within MCT outside the
colloidal domain. There exists different approaches [31,32] to
this problem. However, the relations between various theories
are not clear at the moment and we believe the current work will
help in drawing comparisons between different approaches.

As a by-product of our calculation, we have obtained a
generalized Yvon-Born-Green (YBG) equation for the sheared
steady state through two different approaches. We show that
the YBG equation yields the distorted structure factor if
one assumes the random phase approximation (RPA). Such
expression for the distorted structure factor was also obtained
through different approaches [10,42].

It would be interesting to extend the calculation for
colloidal systems under strong confinement [47–52]. The
viscosity of a confined system becomes quite large and there
is a glasslike transition [51,53]. Interesting phenomena are
observed in simulations [54–57] and experiments [58,59]
when such systems are subjected to shear and sheared-MCT
extended for confinement should capture these findings.
However, this is a task outside the scope of the present
work.

It would be important to extend MCT for sheared steady
states of glassy and granular systems applicable even far away
from equilibrium. We can accomplish this following a similar
approach as was taken for spin-glass systems [60]. MCT has
recently been extended for aging systems under shear [61,62]
that goes to a steady state when the waiting time tw becomes of
the order of inverse shear rate. Then, if we take tw → ∞ limit
of the equations, the resulting theory will describe a sheared
steady state. As we haven’t used any FDR-like relations in this
theory, it should be applicable even far away from equilibrium.
However, the cost we must pay for not using FDR is that we
need to write down the equations for both correlation and
response functions.
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