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The viscosity of fluids is generally understood in terms of kinetic mechanisms, i.e., particle collisions, or
thermodynamic ones as imposed through structural distortions upon, e.g., applying shear. Often the latter are
more relevant, which allows a simpler theoretical description, and, e.g., (damped) Brownian particles can be
considered good fluid model systems. We formulate a general theoretical approach for rheology in confinement,
based on microscopic equations of motion and classical density functional theory. Specifically, we discuss the
viscosity for the case of two parallel walls in relative motion as a function of the wall-to-wall distance, analyzing
its relation to the slip length found for a single wall. The previously observed [A. A. Aerov and M. Krüger, J.
Chem. Phys. 140, 094701 (2014).] deficiency of inhomogeneous (unphysical) stresses under naive application
of shear in confinement is healed when hydrodynamic interactions are included.
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I. INTRODUCTION

The viscosity of fluids is important for technology and
biology. It has been investigated for many years [1–3], e.g.,
using linear response theory [4,5]. A lot is known about bulk
rheology. The response of dilute gases [6] can be analyzed by
kinetic theory [7]. For (Brownian) suspensions insight has
been gained, e.g., for dilute [8] or glassy [9–12] systems;
here also nonlinear effects are accessible by theory and by
experiment [13]. Improved experimental precision on small
scales [14–17] has also boosted the research of confined
systems [18–20], which is important for, e.g., microfluidic
devices [21,22], MEMS [23,24], and blood flow in capillar-
ies [25,26].

Theoreticians have put much effort into describing many-
body systems [27], where successful (approximate) ap-
proaches, based on first principles, include mode cou-
pling theory [9,28,29] and density functional theory (DFT)
[30–32]. Using such methods, the bulk rheology of dense
systems [9,28,29] and the evolution of density profiles under
time-varying potentials [31–33] have been studied. There has
also been recent progress towards dense driven systems in
inhomogeneous situations [34].

We present a theory of rheology in confinement based on
first principles. The exact equations need an approximative
closure for the two-particle density and reproduce known
results for the limit of inessential confinement. Explicitly, we
study the case of suspensions, starting from the Smoluchowski
equation of motion [35] with hydrodynamic interactions (HIs),
and consider how the effective viscosity between two parallel
walls depends on the distance between them. We study
this scenario by two approaches: first, taking into account
HIs; and second, using a simplified model, where HIs are
neglected [36]. The latter yields a simple relation between
the effective viscosity and the previously obtained slip length
and reproduces many features observed in simulations of
molecular fluids. In contrast to previous approaches [37],
which compute a local viscosity via the local density, our
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approach incorporates the true nonlocal nature of the viscosity
by starting from microscopic equations of motion and allows
analysis in nonlinear situations, i.e., including the back-
reaction of flow on the density distribution.

In a previous work [36], we noted that using the Smolu-
chowski equation with a naive driving (shear) profile can
lead to inhomogeneous stresses and, therefore, unphysical
solutions. In Ref. [36], we suggested adjustment of the driving
profile such that homogeneous stresses are obtained (“stress
ensemble”). Here, we start from the Smoluchowski equation
including HIs, where a driving profile as such does not exist,
being replaced by the prescribed driving velocities of a set of
non-Brownian particles (nBPs; e.g., the plates of a rheometer).
In this setup, no unphysical solutions of the Smoluchowski
equation arise, as all forces are balanced properly from
the beginning. This important insight is accompanied by
the explicit demonstration that results found from the stress
ensemble agree exactly with those found from inclusion of HIs
to leading order in the hydrodynamic radius of the particles.

The paper is organized as follows. In Sec. II, we introduce
the studied system and give the Smoluchowski equation for
the considered setup [Eq. (8)], as well as the resulting general
friction forces [Eq. (9)]. In Sec. III, we make these equations
tractable with DFT by integrating out N − 2 particle positions
and obtain the main equations of the paper, Eqs. (17) and (19).
Specific results are obtained in Sec. IV, where we study the
case of two walls sheared with respect to each other. We
conclude in Sec. V.

II. SETUP AND EQUATIONS OF MOTION

A. Setup

Consider N Brownian particles (BPs) and n nBPs immersed
in a solvent (Fig. 1, left). The nBPs play the role of the (moving)
confinement; their positions and velocities are controlled from
outside. The main goal of the paper is to find the friction
forces acting on the nBPs on their predefined trajectories. This
will yield the rheological properties of the confined suspension
(viscosity), depending, among other factors, on the size, shape,
position, and velocity of the nBPs.
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FIG. 1. (Color online) Left: Suspension consisting of non-Brownian particles [nBPs; grey, solid arrows] that are controlled from outside
and Brownian particles [BPs; blue, dashed arrows]. The goal of this article is to compute the (friction) forces acting on the nBPs, which are a
measure for the viscosity of the suspension. In Sec. II, we give the general Smoluchowski equation for the BPs as well as the forces acting on
the nBPs, valid for any shape of the involved particles [Eqs. (8) and (9)]. Right: The specific example case studied in Sec. IV: a suspension of
spherical BPs sheared between two walls (where the nBPs play the role of the walls).

The setup encompasses many realistic situations, e.g., cases
termed microrheology [38–40], when a small nBP is driven
through the suspension of BPs having a comparable size; It
also comprises the case of two walls moving at a distance
comparable to the size of the BPs, as discussed in detail in
Sec. IV (see Fig. 1, right).

We note that, strictly speaking, the described setup does not
include other cases of microrheology, where the diffusion or
sedimentation of tracer particles [41–43] is studied. In those
cases, the (external) driving is invoked by forces, rather than
by the motion of nBPs considered here.

B. Equations of motion: Exact Smoluchowski equation

We start by considering the setup in Fig. 1, left, in
full generality. Thus, the vector R [in general, 6(n + N )–
dimensional, due to 3 translational and 3 rotational degrees
of freedom) denotes the particle positions and orientations,
and V ≡ ∂tR are the corresponding velocities (including
translation and rotation). Restricting ourselves to laminar flow,
HIs are linear in velocity and instantaneous on the time scales
considered [44]. The hydrodynamic force Fh acting on the
(n + N ) particles is found from the friction matrix G(R) [44],
depending on all particle coordinates,

Fh = −GV. (1)

Equation (1) explicitly displays the linearity of laminar
hydrodynamic flow.

One can now regard the subset Fh
N, i.e., the hydrodynamic

forces acting on the BPs, by projecting Eq. (1) on that 6N -
dimensional subspace. Also, explicitly splitting the vector V
into the two subsets, we obtain

Fh
N(t) = −GNn[Rn(t),RN(t)]Vn(t)

−GNN[Rn(t),RN(t)]VN(t). (2)

Here, we have introduced subscripts that denote dimensional-
ity, which are used in the following. For example, VN spans the
subspace of BPs; GNn is a matrix transforming from the nBP
to the BP subspace. In Eq. (2), we have also explicitly given

the dependence of G, being functions of all particle positions
at time t .

On the Brownian time scale [44], momenta of BPs are re-
laxed, and the Smoluchowski equation follows from balancing
forces acting on the BPs. In addition to the hydrodynamic force
in Eq. (2), there is the so-called Brownian force [44] due to
thermal fluctuations,

Fthermal
N (t) = −kBT

∂ ln P (RN,t)

∂RN
, (3)

where P (RN,t) is the time-dependent probability distribution
of the BPs. Each BP is also subject to potential forces exerted
by all other particles,

Fpotential
N (t) = −∂W (R(t))

∂RN
, (4)

where W (R(t)) is the interaction potential of all particles in
the system. Balancing these forces leads to

0 = Fpotential
N (t) + Fthermal

N (t) + Fh
N(t). (5)

By substituting Eqs. (2), (3), and (4) into Eq. (5) and
multiplying the resulting equation by M ≡ [GNN]−1, we get
the velocity of the BPs:

VN = −M

(
∂

∂RN
[W + kBT ln P ] + GNnVn

)
. (6)

We note that M, the mobility matrix for the Brownian
subspace, can be identified as the mobility matrix for the case
where the nBPs are static (at rest):

VN = −MFh
N if Vn ≡ 0. (7)

M is thus a well-defined matrix, being 6N -dimensional, but
still depending on the positions of all particles.1

1Note that M is different from [G−1]NN, the latter being obtained
from projection on the subspace N after inversion. [G−1]NN plays no
role in our analysis.
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The Smoluchowski equation is found from continu-
ity [32,44], i.e., ∂

∂t
P = − ∂

∂RN
· VNP :

∂

∂t
P = ∂

∂RN
· M

(
∂

∂RN
[W + kBT ln P ] + GNnVn

)
P. (8)

Equation (8) yields P (RN,t), by itself a quantity of interest,
measurable, e.g., by confocal microscopy. With it, any (time-
dependent) observable is accessible in this framework, e.g.,
mean squared displacements. We focus on the generalized
friction forces Fn acting on the nBPs.

We note that Eq. (8) does not contain a mean solvent
flow velocity, which is in contrast to commonly studied cases
including driving flow but neglecting HI, e.g., Eq. (1) in
Ref. [36]. We also note that Eq. (1) in Ref. [36], for the case
of shear, does not follow from Eq. (8) by taking the leading
order in HI.

The BPs’ velocities are a function of their positions and the
distribution P [see Eq. (6)]. The mean of Fn on the Brownian
time scale is hence

〈Fn〉(t) = −
∫

dRNP (t)

[
GnnVn + GnNVN + ∂

∂Rn
W

]
.

(9)

The first term on the right-hand side of Eq. (9) is the force
induced by the motion of the nBPs. The second term contains
the force on the nBPs due to the motion of BPs. The last term
represents the potential force.

The friction force in Eq. (9) is the force acting on the
moving nBPs (or moving boundaries), which is a measurable
and relevant quantity. Finding this force is the main goal of
this paper, as it is a measure of the viscosity of the confined
suspension of BPs. Note that in this setup, we do not have
immediate access to local quantities like stress (in contrast
to the stress ensemble model discussed in Sec. IV C) and
stresslets [45].

〈Fn〉(t) depends generally on the trajectories of nBPs in the
past. Equation (9) gives the mean force, but higher moments,
e.g., force fluctuations [39], are also accessible once P is
known.

Equations (8) and (9) are valid for arbitrarily shaped BPs
and nBPs. (Analytical) Analysis is challenging in general, and
exact solutions have mostly been restricted to small N and n

(see, e.g., Refs. [38] and [39] for the case of an nBP dragged
through a suspension of BPs). In the following section, we
proceed by making Eqs. (8) and (9) amenable to (approximate)
treatments via classical DFT [30].

III. INTEGRATING OUT PARTICLES AND DENSITY
FUNCTIONAL THEORY

A. Pairwise potential

In this section, we restrict ourselves to spherical BPs which
interact via the pairwise potential φ(rij ), depending only on
the respective center-center-distance rij . More specifically,
denoting ri the coordinate of particle i, we split the potential
into a term depending only on the nBPs (U ), a term describing
the pairwise interaction between a BP and the nBPs (V ), and

φ(rij ):

W (R) = U (Rn) +
N∑

i=1

V (ri ,Rn) +
∑
j �=i

N∑
i=1

φ(rij ). (10)

For the following integration procedure, it is irrelevant whether
U (Rn) or V (ri ,Rn) is pairwise for nBPs, as we do not integrate
over their coordinates. In order to be able to integrate Eqs. (8)
and (9) over N − 1 or N − 2 (Brownian) particle positions
(see e.g. [32]), we also have to restrict to pairwise HIs, which
simplifies the matrices G and M, as specified in the next
subsection.

B. Expansion of the hydrodynamic tensors

Here we expand the friction and mobility tensors into
components depending on one, two, three, ... BPs, respectively.
When arriving at Eqs. (17) and (19), we keep only those
matrices depending on one or two BPs. This yields the
leading-order (pairwise) HI. For the special case of spheres,
such series expansions can be assumed to converge if the
hydrodynamic diameter aH is smaller than the interaction
diameter a.

The mentioned expansion can be done in a well-defined
manner; Let us give as an exemplary case the mobility matrix
M using Eq. (7), while the remaining tensors are expanded in
Appendix A. Let Fh

j be the hydrodynamic force for BP number
j (i.e., Fh

j is the j th part of Fh
N), and the position of this particle

is rj . Then we have for its velocity

− [
M(R)Fh

N

]
j

≡ −M(1)
11 (rj ,Rn)Fh

j

−
N∑

k �=j

M(2)
12 (rj ,rk,Rn)

(
Fh

j ,F
h
k

)T + . . . .

(11)

This defines the tensors M(1)
11 (r,Rn) and M(2)

12 (r,r′,Rn) used in
Eqs. (17) and (19). Note that (Fh

j ,F
h
k ) is a line vector [i.e., a

part of Fh
N in Eq. (7)], and Eq. (11) is still linear in forces.

Recall that indices of M denote dimensionality (not particle
index), so that, e.g., M(1)

11 refers to the subspace of one BP.

C. Integrating out particle positions

In this subsection, we give the main steps necessary to
perform the integration over N − 1 or N − 2 particle positions
(see also Ref. [32]). Let O(r1) denote a hydrodynamic tensor
depending on BP position r1 (e.g., the first term of the matrix
expansions in Sec. III B and Appendix A). We then have in
Eqs. (8) and (9) terms reading like O(r1)P (RN,t). For these,
the well-known exact integration over N − 1 particles can be
performed,

N

∫
O(r1)P (RN,t)dr2 . . . drN = ρ(r1,t)O(r1), (12)

where the one-body density appears [27,32]:

ρ(r1,t) ≡ N

∫
P (RN,t)dr2 . . . drN . (13)
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Terms involving a hydrodynamic tensor O(r1,r2) depending
on two positions (or containing the pairwise potential φ) can
only be integrated over N − 2 positions,

N (N − 1)
∫

O(r1,r2)P (RN,t)dr3 . . . drN

= ρ(2)(r1,r2,t)O(r1,r2). (14)

Here, the two-particle density of BPs enters:

ρ(2)(r1,r2,t) ≡ N (N − 1)
∫

P (RN,t)dr3 . . . drN . (15)

One subtlety arises in the integration procedure, as two differ-
ent types of interactions are present. Although interactions
are pairwise, a BP can interact via φ with a second one,
which in turn can interact via HI with a third one. This
introduces also ρ(3), which is, however, in a suitable form
for a well-known identity, connecting it to ρ(2) (strictly valid
in equilibrium) [27,33] (see Appendix B).

D. Resulting equations

Using the expressions presented in Secs. III B and III C and
the corresponding appendices, we finally obtain, by integrating
Eq. (8) over N − 1 particle positions,

∂ρ(r1,t)

∂t
= ∂

∂r1
·
∫

dr2J(r1,r2,t), (16)

where we have introduced the two-particle current J,

J(r1,r2,t) ≡ δ(r2)j(1)(r1,t) + j(2)(r1,r2,t),

≡ δ(r2)ρ(r1,t)M
(1)
11 (r1)

[
F̃1(r1,t) + G(1)

1n (r1)Vn
]

+ ρ(2)(r1,r2,t)
[
M(2)

12 (r1,r2)F̃2(r1,r2,t)

+ (MG)(2)
1n (r1,r2)Vn

]
. (17)

Here, we introduced j(1) and j(2), which allows a compact
representation of the force in Eq. (19). F̃1(r,t) is an auxiliary
function, being an effective one-body force acting on a BP at
position r [32],

F̃1(r,t) ≡kBTρ−1(r,t)
∂

∂r
ρ(r,t) + ∂

∂r
V (r,Rn) + ρ−1(r,t)

×
∫

dr′ρ(2)(r,r′,t)
∂

∂r
φ(r − r′), (18)

and F̃2(r1,r2,t) ≡ (F̃1(r1,t),F̃1(r2,t))T is a six-dimensional
vector. We note that, importantly, by removing all nBPs from
the system, Eqs. (16) and (17) can be identified with Eq. (2)
in Ref. [33], where nonequilibrium systems, but without
externally applied flow, are studied with dynamical DFT.

The force acting on the nBPs on the level of ρ(2) is obtained
similarly, by integrating Eq. (9):

〈Fn〉 = F0
n +

∫
dr1dr2

[
δ(r2)ρ(r1,t)

[∇V (r1) − G(1)
nn(r1)Vn

]

+ G(1)
n1 (r1)J(r1,r2,t) + ρ(2)(r1,r2,t)

(
G(2)

n1 (r1,r2)

×
[

j(1)(r1,t)

ρ(r1,t)
+ j(2)(r1,r2,t)

]
− G(2)

nn(r1,r2)Vn

)]
.

(19)

F0
n ≡ − ∂

∂Rn
U (Rn) − G(0)

nnVn denotes the force in the absence

of BPs, were G(0)
nn is the matrix describing the situation in

absence of BPs, see Eq. (A2). (This force does not fluctuate in
our framework, and no averaging is needed.)

The integrated Smoluchowski equation for shear without
HIs (see, e.g., Eqs. (3) and (4) in Ref. [36]) follows from
Eq. (17) by replacing M(1)

11 kBT = D0 and −M(1)
11G

(1)
1n Vn = V

and neglecting all tensors with superscript 2. Then V is the
solvent velocity induced by the moving nBPs and D0 is the
bare BPs’ diffusivity. We note that Eqs. (3) and (4) in Ref. [36]
(as mentioned above) cannot easily be derived from the more
precise Eq. (17), e.g., by taking the limit of weak HI. [This
is because the shear term in Eq. (4) in Ref. [36] is not of the
same order in HI as the remaining terms in that Eq. (4).]

Using Eqs. (3) and (4) in Ref. [36], we noted an inconsis-
tency for cases of confinement, i.e., an inhomogeneous local
shear stress, which is unphysical and which we suggested to
remove by use of the stress ensemble. In the latter the flow
velocity in Eq. (4) in Ref. [36] is adjusted to obtain stress
homogeneity. It is important to note that Eq. (17), in contrast,
indeed yields physical results throughout, as from the very
beginning, all forces are balanced properly. This is one main
insight gained from the present work through the inclusion of
HI.

Summarizing this section, we obtained, by integration, an
equation for ρ and ρ(2), Eq. (17), that is valid for spherical
BPs that interact with a pairwise potential, pairwise HIs,
and arbitrary nBPs. We also computed the friction force
acting on the nBPs, Eq. (9), at the same level of accuracy.
Since, apart from the mentioned limitations (e.g., pairwise
interactions), these equations are exact, they should naturally
include known specific cases that have been derived using the
same limitations [45]. These include, e.g., the microrheology
cases studied in Refs. [38] and [39], where the tracer particle
constitutes the nBP. In general, Eqs. (17) and (19) yield
exact results for low densities of BPs. Although designed
for confined systems, Eqs. (17) and (19) also contain bulk
properties [8,46], such as the Einstein coefficient for the
viscosity of dilute suspensions (see Appendix C for more
details), although not directly, e.g., only when taking the
moving boundaries far way from each other (this is shown
explicitly in Figs. 2 and 3). For bulk systems, many-body HIs
have been taken into account in Ref. [47], which thus goes
beyond Eqs. (17) and (19).

IV. RESULTS FOR TWO PARALLEL WALLS IN RELATIVE
MOTION

A. Setup and closure

We finally study the explicit case of two parallel walls in
relative motion (see Fig. 1, right, or the inset in Fig. 2), a sce-
nario accessible by experiments and simulations [18,48,49].
The lower wall is positioned at y = 0; the upper wall, at y = d.
The upper wall moves deterministically at a time-independent
velocity v in direction x, while the lower is at rest, defining a
bare shear rate of γ̇0 = v

d
. We consider in the following the

steady-state, time-independent situation, which is assumed
to be approached a sufficiently long time after the shear is
started. Then the upper wall is subject to the time-independent,
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FIG. 2. (Color online) (b) Effective viscosity coefficient �νeff =
νeff − ν0 of a suspension sheared between walls, as a function of the
distance d , normalized to the bulk value. The packing fraction 	 =
0.45, and we consider particles with a small hydrodynamic radius
aH /2 and hard interaction radius a/2, aH � a. (a) Corresponding
equilibrium densities for two exemplary cases, d = 10a and d = 3a

[54]. Dashed vertical lines show the closest approach for particle
centers.

generalized friction force F(u) found from Eq. (19). Its y and
x components yield, respectively, the orthogonal pressure and
the effective shear viscosity. We focus on the latter and define
the effective viscosity νeff :

νeff ≡ −F (u)
x

Aγ̇0
. (20)

A is the surface area of the wall.
In this situation, the one-body density is a function of y only,

ρ(r) = ρ(y). To solve Eqs. (17) and (19) and compute F (u)
x ,

one must express ρ(2) (approximately) in terms of ρ. As shown
in Ref. [36], a simple superposition closure involving the
distorted bulk pair distribution gneq(r) ≡ g(r) − geq(r) under
shear suffices to capture the shear-induced distortion of ρ(2)

[36,50],

ρ(2)(r,r′) ≈ ρ
(2)
ad (r,r′) + ρ(r)ρ(r′)gneq(r − r′). (21)

ρ
(2)
ad , the so-called adiabatic term expressed via the density

functional by Eq. (B4),2 is the main ingredient of dynamical
DFT [32]. For our hard-sphere system we use the Rosenfeld
form of the excess part of the free energy Fex. This term is

2Equation (B4) can only be used if ρ(2) appears in the form of the
left-hand side of Eq. (B4). This is the case when evaluating Eq. (17)
to leading order in HI; see, e.g., the last term in Eq. (18). In general,
when regarding higher orders in HI, other closures are necessary also
for the “adiabatic term,” e.g., superposition approximations [33].

FIG. 3. (Color online) (b) Effective viscosity of a hard-sphere
fluid (	 = 0.45, aH = a) sheared between two walls as a function
of the distance d for Pe = 0, 6.27, 10.95, and 20 (solid curves; top
to bottom). Dashed curves are estimates based on the slip effect,
Eq. (28). (I) Examples of density profiles under shear. (II) Enlarged
segment of the Pe = 20 curve, where discontinuities as a function
of d develop. (III) Computer simulation results of Ref. [48] fitted
by the curve for Pe = 0 assuming a different (negative) slip length
(see the text). (a) Corresponding velocity profiles for d = 3a and
d = 10a. Curves give the deviation of the flow velocity V (y) from
the flow profile approached for large d , denoted Vas(y), normalized
by the velocity of the upper wall v. Inset: Construction leading to the
estimate of Eq. (28).

essential, as it correctly captures the equilibrium structure of
the fluid between the walls. However, it does not describe
the effects of shear [50], making the second term in Eq. (21)
important for the considered (sheared) system. In Ref. [36], its
properties are analyzed in detail.

Equation (21) is, by construction, exact in homogeneous
systems, and it uses knowledge about bulk rheology [13],
imprinted in gneq(r), to describe inhomogeneous systems. In
Ref. [36], we demonstrated that Eq. (21) yields the exact
contact density (corresponding to the normal force exerted
on the wall by the particles) for shear flow at a single wall,
as well as the correct scalings for shear rate demanded by
symmetry.3 This framework, needing the closure in Eq. (21),
will also benefit from recent developments in dynamical DFT
(“power functional”) [51,52].

3For example, the shear stress is linear in shear rate for low rates,
while the orthogonal pressure changes quadratically.
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B. Results from Eqs. (17) and (19) for small hydrodynamic radii

Equations (17) and (19) [with Eq. (21)] can in principle be
evaluated to any accuracy of (pairwise) HIs, and it is instructive
to introduce BPs with hydrodynamic radius aH/2 and hard
interaction radius a/2, as then, for aH < a, convergence of a
series in aH /a may be assumed. The corresponding matrices
G and M for spherical particles between parallel walls can,
for example, be found in Ref. [53], and gneq [in Eq. (21)] is
given in Ref. [8] to any order in aH /a.

At zeroth order in aH /a, BPs are infinitely fast, and P

adjusts instantaneously to the equilibrium distribution. This is
explicitly found from Eq. (16), which then requires F̃1 = 0, as
fulfilled by ρeq [27]. In this order, νeff equals the bare solvent
viscosity ν0. In general,

νeff = ν0 + ν1aH + ν2a
2
H + . . . . (22)

ν1, ν2, and so on, depend on the distance d as well as on the
velocity v and average density. In the following we analyze
the first nontrivial term, ν1, and its dependence on the distance
d. It is worth noting that restricting ourselves to linear order in
aH directly implies that the results are linear in the velocity v.

For ν1 we still have that the solution for the one-body
density ρ(y) equals the equilibrium one; the pair density ρ(2)

is, however, distorted by the shearing. It is given by Eq. (21),
with the equilibrium form for the one-body density, and in
the considered order in HI, we insert the form of Eq. (33) in
Ref. [36] for gneq(r).

With ρ and ρ(2) obtained in this manner, we use Eq. (19)
to obtain the force on the upper plate. At leading order aH , all
matrices with superscript 2 can be omitted, and we have

− 〈F (u)
x 〉
A

= γ̇0ν0 + x̂
A

·
∫

drG(1)
n1 (r)M(1)

11 (r)
∫

dr′ρ(2)(r,r′)

× ∂

∂r
φ(r − r′)

= γ̇0ν0 +
∫ d

0
dy

d − y

d

∫
dr′ρ(2)(r,r′)

× ∂

∂x
φ(r − r′) + O

(
a2

H

)
. (23)

Note that here the shear distortion of ρ(2)(r,r′) is evaluated to
first order in aH (as mentioned) and that the equilibrium term
for ρ(2)(r,r′) [i.e., ρ

(2)
ad (r,r′) in Eq. (21)] does not contribute

in the integral due to symmetries. We also note that the force
F (u)

x has no contribution from the one-body density ρ(r), as
the result of cancellations in Eq. (19). To leading order in aH ,
the effective viscosity is thus due to particle interactions, and
there is no contribution from isolated particles, just as is the
case for bulk systems [see, e.g., [8].

Figure 2(b) shows the resulting viscosity for hard spheres
confined by hard walls, for average packing fraction 	 = 0.45
(defined with respect to the interaction radius a/2)4 and small
aH , i.e., aH � a. Specifically, the curve gives the coefficient

4In contrast to equilibrium cases [30,54], which are naturally dis-
cussed grand canonically, we prefer to keep the particle packing fixed,
thus avoiding the definition of a chemical potential in nonequilibrium.

ν1 in Eq. (22), normalized by its bulk value.5 The curve
approaching unity for large d demonstrates that the present
theory correctly finds the bulk limit. ν1 in tendency reduces to
smaller values for decreasing d. While the curve is smooth for
d � 8a, it develops oscillations for smaller d due to layering
effects, as shown in Fig. 2(a).

As mentioned before, ν1 is, by construction, linear in
velocity v, and we do not study nonlinear effects here.

C. Results in the stress ensemble model

1. Stress ensemble model and its connection to Eqs. (17) and (19)

While Sec. IV B and Fig. 2 represent the case where aH �
a, strictly following from expansion of Eqs. (17) and (19), the
observed qualitative scenario is possibly more general. In order
to demonstrate this and to make a connection to previous work,
in this subsection, we use the model suggested in Ref. [36]
(where the case of a single wall is studied). In that model,
we use the Smoluchowski equation with shear but without
HI (see Eq. (1) in Ref. [36]), which means, in the present
framework, to set (among others) Fh

ND0/kBT = V (y)x̂ − VN,
with a solvent velocity V (y)x̂. As mentioned earlier, this can
yield (unphysical) inhomogeneous shear stresses, i.e., the xy

component σxy of the stress tensor σ may depend on y. In the
absence of HI, the local stress tensor σ is an exact functional
of ρ(2) and ρ:

∇ · σ (r) = −kBT ∇ρ(r) −
∫

d3r′
[

∂

∂r
φ(|r − r′|)

]
ρ(2)(r,r′).

(24)
As in Ref. [36], we then adjust V (y) until stress homogeneity,
required by stationarity, is achieved. Specifically, we balance
the total stress, made of particle contributions in Eq. (24), and
the stress from the solvent, ν0

∂2V (y)
∂y2 :

ν0
∂2V (y)

∂y2
+ ∂σxy

∂y
= 0. (25)

The particle stress in Eq. (24) follows unambiguously from
the closure, (21), and is hence self-consistently found [36].
See Appendix D for further details on the expression for the
stress and its limit for bulk systems.

It is interesting to note that the model proposed in Ref. [36],
comprising Eqs. (25) and (24), exactly agrees with Eqs. (17)
and Eq. (19) for small aH , as we aim to demonstrate:
Integrating Eq. (25) twice, i.e.,

∫ d

0 dy
∫ y

0 dy ′, we obtain [using
σxy(y = 0) = 0 [36] for hard particles]

−
〈
F (u)

x

〉
A

= ν0
∂V

∂y

∣∣∣∣
y=0

= γ̇0ν0 + 1

d

∫ d

0
σxy(y)dy + O

(
a2

H

)
.

(26)

Using Eq. (D5), this expression is identified with Eq. (23),
and hence the stress ensemble agrees with Eqs. (17) and (19)

5For d → ∞, ν1 = 12ν0
5a

	2− 	3
2

(1−	)3 . This expression, exact for small 	

(see also [8]), is found by using Eqs. (33) and (34) in Ref. [36] for
the distorted bulk pair correlation (again, exact for small 	 and aH )
and computing the bulk stress via Eq. (D3).
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to leading order in aH . The first equality in Eq. (26) follows
because, knowing that the total stress is constant in space [from
Eq. (25)], we only have to know it at one position and choose
the lower wall, where it is solely composed of (or carried by)
the solvent. In order to arrive at Eq. (26), we also identified
γ̇ = (V (d) − V (0))/d.6

2. Results linear in velocity v

Having identified that the stress ensemble framework agrees
with Eqs. (17) and (19) to leading order in aH , we now use it
for the case aH = a, hoping that, due to its simplicity, it may
capture generic features independent of system details (like
HI).

Figure 3(b) shows the resulting effective viscosity [Eq. (20)]
for different Peclet numbers Pe ≡ γ̇0a2/D0 and aH = a. The
upper curve shows the case of small Pe (linear response),
indeed possessing very similar features to Fig. 2: The effective
viscosity approaches a distance-independent bulk value for
d → ∞ which agrees exactly with the corresponding bulk
result. Here, the bulk result is found again by using gneq from
Eq. (33) in Ref. [36] in formula (D3) [8]. Specifically, this
yields, for Pe → 0,

νeff(∞) = kBT

3πD0a

(
1 + 12

5

	2 − 	3

2

(1 − 	)3

)
. (27)

In the units used in Fig. 3, this corresponds to νeff(∞) =
0.346kBT (D0a)−1 at 	 = 0.45. Note again that this ex-
pression for the bulk viscosity, which indirectly also enters
our results for confinement, is an exact solution of the
Smoluchowski equation for small 	 and neglecting HIs, and
we used the Carnahan-Starling expression [27] to estimate the
result for larger packing fractions.

The effective viscosity in Fig. 3 consistently decreases for
small d. Again, for d � 8a, oscillations start to be visible.

In Ref. [36], we computed the slip length L of the
suspension at a single wall under shear, e.g., L = 1.27a at
Pe → 0. A simple geometric consideration [inset in Fig. 3(a)]
yields the following estimate for νeff for two parallel walls at
distance d:

νeff(d) = d

d + 2L
νeff(∞). (28)

The outcome of Eq. (28) is shown in Fig. 3(b) by dashed curves.
Despite the mentioned oscillations in the solid curve, which
are not reflected by Eq. (28), Eq. (28) gives an astonishingly
good result even for small d/a. In particular, from Eq. (28), one
can estimate that the bulk value of the viscosity is approached
with a power law of 1/d for large d.

In real systems, the effective viscosity depends on details,
e.g., boundary conditions at the walls or particle dynamics.
The simple picture following from our analysis identifies two
main mechanisms: the slip effect [Eq. (28)], determining the
general behavior of effective viscosity as a function of the
distance d between the walls, and overlying oscillations with
minima if d is a multiple of the particle diameter.

6Strictly, σxy in Eq. (23) is computed for a simple shear profile,
while σxy in Eq. (25) is computed for a distorted flow profile. In
leading (zeroth) order in aH , the two are, however, identical.

3. Results nonlinear in velocity v

Upon increasing the driving velocity,7 the asymptote for
large d decreases [lower curves in Fig. 3(b)], which is due
to the well-known phenomenon of shear thinning in bulk
systems at intermediate values of Pe. This thinning behavior is
accompanied by more pronounced layering of the density for
higher rates in inset I. Apart from this, the overall qualitative
features are very similar to the discussed cases; in particular,
Eq. (28) gives a very good estimate of the overall trend for
higher rates as well. Regarding Pe = 10.95, we see that the
oscillations in the viscosity extend to larger values of d. This
is clearly a nonlinear effect, as the higher rate causes changes in
the density [see inset I in Fig. 3(b)], which, for increasing rates,
develops more pronounced oscillations, extending to larger d.

Bulk suspensions show layering at certain densities and
shear rates, as found in simulations [55,56], and confinement
is then nontrivial. Our model [36,50], i.e., usage of DFT
with the closure Eq. (21), predicts a layering instability at
large Pe, i.e., oscillations of ρ(y) for arbitrarily large d.
The lowest curve in Fig. 3(b) (Pe = 20), representing such
a state, shows that the effective viscosity is unsteady as a
function of d, having discrete jumps at d � 12a, which can
be explained by the underlying density profiles. At the jumps
of νeff(d), the density ρ(y) is discontinuous as well, as the
number of layers is changed by one. The relative height of the
discontinuities decays as 1/d, since for larger d each individual
layer contributes less to the total viscosity.

4. Comparison to simulations

In the apparent absence of other data (experimental or
from simulations) for suspensions at the considered densities,
inset III in Fig. 3(b) shows simulation data for a molecular
fluid [48] sheared by two rough walls. The topmost, solid
(red) curve in Fig. 3(b) is our result; in order to account
for the different boundary conditions, we multiplied it by
(d + 2 × 1.27a)/(d − 2 × 0.84a), thus estimating the slip
length in Ref. [48] as L � −0.84a. The curve reproduces well
the overall features of the simulation data.

The curve from Ref. [48] has oscillations (the amplitude
of which is of course detail dependent), with minima roughly
at d equal to multiples of the particle diameter, as is the case
for the prediction from our model. We may thus conclude
that, although starting from a system of overdamped BPs, the
presented model captures the generic features also seen for
molecular fluids.

V. CONCLUSIONS

A. Physical

Exemplified by monodisperse hard spheres, the viscosity
of fluids in confinement displays a variety of features. For
two walls in relative motion, the viscosity is astonishingly
well described by a continuum estimate involving the slip
length, Eq. (28), down to distances of a few particle diameters.
According to the estimate, at large distances, the viscosity

7For large Peclet numbers, we use Eq. (34) of Ref. [36] for the
distorted bulk pair correlation, entering Eq. (21).
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approaches the bulk value with a correction vanishing as a
power law with 1/d. At distances of a few particle diameters,
the viscosity additionally displays oscillations as a function of
distance, showing local minima when d is a multiple of the
particle diameter. At higher wall velocities, nonlinear effects
are present, therefore the oscillatory behavior is extended to
larger d.

B. Technical

We have presented a formalism for analyzing the viscosity
in confinement, designed for combination with dynamical
DFT, starting from the Smoluchowski equation. The previ-
ously found inconsistency of the Smoluchowski equation with
driving for inhomogeneous situations [36] does not occur
when taking into account HIs. We have demonstrated that
the previously suggested ensemble model [36] agrees exactly
with the full hydrodynamic description to leading order in the
hydrodynamic radius aH .
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APPENDIX A: HYDRODYNAMIC TENSORS

Let us consider the velocity component of BP number i due
to the velocities of the nBPs, Vn, which is expanded as

[M(R)GNn(R)Vn]i ≡ [
M(1)

11 (ri ,Rn)G(1)
1n (ri ,Rn)

+
N∑

k �=i

(MG)(2)
1n (ri ,rk,Rn) + . . .

]
Vn.

(A1)

Together with (11), this defines the tensors G(1)
1n (r,Rn) and

(MG)(2)
1n (r,r′,Rn).

The hydrodynamic force for the nBPs due to the motion of
nBPs is expanded as

− Gnn(Rn)Vn ≡ 7 − [
G(0)

nn(Rn) +
N∑

l=1

(
G(1)

nn(rl ,Rn)

+
N∑

k �=l

G(2)
nn(rl ,rk,Rn) + . . .

)]
Vn, (A2)

which is the definition of the other three tensors, G(0)
nn(Rn),

G(1)
nn(rl ,Rn), and G(2)

nn(rl ,rk,Rn). In this special case the
expansion starts with a component depending on no BP.

Finally, we expand the hydrodynamic force for nBPs due
to the motion of BPs (Vi is the velocity of BP number i),

− GnN(R)VN ≡ 7 −
N∑

l=1

G(1)
n1 (rl ,Rn)Vl

−
N∑

k �=l

G(2)
n1 (rl ,rk,Rn)(Vl ,Vk)T + . . . , (A3)

which is the definition of the tensors G(1)
n1 (rl ,Rn) and

G(2)
n1 (rl ,rk,Rn).
The so-defined hydrodynamic tensors can be found in

the literature for specific cases of BPs (e.g., for spheres
with stick boundary conditions) as well as specific shapes
or arrangements of the nBPs [45]. (See, e.g., Ref. [53] for the
case of spheres between parallel walls.)

APPENDIX B: POSITION INTEGRATION AND FREE
ENERGY FUNCTIONAL

Even if restricting ourselves to pairwise HIs and pairwise
potential interactions φ, we have the following terms in Eqs. (8)
and (9), which connect three different BPs:

N (N − 1)(N − 2)
∫

O(r1,r2)φ(r1,r3)P (RN,t)dr4 . . . drN

= ρ(3)(r1,r2,r3,t)O(r1,r2)φ(r1,r3). (B1)

This term can only be integrated over N − 3 particles, and the
three-body density appears:

ρ(3)(r1,r2,r3,t) ≡ N (N − 1)(N − 2)
∫

P (RN,t)dr4 . . . drN .

(B2)
In order to eliminate ρ(3), we use the following equilibrium
relation, which derives from the second member of the Yvon-
Born-Green hierarchy (see, e.g., Ref. [27]), as also used in
Ref. [33]:∫

∂φ(r1,r2)

∂r1
ρ(3)(r1,r2,r3)dr3

= −
(

kBT
∂

∂r1
+ ∂V (r1,Rn)

∂r1
+ ∂φ(r1,r2)

∂r1

)
ρ(2)(r1,r2).

(B3)

Here, V , as defined in Eq. (10), is the potential interaction
between BPs and nBPs. We also use the so-called sum rule
(see, e.g., Ref. [32]),∫

dr2 ρ(2)(r1,r2)
∂

∂r1
φ(r1,r2) = ρ(r1)

∂

∂r1

δFex

δρ(r1)
, (B4)

where Fex is the excess part of the free energy (see, e.g.,
Ref. [27]). Note that Eqs. (B3) and (B4) are exactly in
equilibrium.

APPENDIX C: EINSTEIN VISCOSITY

According to Einstein, the bulk viscosity for spherical
particles with stick boundary conditions for the solvent is
given by

νeff/ν0 = 1 + 5
2	 + O(	2), (C1)

where 	 is the packing fraction of spheres. This result should
be contained in Eq. (9), as we aim to sketch briefly considering
the case of two walls in parallel motion (see Fig. 1 or
Sec. IV). At a low density of BPs, interactions between BPs and
correlations in their positions can be neglected, their density
between the walls being a constant number ρ0 [hence, in this
case, Eq. (17) is unnecessary]. Equation (19) for the force
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reduces to

−〈Fn〉 = Aν0γ̇0x̂ + ρ0

∫
dr

× [ − G(1)
nn(r) + G(1)

n1 (r)M(1)
11 (r)G(1)

1n (r)
]
Vn, (C2)

where x̂ is the unit vector in direction x. This is the exact
description for the force necessary to shear a single sphere (or
a dilute suspension of spheres) between two walls (when using
the proper matrices for such geometry). It has been investigated
numerically in Refs. [53] and [57], and the corresponding
viscosity increment due to the presence of the sphere [related
via Eq. (20) to the force in (C2)] was found to approach (C1) in
the limit when the distance between the walls is large compared
to the size of the sphere.

Of course there are more direct ways of finding (C1) (which
do not require the presence of the walls from the beginning),
but in the framework of Eqs. (17) and (9), being designed
for studying confined suspensions, the presence of nBPs is
essential.

APPENDIX D: STRESS TENSOR

In Ref. [36] we introduced the local interparticle stress
tensor, which obeys the exact relation

∇ · σ (r) = −kBT ∇ρ(r) −
∫

d3r′
[

∂

∂r
φ(|r − r′|)

]
ρ(2)(r,r′).

(D1)

The stress tensor σ itself is given by [7]

σ (r) = −kBTρ(r)I + 1

2

∫ 1

0
dλ

∫
d3r1

× r1r1

r1

[
∂

∂r1
φ(r1)

]
ρ(2)(r + (1 − λ)r1,r − λr1).

(D2)

For homogeneous systems, this expression reduces to the well-
known expression [58]

σ = −kBTρI + 1

2
ρ2

0

∫
d3r

rr
r

[
∂

∂r
φ(r)

]
g(r), (D3)

where ρ0 is the homogeneous (bulk) density of particles.
For the coordinate system depicted in Fig. 2, we have, using

translational invariance along x and z,

∂

∂y
σxy(y) = −

∫
d3r′ x

′

r ′

[
∂

∂r ′ φ(r ′)
]
ρ(2)(r,r + r′). (D4)

Using Eq. (D4) one can transform Eq. (23) to

−
〈
F (u)

x

〉
A

= γ̇0ν0 + 1

d

∫ d

0
σxy(y)dy + O

(
a2

H

)
. (D5)

[1] J. C. Maxwell, Philos. Trans. R. Soc. London 156, 249 (1866).
[2] D. S. Viswanath, T. K. Ghosh, D. H. L. Prasad, N. V. K. Dutt,

and K. Y. Rani, Viscosity of Liquids (Springer, Dordrecht, The
Netherlands, 2007).

[3] E. Elliott, J. A. Joseph, and J. E. Thomas, Phys. Rev. Lett. 113,
020406 (2014).

[4] M. S. Green, J. Chem. Phys. 20, 1281 (1952).
[5] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
[6] E. N. d. C. Andrade, London Edinb. Dubl. Philos. Mag. J. Sci.

17(112), 497 (1934).
[7] H. J. Kreuzer, Nonequilibrium Thermodynamics and Its Statis-

tical Foundations (Clarendon Press, Oxford, UK, 1981).
[8] J. F. Brady and J. F. Morris, J. Fluid. Mech. 348, 103 (1997).
[9] M. Fuchs and M. E. Cates, Phys. Rev. Lett. 89, 248304 (2002).

[10] P. Sollich, F. Lequeux, P. Hébraud, and M. E. Cates, Phys. Rev.
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