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Self-organization of magnetic moments in dipolar chains with restricted degrees of freedom
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Equilibrium behavior of a single chain of dipolar spheres is investigated by the method of molecular dynamics
in a wide range of the dipolar coupling constant λ. Two cases are considered: rodlike and flexible chains. In the first
case, particle centers are immovably fixed on one axis, but their magnetic moments retain absolute orientational
freedom. It has been found that at λ � 1.5 particle moments are chiefly aligned parallel to the chain axis, but
the total moment of the chain continuously changes its sign with some mean frequency, which exponentially
decreases with the growth of λ. Such behavior of the rodlike chain is analogous to the Néel relaxation of a
superparamagnetic particle with a finite energy of magnetic anisotropy. In the flexible chain particles are able
to move in the three-dimensional space, but the distance between centers of the first-nearest neighbors never
exceeds a given limiting value rmax. If rmax � d (d is the particle diameter) then the most probable shape of the
chain of five or more particles at λ � 6 is that of a ring. The behavior of chains with rmax � 2d is qualitatively
different: At λ � 4 long chains collapse into dense quasispherical globules and at λ � 8 these globules take
toroidal configuration with a spontaneous azimuthal ordering of magnetic dipoles. With the increase of rmax to
larger values (rmax > 10d) globules expand and break down to form separate rings.
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I. INTRODUCTION

One of the distinguishing features of single-domain
nanoparticles placed in a viscous medium is their ability to
form chain aggregates, inside which the magnetic moments
of adjacent particles are ordered in a “head-to-tail” manner.
The aggregation phenomenon is a direct consequence of the
anisotropic nature of dipole-dipole interactions. Its theoretical
understanding was developed in the classical paper by de
Gennes and Pincus [1]. The authors investigated the behavior
of particles in a dilute magnetic fluid (MF) and showed that in
zero magnetic field these particles can be arranged into arbi-
trarily oriented chains, clusters, and ring-shaped aggregates. In
the applied field the probability of chain formation increases
and chains align themselves with magnetic field lines. Later,
the existence of chains in MF was substantiated by the
results of laboratory [2] and numerical experiments [3–8]. The
presence of chain aggregates can significantly influence hydro-
dynamic, magneto-optic, and rheological properties of MF [9],
which gave an impetus to a great number of theoretical studies
devoted to chains [10–20]. The problem of chain structures
also arises in tackling the phenomenon of MF phase separation.

Phase separation of MF was predicted in Ref. [1] and was
interpreted as a result of dipole-dipole interactions, which after
being averaged over dipole orientations lead to an effective
attraction between particles. Phase separation accompanied by
the formation of condensed phase drops amid the rarefied “gas”
of colloidal particles was repeatedly observed in laboratory
experiments both in the presence and absence of the applied
magnetic field [21]. In the light of these findings, new
numerical results obtained in early 1990s came as a complete
surprise to many researchers. They evidenced against the
existence of the “gas–liquid” phase transition in the systems
of hard and soft dipolar spheres, i.e., in the simplest MF
models that take into account only steric and magnetodipole
interparticle interactions [3,4,22,23]. Instead of the phase
separation taking place at decreasing temperatures and low
particle concentrations, the researchers observed the formation

of a dipolar chain “gel.” Theoretical studies that appeared at
that time showed that a tendency of particles to aggregation
competes with the tendency to condensation and indeed can
suppress the phase transition [11,12]. A recent series of
papers Ref. [24], where high-precision Monte Carlo simu-
lation was combined with analytical studies, also lend sup-
port to the view that in a potential transition zone the system of
hard dipolar spheres in fact maintains the spatial homogeneity
while being in a highly aggregated state. Chains and rings
in the system coexist with branching structures, and with
decreasing particle concentration rings become dominant. It
is worth noting that in some works on numerical simulation
signs of the phase separation have been observed, but these
works are fewer in number [25–27]. In Refs. [19,20] authors
suggested that phase separation in the aggregated system might
still occur through the collapse of the longest chains into
compact globular structures, which act as condensation nuclei
(the coil-globule transition). In Ref. [6], it was shown that this
scenario is valid for the Stockmayer model, which supplements
the model of dipolar spheres with a short-range isotropic
attraction between particles. Nevertheless, the problem of
the coil-globule transition in dipolar sphere systems without
dispersive attraction remains controversial, as well as a closely
related phase separation problem.

Irrespective of their influence on the MF physical prop-
erties, chains of magnetic nanoparticles are of considerable
independent interest, because they offer much promise for
various fields, such as micromechanical sensors, recording
media, and drug delivery [28]. Researchers’ interest here is
not only with the chains formed under the action of the
external fields and/or dipole-dipole interactions but also with
the chains, which integrity and structure are maintained by
nonmagnetic forces. The latter include magnetosome chains
of magnetotactic bacteria [29] and magnetic filaments [30–32].

In this paper, we investigate the equilibrium conformation
and magnetic structure of a single chain of dipolar hard spheres
in zero magnetic field. We focus our attention on two variants:
rigid rodlike and flexible chains. In the first case, particle
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centers are immovably fixed on one axis, but their magnetic
moments retain orientational freedom. In the second case,
particles are able to move in the three-dimensional space
but with a severe restriction: the distance between centers
of the first-nearest neighbors never exceeds a given limiting
value. We consider this value as an independent parameter. The
problem is solved by means of Langevin molecular dynamics
simulations.

II. MODEL DESCRIPTION AND SIMULATION DETAILS

Several approaches are used in literature to define a chain
of dipolar spheres. Spatial or energy criteria as well as
their combination might be employed to determine whether
the particle belongs to a chainlike aggregate [4,5,20,24,27].
The simplest spatial criterion is based on the proximity of
bonded particles. Specifically, it says that the distance between
neighboring particles in chain should be no more than some
critical value rmax. In our study, we force the system to fulfill
this criterion. This can be interpreted as if the centers of the
first-nearest neighbors were permanently linked by flexible
inextensible threads of length rmax. Thus, the simulated chain
consists of N sequentially connected spherical particles of
diameter d and magnetic moment μ. The total potential energy
of the ith particle is

Ui =
N∑

j = 1
j �= i

[
usr (rij ) + udd

ij

] + ubond+
i + ubond−

i , (1)

where r ij = r i − rj is the interparticle separation vector,
udd

ij is the dipole-dipole potential, usr (r) is the short-range

steric repulsion potential, and ubond±
i is the additional bonding

potential, which keeps neighboring particles close to each
other and maintains the chain integrity:

udd
ij = μ0

4π

(
μi · μj

r3
ij

− 3(μi · r ij )(μj · r ij )

r5
ij

)
, (2)

where μ0 is the vacuum permeability. In molecular dynamics,
the potential of steric repulsion is conventionally represented
by the truncated and shifted Lennard-Jones 12-6 potential. But
in order to closely approach the true hard sphere repulsion we
use the expression

usr (r) =
{

4kBT
[(

d
r

)48 − (
d
r

)24 + 1
4

]
, r < 21/24d

0, r � 21/24d
, (3)

where kB is Boltzmann’s constant and T is the temperature.
Additional comments on this choice of the steric repulsion po-
tential are given in Sec. IV. We define the bonding potential as

ubond±
i = usr (rmax + d − ri,i±1), (4)

additionally assuming that ubond−
1 = ubond+

N = 0 (chain ends
are free).

The Langevin equations of motion for the ith particle are
given by [7,33]

mv̇i = −∇Ui − γ T vi + ζ T
i , (5)

J ω̇i = −μi × ∂Ui

∂μi

− γ Rωi + ζR
i , (6)

where m is the particle mass, J is its moment of inertia, vi

and ωi are linear and angular velocities, respectively, γ T and
γ R are translational and rotational friction coefficients, and
ζ T

i and ζR
i are the Gaussian random force and torque, which

satisfy the conditions 〈ζ T (R)
il (t)〉 = 0 and 〈ζ T (R)

il (t1)ζ T (R)
jk (t2)〉 =

2γ T (R)kBT δlkδij δ(t1 − t2), where k and l denote the vector
components. Equations of motion are used in the dimension-
less form in a way similar to Ref. [7]. We use m as a unit
of mass, d as a unit of length, kBT as unit of energy, and√

4πd3kBT /μ0 as a unit of magnetic moment. Hence, md2 is a
unit of moment of inertia,

√
mkBT/d2 is a unit of translational

friction coefficient,
√

mkBT d2 is a unit of rotational friction
coefficient, and

√
md2/kBT is a unit of time. In what follows,

x∗ denotes quantity x measured in corresponding reduced
units. Equations (5) and (6) are integrated using the modified
leapfrog-Verlet algorithm proposed by Grønbech-Jensen and
Farago [34]. Typical simulation parameters are J ∗ = 0.1,
γ ∗T = 1, γ ∗R = 1, and the time step is �t∗ = 0.002.

The input parameters of the problem are the chain length
N , the dipolar coupling constant λ = (μ0/4π )μ2/d3kBT =
μ∗2, and the “bond length” r∗

max. Coupling constant determines
the strength of dipole-dipole interactions in the system and
controls values of the first terms in the right-hand side (RHS)
of Eqs. (5) and (6). The “bond length” can vary over a wide
range of values starting from r∗

max = 1. It is obvious that the
limiting case r∗

max → ∞ corresponds to the system of free
dipoles with infinitesimal concentration. In Sec. IV we also pay
special attention to the condition r∗

max = (2λ)1/3 introduced in
Ref. [20]. This condition corresponds to the maximum distance
between neighboring particles, at which their dipolar potential
in the “head-to-tail” configuration still exceeds thermal energy.
Simulations are performed using open boundary conditions,
and all interparticle interactions are calculated directly (the
all-pairs approach).

III. RIGID RODLIKE CHAIN

Early theoretical studies on chains in MF [12–14] often
ignored chain flexibility as they were carried out in the limit
λ 
 1. It was assumed that in this case chains are close
to saturation, when all dipole moments are oriented along
the chain axis in the “head-to-tail” manner. Further investi-
gations showed that even consideration of small deviations
from the rodlike configuration is important for an accurate
description of dipolar systems properties [17]. Furthermore,
at low concentrations long chains tend to form rings [24,35].
Nonetheless, in this section we consider a stiff rodlike chain
under the assumption that the rod configuration results from
some auxiliary external factors (similar to how it was done
in Ref. [36]). Such an approach can hardly apply to a
quantitative description of aggregates in MF, but it allows
a more complete understanding of orientational transitions in
polar nanosystems.

At the start of each simulation, particle centers are posi-
tioned along the Cartesian z axis (“chain axis”), the distance
between neighbors is equal to the particle diameter (i.e.,
r∗

max = 1). Initial orientations of dipole moments are random,
unless otherwise specified. During the simulation, particle
translational degrees of freedom are eliminated and Eq. (5)
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FIG. 1. Mean squared magnetic moment 〈M2〉 as a function of
the coupling constant λ for rodlike chains of different lengths.

is not used. The state of the chain is characterized by two
dimensionless parameters: the mean squared reduced moment

〈M2〉 = 〈( ∑N
i=1 μi)

2〉/μ2N2, insensitive to possible magne-
tization reversals, and the z component of the mean reduced
moment 〈Mz〉 = 〈∑N

i=1 μi〉/μN , sensitive to magnetization
reversals. Their values are averaged over 8×106 time steps
after 2×106 time steps for equilibration.

Obtained results for the mean squared moment at different
N and λ are shown in Fig. 1. As one might expect, at small
values of the coupling constant (λ � 1) particle moments
fluctuate independently and the mean squared moment of
the system decreases with increasing N according to the law
〈M2〉 = 1/N . An increase of the coupling constant results
in the correlation between particles, and at λ 
 1 all the
moments are aligned along the chain axis, so 〈M2〉 � 1. A
transition from the chaotic orientation of particle moments
to the spontaneous ordering occurs within some range of λ,
which diminishes as the chain becomes longer. At N > 100
the dependence of 〈M2〉 on λ approaches a steplike behavior,
which can be compared to the paramagnetic-ferromagnetic
phase transition. It is to be noted, though, that at large coupling
constants (λ > 3) chains of this length are able to go to a
long-lived state with two or three magnetic domains of nearly
the same size, provided that initial orientations of particle
moments were random. Inside each domain dipole moments
have the same orientation, but the mean magnetic moments of
neighboring domains are antiparallel. The characteristic width
of the domain boundary is about a few particle diameters, and
its position randomly varies with time. The average internal
energy per particle in such a state is only slightly higher than
in the case of uniform magnetization, and the lifetime of this
state is significantly longer than the typical simulation time. A
proper analysis of the domain formation process have not been
carried out yet. To prevent domain formation in the current
study, we used the saturation configuration as an initial for
long chains with N > 100.

Interpretation of the simulation results becomes more
complicated, if, instead of 〈M2〉, 〈Mz〉 is chosen as the order
parameter (as was done, for example, in Ref. [37]). The
fact is that the full magnetic moment M = ∑N

i=1 μi/μN

continuously fluctuates: Its z component chaotically changes

(            )

FIG. 2. Fluctuations of the z component of the magnetic moment
Mz of rodlike chain at different λ. N = 10.

sign, whereas the absolute value of the moment remains
invariant (or almost invariant). As an example, let us refer
to Fig. 2, which shows the dynamics of magnetization reversal
in the chain consisting of ten particles over 6×106 time steps. It
is readily seen that the frequency of reversals strongly depends
on the coupling constant and changing by two or three orders of
magnitude over the range 1 < λ < 2. It means that the answer
to the question of whether the chain is in the ordered state
depends not only on the coupling constant but also on the time
interval, over which the results of simulation are averaged (i.e.,
on the time of observation). Thus, at λ = 2 averaging of Mz

over the interval of 106 time steps gives a positive answer,
while averaging over the interval of 108 time steps gives a
negative answer (|〈Mz〉| � 1).

To describe quantitatively the dynamics of magnetization
reversal we calculated the relative frequency of reversals
ν(λ) = nrev(λ)/nrev(0), where nrev(λ) is the number of simu-
lation steps, accompanied by a change of sign of Mz, over the
specified simulation time (107 time steps). The dependencies
of the frequency on the coupling constant for λ � 6 are
presented in Fig. 3. It is seen that the chain length is essential

FIG. 3. Relative frequency of magnetization reversals in rodlike
chain ν as a function of the coupling constant λ for different chain
lengths. Lines are from approximation Eq. (8); points are simulation
results.
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only at N < 10. At N � 10 the results of calculation fall on a
single universal curve. This can be explained by the fact that
dynamics of each particle in the chain is determined mainly
by the finite number of its nearest neighbors. We varied the
rotational friction coefficient and the time step in rather broad
ranges (0.1 � γ ∗R � 10, 0.0005 � �t∗ � 0.004), but we did
not find the somewhat noticeable effect of these parameters on
frequency values.

The observed process of magnetization reversal in the
rodlike chain is very similar to moment fluctuations in
a uniaxial single-domain particle, described by Néel [38].
Energetically favorable orientations of the Néel particle are
those where its dipole moment is directed “up” or “down”
along the easy magnetization axis. Energy barrier between
two states is Kv0, where K is the constant of magnetic
anisotropy and v0 is the particle volume. The characteristic
time τN of the particle staying in one of this two states is
proportional to exp(σ ), where σ = Kv0/kBT is the reduced
barrier height. If the time of observation is much less than
τN , the Néel relaxation can be neglected and the magnetic
moment can be considered frozen in the particle. The situation
with chains is alike. The states with Mz � 1 and Mz � −1 are
energetically equivalent, and the probability of spontaneous
transition between them decreases drastically with the growth
of λ. There exist a conventional interpolation formula for the
Néel relaxation time [39,40]:

τN (σ ) = τD

eσ − 1

2σ

(
1

1 + 1/σ

√
σ

π
+ 2−σ−1

)−1

, (7)

where τD is a reference relaxation time, independent of the
anisotropy constant. We tried to fit calculated frequencies with
the expression

ν(λ) = τD/τN (σ̃ (λ)), (8)

where σ̃ (λ) = aλb plays a role of the reduced energy barrier,
and a and b are fitting parameters. Values of a and b, obtained
by the least squares method, are given in Table I, and fitting
results are presented in Fig. 3 as solid lines. The agreement
with numerical data is rather good at high coupling constants
λ > 1. Thus, the dynamics of magnetization reversal in the
chain of interacting dipoles shows a strong analogy to the Néel
relaxation of a single-domain particle with a finite energy of
magnetic anisotropy, and the characteristic time of the chain
being in the “ferromagnetic” state is described with a good
accuracy by Eq. (7) after replacing the anisotropy parameter
σ by the quantity σ̃ (λ).

TABLE I. Fitting parameters of approximation Eq. (8) for the
frequency of magnetization reversals in the N -particle rodlike chain.

N a b

2 1.17 1.01
3 1.93 1.21
4 2.37 1.37
5 2.60 1.58
10 3.20 1.59

IV. FLEXIBLE 3D CHAIN

The initial configuration of the flexible chain is created
by positioning the first particle at the origin of coordinates,
and each subsequent ith particle at a random location inside
the spherical layer d � ri,i−1 � rmax. The overlap between
particles is not allowed. Orientations of magnetic moments
are random. Simulation starts with λ = 0, and every 1.5×105

time steps parameter λ is incremented until it reaches the
desired value. After this, additional 106 steps are used for
equilibration and 107 steps for data sampling. Besides, for
every combination of input parameters the averaging over
ten independent realizations with different initial conditions
is performed. As was mentioned in Sec. II, when choosing
the value of r∗

max we were guided first of all by the criterion
r∗

max = (2λ)1/3 [20]. All results given below are obtained
for r∗

max(λ) = max (1,(2λ)1/3), unless otherwise specified. The
range of high coupling constants 4 � λ � 10, which is usually
associated with phase and structural transformations in three-
dimensional (3D) dipolar systems, in this case corresponds to
the range of “bond length” 2 � r∗

max � 2.7.
Figure 4 presents the mean squared reduced moment of

flexible chains with different lengths as a function of the
coupling constant λ. Solid lines are from the analytical
expression

〈M2〉 = 1

N
+ 2

K

N2(1 − K)2
(N − 1 + KN − NK), (9)

where K = L(λ/2), L(x) = coth(x) − 1/x is the Langevin
function. Equation (9) was derived in Ref. [17]. It takes into
account only interactions between the nearest neighbors and
assumes that deviations of the chain from the saturated rodlike
configuration are small (i.e., λ 
 1). We must note here that
using truncated and shifted Lennard-Jones 12-6 potential for
steric repulsion, we were not able to achieve a good agreement
with Eq. (9) even for N = 2: At λ � 10 simulation data
overestimated theoretical values. On the contrary, as it seen
from Fig. 4, with steric potential Eq. (3) simulation data fit
the analytical model well for N = 2,3 and λ � 10. It was the
key motivation for us to use Eq. (3) in this work. However,

FIG. 4. Mean squared magnetic moment 〈M2〉 as a function
of the coupling constant λ for flexible chains of different lengths.
r∗

max = max (1,(2λ)1/3). Solid lines are from the theoretical model by
Mendelev and Ivanov [Eq. (9)]; points are simulation results.
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FIG. 5. Probability distributions of the reduced magnetic
moment M for flexible chains of different lengths. λ = 10,
r∗

max = (2λ)1/3 � 2.7.

already for N = 4 the agreement breaks down. Evidently,
this divergence is due to the fact that Eq. (9) does not take
into account interactions of non-neighboring particles and the
possibility of chain folding into ring. But since at N � 4 the
ring configuration is in fact energetically more favorable than
the disclosed chain configuration [35,36], the inconsistency
of numerical results with theoretical predictions appears to be
natural. The importance of taking into account interactions
between non-nearest neighbors for correct analytical descrip-
tion of flexible dipolar chains was also emphasized in a recent
study Ref. [32].

Flexible chain with N � 4 chaotically jumps between two
states, in one of which its reduced magnetic moment is small
(chain is closed) and in the other state the moment is close to
unity (chain is disclosed). Figure 5 shows distributions of the
reduced magnetic moment M = |∑N

i=1 μi |/μN at λ = 10. It
is seen that for N = 3 the most probable configuration is that
of the disclosed linear chain with 〈M〉 � 0.9, for N = 5 it is
the ring with 〈M〉 � 0.1, and for N = 4 the distribution has
two peaks, i.e., probabilities of ring and chain configurations
are comparable.

FIG. 6. Mean toroidal moment 〈Q〉 of the flexible chain as a
function of the particle number N at different coupling constants λ.
From bottom to top, λ is increased by unity. r∗

max = (2λ)1/3.

FIG. 7. Mean squared radius of gyration of flexible chains
with “strongly bonded” (r∗

max = 1) and “weakly bonded” (r∗
max =

(2λ)1/3 � 2.7) neighbors vs the chain length N . λ = 10. Solid lines
are power law approximations.

Since for N > 4 the reduced magnetic moment tends to
zero with increasing λ, the “ferromagnetic” ordering is absent
in long chains. As for the azimuthal ordering of magnetic mo-
ments, it seems reasonable to choose as the order parameter the
reduced toroidal moment 〈Q〉 = 〈| ∑N

i=1 rc
i × μi/rc

i |〉/μN ,
where rc

i is the particle position relative to the system center
of mass. Toroidal moment of a large ideal ring with azimuthal
ordering of dipoles is equal to unity.

Figure 6 shows 〈Q〉 as a function of chain length N . From
plots it is evident that at moderate values of the coupling
constant (λ � 4) toroidal moment of the chain decreases
monotonically with the growth of its length, which implies
the absence of any magnetic ordering. At larger values of the
coupling constant the general picture undergoes qualitative
changes: Curves demonstrate the presence of circular order
and a nonmonotonic variation of the toroidal moment, as the
length increases. For an understanding of this complicated
behavior of curves, it will be useful to discuss the question of
the chain conformation.

FIG. 8. Inverted cluster dimensionality α [the exponent of the
power law Eq. (10)] as a function of the coupling constant λ.
α is independently determined for short (6 � N � 12) and long
(100 � N � 500) flexible chains. r∗

max = (2λ)1/3.
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FIG. 9. (Color online) Snapshots of typical configurations of a
long flexible chain at different values of the dipolar coupling constant
λ. N = 200, r∗

max = (2λ)1/3. (a) λ = 2, (b) λ = 4.

The so-called radius of gyration R2
g = ∑N

i=1 (rc
i )2

/N

is often used to characterize shape and size of particle
clusters [31,41]. The dependence of the ensemble-averaged
squared radius of gyration on the number of particles in the
cluster can be approximated by a power law〈

R2
g

〉 ∝ N2α, (10)

where the exponent α (inverted dimensionality of the cluster)
contains information on cluster shape. For the ideal ring α = 1,
for a compact three-dimensional object α = 1/3 and for a self-
avoiding random walk α = 0.6 [31,41]. The applicability of
Eq. (10) for description of dipolar chains is evident from Fig. 7:
The results of our calculations in the logarithmic coordinates
are fitted by straight lines. Open circles correspond to chains,
in which particles closely adjoin each other (r∗

max = 1), and
black circles correspond to chains containing relatively free
particles (r∗

max = (2λ)1/3). In the first case, most of the results
fall on the curve 〈R∗2

g 〉 = 0.05N1.7, which corresponds to a
deformed ring with α � 0.9. In the second case, there are
two characteristic size ranges. For short chains (6 � N � 12)
α is also about 0.9, and for long chains (100 � N � 500)
α � 0.3. The inverted cluster dimensionality as a function
of the coupling constant for both of these size ranges is
shown in Fig. 8. At small values of the coupling constant
all chains are close to a swollen random coil configuration
[see Fig. 9(a)]. With increasing coupling constant up to λ � 4
the parameter α decreases, which is indicative of the formation

of dense three-dimensional clusters—quasispherical globules
[see Fig. 9(b)]. This conclusion actually agrees with the known
analytical predictions of Ref. [20], where interactions between
non-nearest neighbors in chain were taking into account in the
framework of the concept of “quasimonomers,” which treats
a long flexible chain as a system of disconnected segments.
Based on the estimate of the second viral coefficient of
“quasimonomer” ensemble it has been concluded that at λ � 4
the system undergoes the coil-globule transition. As it seen
from Figs. 4 and 6 the reduced magnetic and toroidal moments
of spherical globules at this point are rather small and magnetic
ordering is absent.

At higher coupling constants equilibrium morphology and
magnetic structure markedly depend on the chain length.
Examples of equilibrium configurations of flexible chains at
high coupling constants are given in Fig. 10. Short chains
with 5 � N < 15 at λ � 6 are transformed into almost ideal
rings with cluster dimensionality and toroidal moments close
to unity [see Fig. 10(a)]. Chains with 15 � N � 20 are
transformed into deformed rings with lower toroidal moment
or into figure-of-eight structures, in which toroidal moments of
two loops have different signs and partially compensate each
other [see Fig. 10(b)]. As the chain length further increases
figures-of-eight structures are replaced by two- and three-loop
structures, in which toroidal moments of loops have the same
direction [see Fig. 10(c)]. The full toroidal moment rises. This
explains a sharp minimum of 〈Q〉 in Fig. 6. The longest
chains (N � 100) at λ � 8 are transformed into toroidal
globules with a circular arrangement of magnetic moments
[see Fig. 10(d)].

Our results on the structure of large globules qualitatively
agree with some known data for the Stockmayer fluid. Thus,
in Ref. [6] globules were observed at λ � 4.5 and did not have
the magnetic ordering. In Ref. [41] large spherical metastable
globules were observed at 7 < λ < 9 and they demonstrated
circular magnetic ordering. In Ref. [42] the authors predicted
that the drop of ferromagnetic liquid undergoes a change in
topology from spherical to toroidal.

In our simulations the coil-globule transition takes place
when r∗

max = (2λ)1/3, while severe limitation on the trans-
lational degrees of freedom (r∗

max = 1) inhibits the globule
formation (see Fig. 7). To gain a better understanding of
how the particle translational degrees of freedom affect
the properties of the system, we calculated the equilibrium
configurations of a long chain (N = 400) over a wide range
of bond length 1 � r∗

max � 40. The squared radius of gyration

FIG. 10. (Color online) Snapshots of typical configurations of flexible chains at large coupling constant (λ = 10) for different numbers of
particles N . r∗

max = (2λ)1/3 � 2.7. (a) N = 10, (b) N = 15, (c) N = 40, and (d) N = 200.
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FIG. 11. Mean squared radius of gyration of a long flexible chain
as a function of the bond length r∗

max at different coupling constants
λ. N = 400.

〈R2
g〉 as a function of r∗

max is presented in Fig. 11. It is seen
that the globule state corresponding to Rg � 5d is reached in
a rather narrow range 2 � r∗

max � 10. An increase of r∗
max to

several dozen destroys the globular state as well as the decrease
of r∗

max to unity.
Typical equilibrium chain configurations at different values

of r∗
max for large coupling constants are shown in Fig. 12.

Flexible chains, in which the neighboring particles are closely
pressed to each other (r∗

max � 1), transform into the closed
loops at λ � 6 and do not show any tendency to form dense
three-dimensional clusters [Fig. 12(a)]. This conclusion is
consistent with the results of a recent study on magnetic
filaments [31], where filaments were treated as chains of
magnetic particles held close together by finitely extensible
nonlinear elastic (FENE) potential. When r∗

max > 10 (i.e.,
when we approach the limit of the rarefied gas of unbonded
dipolar spheres) globules are also absent. In this case, even if
a dense cluster is used as an initial configuration, the system
rapidly expands [Fig. 12(c)], and breaks down into separate
rings with further increase in r∗

max [Fig. 12(d)]. These results
agree qualitatively with the known data on the dipolar fluid
microstructure [24]. So, the globular state can be reached for
long flexible dipolar chains at large values of the coupling
constant (λ � 4), but only in the limited range of bond length
(2 � r∗

max � 10).

V. CONCLUSION

In the present paper we have investigated equilibrium
properties of a single chain of spherical dipoles in a wide range
of the dipolar coupling constant λ. Two cases are considered:
rodlike and flexible chains.

In the model of the rodlike chain, we exclude translational
degrees of freedom of particles, but we do not put any
restrictions on orientations of particle dipolar moments. In the
absence of dipolar coupling, moments of particles fluctuate
independently and the role of magnetization relaxation time
in the system is played by the Brownian rotational diffusion
time τB = γ R/2kBT . If one wants to take into account the
internal magnetic anisotropy of particles, τB must be replaced
by τ = τBτN/(τB + τN ), where τN is the Néel relaxation
time of a single particle [40]. Our results show that at
λ � 1.5 particles are no longer independent, their moments
are chiefly aligned parallel to the chain axis, but magnetization
relaxation is still possible as the thermal fluctuations are able to
cause spontaneous transition between energetically equivalent
states Mz � 1 and Mz � −1 (magnetization reversal). As
dipolar coupling constant grows, such transitions become
less probable, the magnetization relaxation time rises, and
the frequency of magnetization reversals drops down. This
behavior of a linear chain of coupled dipoles is very similar to
the Néel relaxation of a single uniaxial magnetic nanoparticle.
More than that, the process of magnetization reversal in
chain can be successfully described by the formula Eq. (7)
for τN , after we replace the anisotropy barrier σ with
the quantity σ̃ (λ) = aλb, where a and b are dimensionless
parameters of the order of unity, which depend on the system
size.

In the model of the flexible chain, particles are able
to move in the three-dimensional space, but the distance
between centers of the first-nearest neighbors never exceeds
a given limiting value rmax. For rmax � d chains of five or
more particles form stable closed rings at λ � 6. In the
case rmax � 2d the situation is qualitatively different for
long chains: At λ � 4 chains with N � 100 collapse into
magnetically unstructured quasispherical globules, and at λ �
8 they transform into toroidal globules with a strong azimuthal
ordering of magnetic dipoles. At rmax > 10d globules become
unstable and break down to form separate rings. We see that the
problem parameter rmax plays a crucial role in the formation
of globular structures. In our opinion, rmax might be viewed
as the amplitude of random walk of particles relative to each

FIG. 12. (Color online) Snapshots of typical configurations of a long flexible chain at large coupling constant (N = 400, λ = 10) for
different bond lengths r∗

max. (a) r∗
max = 1, (b) r∗

max = 10, (c) r∗
max = 20, and (d) r∗

max = 30.
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other or as the degree of system extensibility. Flexible but
inextensible chain (rmax � d), where particles are fixed on their
positions along the chain and always tightly pressed to their
neighbors, are not able to form globular structures. In the other,
highly extensible limiting case (rmax > 10d) particles are able
to leave their first-nearest neighbors, the effective interparticle
attraction related to magnetodipole interactions weakens,
and globular structures become unstable. Thus, the analogy
between the coil-globule transition in the flexible chain and
the vapor-liquid transition in magnetic fluid manifests itself
in a twofold manner. First, the transition in MF is observed
in the limited range of average particle concentrations (i.e., in
the limited range of average distances between the particles).

Second, according to Ref. [27], this transition is observable
in simulations of unbonded dipolar hard spheres even without
additional attractive potential, if the simulation algorithm takes
into account a decrease in the amplitude of random walk of
particles in condensed phase.
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