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Scaling behavior of coarsening Faraday heaps
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When a layer of sand is vertically shaken, the surface spontaneously breaks up in a landscape of small conical
“Faraday heaps,” which merge into larger ones on an ever increasing time scale. We propose a model for the heap
dynamics and show analytically that the mean lifetime of the transient state with N heaps scales as N ~2. When
there is an abundance of sand, such that the vibrating plate always remains completely covered, this means that

the average diameter of the heaps grows as ¢'/2

get depleted during the coarsening process, the average diameter of the heaps grows more slowly, namely as ¢
This result compares well with experimental observations.
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I. INTRODUCTION

When a flat layer of fine sand is brought into vertical
vibration, an intriguing phenomenon occurs: The flat surface
swiftly breaks up into many small heaps, which then on a
slower time scale merge together (forming fewer but larger
heaps) until finally they are all united in one large heap, which
thereafter remains stable. The first detailed study of a stable
single heap on a vibrating plate was performed by Faraday
in 1831 [1], and the phenomenon is therefore often called
“Faraday heaping.” Although Faraday’s paper mainly focuses
on the Chladni patterns on a resonating plate (coarse particles
collect at the nodes, finer particles at the antinodes), towards
the end he describes the peculiar motion of the particles
within a single heap: “When a single heap is examined,...,
it will be seen that the particles of the heap rise up at the
center, overflow, fall down upon all sides, and disappear at the
bottom, apparently proceeding inwards.” Faraday concluded
that the flow of air—induced by the partial vacuum that is
created under the heap during the second part of a vibrational
cycle—was responsible for this motion. This mechanism was
later verified and analyzed in detail by the experiments of
Thomas and Squires [2] and the numerical simulations of Van
Gerner et al. [3]. In addition, Faraday also mentioned the key
steps in the evolution of a flat surface into a single heap: “As
to their first formation, the slightest irregularities in (..) the
surface would determine a commencement, which would then
instantly favour the increase” and “when two or more heaps
are near together or touch, they will frequently coalesce and
form but one heap, which quickly acquires a rounded outline.”

While the case of a stable single Faraday heap is well-
studied [4-9], the collective dynamics of a number of them
(i.e., the coarsening process) has received relatively little atten-
tion. To our knowledge there have been two studies on the sub-
ject in a restricted, quasi-two-dimensional setup [10,11] and
only one publication on the full problem [12], which is remark-
able, since the merging of Faraday heaps is one of the clearest
and most beautiful examples of coarsening in granular matter.
It is not the only system in which the interplay of sand and the
surrounding medium gives rise to patterns that coarsen over
time: Other classic examples are underwater sand ripples at the
beach [13-18] and wind-driven barchan dunes in the deserts
on Earth and Mars [19-25], yet in those cases the coarsening
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process is never seen to run its full course. The growth of
beach ripples and barchan dunes is limited by various factors
and the coarsening process leads to the selection of a preferred
length scale rather than to the formation of one big ripple or
giant dune. By contrast, Faraday heaping generally does not
end before all small humps have merged into one single heap.

In a broader context, the phenomenon fits into the general
field of dynamical systems out of equilibrium, which are
renowned for their susceptibility to spontaneous pattern
formation [26-28]. Coarsening is one of the principal routes
by which patterns are known to ripen to their final form, and
Faraday heaping provides a particularly pure example of this.

A characteristic feature of coarsening is that it takes place
on an ever increasing time scale. In the case of Faraday
heaping this means that the time it takes to proceed from N to
N — 1 heaps is longer than the previous step from N + 1 to
N heaps, and one of the central questions is how this process
scales with time.

In a previous paper we developed an analytical model,
based on experiments and detailed numerical observations,
to study the coarsening process in a quasi-two-dimensional
setup where the sand was confined between two vertical
glass plates [11]. In the simulations the motion of the sand
particles was determined via molecular dynamics techniques,
while the flow of the air was calculated by computational
fluid dynamics. These simulations guided us to construct a
coupled set of equations of motion for the N peak positions,
which were solved numerically and proved to accurately
describe the evolution of the heap landscape in the quasi-two-
dimensional experiment [11]. In the present paper we extend
the model to true three-dimensional (3D), as in Faraday’s
classic experiment, and the resulting scaling behavior is
compared with the experimental findings of Shinbrot [12].
As a preview, in Fig. 1 we show a typical run of Shinbrot’s
experiment (top row) together with representative snapshots
from our model (bottom row).

II. MODEL FOR THE COARSENING PROCESS

A. On the formation of the landscape of heaps

For a proper understanding of the model, it is useful to
first briefly review the mechanism underlying the formation
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FIG. 1. (Color online) Top view of coarsening Faraday heaps in experiment (top row, images courtesy of Shinbrot [12]) and in the model of
the present paper (bottom row). Heaps move towards each other until they merge. In the experimental snapshots this has been marked by gray
lines; in the model we indicate the velocity of the heaps by black lines (originating from the peaks of the heaps). The equidistant height lines
illustrate the fact that the slope angle « is everywhere the same; in the present simulations « = 18.5 degrees, in agreement with experiments
on millimeter-sized glass beads [11]. An animation is provided as Supplemental Material [29].

of heaps. For a detailed discussion we refer to van Gerner
etal. [11] and references therein. Central is the air flow induced
by the partial vacuum that is created under the granular layer
when it detaches from the plate. Suppose a small heap, with
only a slight slope, is present due to some random fluctuation.
Since the air flow enters the bed perpendicularly to the slopes
of the heap, its velocity has a slight horizontal component,
dragging the particles towards the center of the heap. From
here they go upwards (where the bed is less dense), hence
increasing the slope, so that in the next cycle the inward motion
will be somewhat stronger. The slope of the heap will continue
to grow until the inward motion is balanced by the avalanching
of particles down the sides of the heaps. This equilibrium
state—which is attained within a few seconds—sets the final
angle of the heap. Hence, very quickly after the plate is set
into vibration, one observes a landscape of many small heaps,
all with the same slope « (typically around 20 degrees).

The horizontal positions of the peaks are not fixed though:
Since one side will always be larger than the other, the air drag
from that side is dominant and the peak will thus move in the
direction of the smallest side. In this process, heaps will meet
and then merge, since when they start to overlap, the area of the
sides that are touching quickly diminishes, which causes the
peaks to be pushed towards each other. The angle of the slopes
() remains the same during the whole coarsening process. It
is this insight that lies at the heart of our model.

B. A vertical cut through the landscape

For clarity, we first consider a vertical cut through a heap
[see Fig. 2(a)]. The horizontal drag force due to the air coming
in from the left is proportional to the projected slope length
[; the opposed drag force from the right is proportional to
the length r. These forces act only during a short part 6#,

of the driving period and kick the particles inside the dark
gray triangles into motion, which thereby acquire a horizontal
momentum Ap,:

F.6ty = Ap, = mu,. (1)

(b)

v

FIG. 2. (a) A vertical cut through a Faraday heap. The dashed
profile indicates the position of the heap after one time step dr.
The dark shading indicates the parts of the heap that are actively
engaged in this step of the coarsening process, while the lighter parts
are currently inactive and act as a sand reservoir. (b) and (c) Two
cones representing two heaps during the coarsening process. The
intersection line between the cones is calculated in the appendix. In
our model we first determine the intersection lines of each heap with
all surrounding heaps, after which the new position and height of
the heaps are calculated from Egs. (4) and (5) under the constraint
that the volume of each individual heap remains constant. When two
heaps merge, the mass of the resulting heap is simply the sum of the
masses of the individual heaps.
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Here F, o« (I —r) is the net drag force in the horizontal
direction and m o< [?> 4+ r? the mass contained in the dark
triangles. This mass thus gets a horizontal velocity u, =
uy(1,r) oc 8ty(1 — r) /(1% + r?).

This velocity is maintained for a time 6t,, during which the
particles are in free flight, until the heap collides again with
the vibrating plate [3]. Hence, during each complete vibration
cycle the top of the heap will be displaced over a distance
Ax = u,(l,r)ét,. Since 8t; and &1, are constant, the time rate
of change of the horizontal position of a heap (on a time scale
much larger than the vibration period, such that the dragging
can be viewed as a continuous process) is thus given by

dx . l—r
e~ '
with C; a constant (which can be determined from experi-

mental data [11]) depending on the driving strength and the
characteristics of the experimental setup.

2)

C. The full three-dimensional model

We now extend the above analysis to the full problem. The
change of momentum in the x direction of a small slice d6 of
the heap [see Figs. 2(b) and 2(c)] is proportional to the surface
area of the slice multiplied by the component of the unit vector
in the x direction (— cos 6):

r2(0)do
—cosf———. 3)

2cos o
Here the surface area of the slice is %rf(@)dé‘ / cos o, with o
the constant slope angle and r,(6) the distance between the
intersection line and the vertical axis at the peak of the cone.
The total change in momentum of a heap in the x direction is
found by calculating the intersection lines with all neighboring
heaps (see appendix) and integrating the slices d6 over a
complete revolution from 8 = 0 to 2. In order to obtain the
change per unit time of the heap position, the total momentum

has to be divided by the affected volume }l tan « 02” rs 0)do,
which yields for the x direction:

2w 9
dx r-(0)cos0do
— = —szozfr—, ()
dt J; 7 ri®)do

(where the dependence on the slope angle o has been
incorporated in the prefactor C,) and analogously for the y
direction:

2r 2 .
d r;(60)sin0do
ay — —Czji)zﬂ—. 5)
dt 17 ri®)do

The associated change of the peak height dh/dt is
calculated keeping the volume of the substructure of each
heap f()z” [h — ry(0) tan &]372(0)d6 [cf. the light gray parts in
Fig. 2(a)] constant in time. The latter condition is only relaxed
in the case of a merging event (i.e., when the distance between
two peaks falls below a certain small threshold, the precise
value of which has no significant influence on the results): At
this moment the volume of the two merging heaps is summed.
Finally, knowing the new position and height of each peak we
determine the new locations of the intersection lines [30].
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In a typical evaluation of the coarsening model (see Fig. 1,
bottom row) we start with an initial condition where the
distances between the peaks in the x and y direction are
taken from a uniform distribution between 0.5L/+/N, and
1.5L/+/Ny, with L the dimension of the (square) domain and
Ny the initial number of heaps. The heights of the peaks are
distributed uniformly over the interval zo & 0.05L /+/Ny. The
domain has cyclic boundary conditions. The four snapshots
in the bottom row of Fig. 1 show the evolution of a heap
pattern (with initially Ny = 7 x 7 = 49 heaps) obtained by
numerically evaluating the model. The coarsening behavior
resembles that of the experimental photos in the top row.

There is just one visible difference between the two
evolutions. In the experiment we discern the gradual formation
of a depleted outer zone (where hardly any sand grains are
left) around the heaps, whereas such a zone is absent in the
simulation. This has to do with the total amount of sand in the
system, which in the experiment is less than in the depicted
simulation. We will come back to the role of depletion in
Sec. IV.

III. SCALING LAW: COARSENING WITHOUT
DEPLETION

A. Average time for neighboring heaps to merge

To study the statistics of the coarsening behavior we carried
out 1000 runs of the model, each time starting with Ny =
225 (=15 x 15) heaps. The black dots in Fig. 3 show the
averaged lifetime of the N-heap state Ty as a function of N.
It is seen that the model yields an algebraic scaling with Ty
being proportional to N 2.

2 logloNZS

FIG. 3. (Color online) Coarsening without depletion. Mean life
time of the N-heap state Ty as a function of the number of heaps
N in a doubly logarithmic plot. The black dots are our numerical
data averaged over 1000 runs of the model, each time starting with
15 x 15 = 225 heaps. The blue line is the theoretically predicted
scaling behavior 7y o« N2, The deviations from this power law at
large values of N are a start-up effect due to our specific choice of
the initial state, as explained in the text. The inset shows how the
number of heaps, averaged over all runs, decreases with time. The
blue line has a slope of —0.93, close to the predicted value of —1
corresponding to (N (t)) oc t 7.
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This scaling can be understood if we nondimensionalize
x, v, and r,(0) in Egs. (4) and (5), measuring them relative
to the average heap size L/v/N (i.e., ¥ = x+/N/L and 7, =
rov/N/L). This yields

di N [JF0)cos0dl

- 2
dt L2 [*T53(0)do

(6)

and analogously for dy/dt. That is, the change in the
dimensionless position of the peak (given by dx/dt anddy/dt)
scales linearly with N. The average time for two heaps to merge
in the N-heap state, T,,(N), will therefore scale as 1/N.

This argument can be further strengthened by nondimen-
sionalizing also the time variable 7 = (N C,/L?)t, after which
Eq. (6) takes the following fully dimensionless form:

¥ [T F0)cos6do

— 7
di foz” 73(6)d6 @

and analogously for dy/dt. Equation (7) contains no reference
anymore to the number of heaps in the system: The normaliza-
tion has turned any N-heap state into the same standard state
in which the average diameter of the sand heaps is equal to
1, and if one calculates the average time it takes for two sand
heaps to merge (in this standard state) one obtains an answer,
say Ty, that is necessarily independent of N. This means, with
t =(L*/NC %)Z that the duration in ordinary dimensional time
is Tyy(N) o Tyy/N o 1/N,in full agreement with what we had
already concluded on the basis of Eq. (6).

B. Lifetime of the N-heap state

The life expectancy or “lifetime” of the N-heap state (ty)
is not equal to the average merging time T,,(N), but to the
shortest merging time from all pairs of heaps in the system,
since it is the first merging event that terminates the N-heap
state.

When N is not too small, the merging events may be
assumed to be statistically independent and the correspond-
ing distribution of merging times 7; (i = 1,...,N) will be
exponential: P(T;) = P(0)e~"/T~. We checked that this is
indeed the case in our system [31]. A property of the
exponential distribution is that the value of the smallest
element min{7},..,Ty} (alias ty) is inversely proportional to
the sample length N:

T(N)
N

and, together with our earlier result T,y(N) o< 1/N this leads
to the following algebraic scaling law:
1
v X ﬁ (9)
This is exactly the behavior we observe in our model (see
Fig. 3).

The fact that initially (i.e., for large N) the numerical data
do not yet follow the power law (9) is because we start out from
a state in which all 225 heaps are of roughly equal size, which
is quite different from the distribution the system will quickly
evolve to (and which has been assumed to hold in the above
derivation, when we took the merging events to be statistically

N = Hlil’l{T],..,TN} =

, ®)
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independent). Using a different initial heap distribution (e.g.,
anormal distribution) gives a different picture during the early
stages, but again it soon converges to the distribution that
complies with the power law scaling [31].

Heaps of similar size (and thus similar slope lengths all
around) are much less mobile than dissimilar ones, hence they
are much slower to merge; therefore the measured lifetimes
during the initial stages are considerably larger than what is
predicted by the power law.

Evidently, the power law (9) must also lose its validity at the
very end of the coarsening process: For N = 1 (log;, N = 0)
the lifetime ty becomes infinite because the 1-heap state is
stable. That is why the straight blue line in Fig. 3 has been cut
short before it reaches the vertical axis at log;, N = 0.

C. How the number of heaps decreases with time

From the scaling law (9) we can directly deduce how the
number of heaps N(¢) decreases with time towards the end
of the coarsening process. It suffices to observe that the total
elapsed time at the instant when the N-heap state ends, #(N),
is equal to the sum of all T from N’ = Ny, (the initial number
of heaps) to N’ = N:

N Nin
tN) =) Ty ~ f TydN'
Nin N
N g N’ 1 1
x =K(—=-—), (10)
N N7 N Nin

where K is a constant prefactor. For N < Ny, (i.e., towards
the end of the coarsening process) the above relation simplifies
tot(N) ~ K /N, or equivalently,

(N(@®) o<1/t (when(N (1)) < Nin). (1)

Here we write (N(¢)) (where the angles denote the ensemble
average) rather than N (¢) itself, because it is understood that for
a single realization of the experiment there may be quite some
statistical spread around this behavior. Thus Eq. (11) should be
interpreted as a statistical prediction for the ensemble-averaged
number of heaps (N (¢)), and it is this quantity which is plotted
in the inset of Fig. 3. We indeed observe a clear power-law
behavior with an exponent of —0.93, close to the value —1
predicted by Eq. (11). It has to be noted that Eq. (11) is
approximate, and only becomes accurate in the limit of very
large Nj, > N > 1. The discrepancy between the measured
slope (—0.93) and the predicted one (—1) can be traced back
to these approximations.

D. Average heap size as a function of time

One of the quantities of experimental interest, apart from Ty
and N(t), is the size of the heaps, represented by the ensemble-
averaged radius (r(¢)). This quantity is readily derived from
the above scaling law. Assuming that the initial layer of sand
is sufficiently thick—such that there will never be regions that
are completely devoid of sand—the total projected area of
all heaps (rather than their volume) is a conserved quantity,
say Ay Naturally, the volume of the whole bed is conserved;
however, the part of this volume that actively participates in the
coarsening process (i.e., the volume corresponding to the dark
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triangles in Fig. 2) changes with time, drawing sand (whenever
required) from the lower layers of the bed that act as a reservoir.

The ensemble-averaged area per heap in the N-heap state
is simply

(A(n) = (12)
and the ensemble-averaged radius (r(¢)) scales as the square
root of this area, so

tot
(N (@)

where in the last step we have used Eq. (11). Since the latter
proportionality [(N(¢)) o 1/¢] becomes increasingly accurate
towards the end of the coarsening process, when (N(¢)) < Nip,
the same holds for the above scaling law (r(7)) o 172,

Indeed, when we plot the ensemble-averaged square root
of the heap area (+/A(?)), which is proportional to (r(¢)), we
retrieve the #'/? power law over two decades: The black dots in
the doubly logarithmic plot of Fig. 4(b) follow a straight line
with a slope close to 1/2. The best fit to these data (indicated
by the solid red line) provides a slope of 0.46. Not incidentally,
this is half of the absolute value of —0.93 that was found for
(N(t)) (in the inset of Fig. 3).

The scaling law ceases to hold in the 1-heap state, when the
final heap reaches the maximum size (dictated by the size of
the system) and from this point on its radius simply remains
constant; see the black data set in Fig. 4(b) for large 7. In
the presence of depletion [represented by the other data sets
in Fig. 4(b)] the maximum size is smaller because in this
case there is a limited amount of sand in the system, and
also because the typical (ensemble-averaged) end state may
consist of several isolated heaps. We come back to this in the
next section.

1/2
(r(t))o<< ) x (N@)™V? o £172, (13)

IV. THE ROLE OF DEPLETION

A. Experimental and numerical observations

If the initial layer of sand is relatively thin, in the course
of the coarsening process one will witness the appearance
of depleted zones, where the bare vibrating plate becomes
visible. We already encountered this phenomenon in the
experimental snapshots of Fig. 1 (top row). The depletion has
a profound effect on the coarsening dynamics. Shinbrot [12]
found experimentally that in this case (r(t)) o £0-32+£0.03 112],
i.e., a considerably slower growth than the #'/? behavior of the
nondepleted system. This stands to reason, since the heaps in
the latter case never feel any shortage of sand (they float, so
to speak, on a reservoir of sand that supplies them with all the
extra grains they need) whereas in the presence of depletion
the growth is restricted by the limited supply of sand.

We will study the influence of the depletion by starting
from a finite, noncyclic configuration of connected heaps. The
initial condition is prepared in the same way as for the cyclic
system described in Sec. II. When depleted zones start to
appear, the projected area of the collection of heaps is evidently
not conserved anymore. The conserved quantity now becomes
the total volume Vi, of the heaps (i.e., all the sand actively
participating in the coarsening process), since the “reservoir”
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FIG. 4. (Color online) Coarsening for various degrees of deple-
tion. (a) Average lifetime ty of the N-heap state for three systems
with depletion parameters @, = 0.57 (green), 0.35 (red), and 0.28
(blue) as a function of N in a doubly logarithmic plot. The black line
indicates the N =2 power law of the nondepleted system with ®g,, = 1.
(b) Growth of the average heap size (4/A(tr)) for the same three
systems (in comparison with the data for the nondepleted system,
black symbols), again in a doubly logarithmic plot. The dashed lines
indicate power laws with exponents 1/3 (lower line) and 1/2 (upper
line), respectively. The linear fit to the data for the nondepleted system
(the solid red line through the black data) has a slope of 0.462.

of sand below the dark triangles of Fig. 2 has been emptied
and all the sand is contained in the actual heaps. Depletion can
be incorporated in the numerical model without any problem,
simply by starting out with a thinner layer of sand. The only
(minor) change is that apart from intersection lines between
two cones (see Appendix); in this case one also has to deal
with intersection lines between a cone and the flat floor.

In this situation, the coarsening process is no longer
guaranteed to run its full course until all the sand is contained
in one single heap; it can also come to a halt in a state with
multiple heaps, if these happen to get isolated from each other
without any overlap. For convenience, however, we will link
the total volume to the 1-heap state (whether it is reached or
not) in which the entire volume Vi is contained in a single
heap. This is a perfectly symmetric conical heap (recall that the
slope angle « is the same in all directions), the radius of which
we call ry; it is related to the volume via Vi = %nrf tan o.

Each system can be characterized by the ratio ®,, of the
ground surface of the single cone containing all the sand

042203-5



HENK JAN VAN GERNER et al.

(mr}) and the area covered by the N, heaps in the initial
state:

nr?

(14)

Dy = .
P ™ initial area covered

This fraction is equal to 1 in the case without depletion,
whereas ®g,, < 1 in all cases where a certain degree of
depletion occurs.

In Fig. 4 we plot the average lifetime ty of the N-heap
state versus NV and the time evolution of the average heap size
(A'/2) for three different values of Dgyp, namely 0.57, 0.35,
and 0.28. In each case we performed about 100 runs starting
from Ny = 225 initial heaps. Figure 4(a) shows that for large N
the systems still follow the Ty o« N2 power law, but begin to
deviate towards the end, when the depletion effects come into
play. As expected, the smaller the value of @y, (i.e., stronger
depletion) the sooner the discrepancy makes it appearance. For
Dy = 0.28 the scaling Ty o« N “2is already lost at the level
of 20 heaps, whereas for &, = 0.57 it remains valid until the
10-heap state is reached.

For @, = 0.57, despite the depleted zone, the heaps never
entirely lose contact with each other and the end result is still
1 single heap. In the cases @y, = 0.35 and 0.28, however, the
process practically always ends up with a set of stable isolated
heaps. For ®g,, = 0.35 the final state consists of 3.8 heaps on
average, and for ®g,, = 0.28 this number has gone up to 8.5.
The associated curves in Fig. 4(b) converge to constant values
for large ¢, corresponding to the average radius of the heaps in
the final state.

In the same Fig. 4(b) we see that the heap sizes for
@y < 1 no longer follow the ¢!/? of the nondepleted system
(represented by the black dots of the upper data set) but instead
show an intermediate regime in which they grow as t!/3.
This is in quantitative agreement with Shinbrot’s experimental
finding mentioned above, according to which the size grows
as (r(t)) x [0'32i0'03.

B. Explanation of the observed scaling behavior

In order to explain this ¢'/3> power law we consider an

N-heap state (with ensemble-averaged heap radius (ry)) in
a stage of the coarsening process when there is no inactive
“reservoir’” anymore, so all the sand in the system is actively
participating. Under these circumstances, the total volume of
the N heaps equals the volume of the single conical heap of
radius 7. This volume conservation means that N (ry) = r3,

or equivalently (with (r3) = (ry)?),
<rN) :}”1N71/3. (15)

Thus (r(¢)) o< (N(#))~'/? and if we apply Eq. (11) this
immediately leads to (r(t)) o t'/3, which is the same result
as obtained from Fig. 4(b).

This last step, applying the relation (N(¢)) oct™' of
Eq. (11), deserves some special care, since this relation hinges
on the validity of the scaling of the lifetimes as Ty oc N2, As
we have seen in Fig. 4(a), this validity breaks down towards the
end of the coarsening process. So on the one hand, we require
that the N-heap state under consideration is in a sufficiently
advanced stage of the coarsening process for the “reservoir”
to be emptied [and to ensure that (N (7)) < Nj,, which allows
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us to use Eq. (11)] and on the other hand we must avoid the
final stages of the process (because here the scaling Ty o« N2
loses its validity and hence also Eq. (11) cannot be expected
to hold anymore). The combination of both conditions defines
the intermediate interval during which the ¢!/? scaling is valid.
In Fig. 4(b) we see that this interval covers about one decade
around log ¢ = 2.

V. CONCLUSION

We have shown that the coarsening of Faraday heaps,
despite the fact that it involves a complex interplay between
air drag forces on the particles in the interior of the heaps and
avalanching along the slopes, can successfully be captured in
a relatively simple model. At the basis of this model lie two
crucial observations: (i) The slope « of the heaps is constant
throughout the entire process and (ii) the drag forces that set
the heaps into motion scale with the area of the heap flanks.

From our model it can be deduced that the mean life time
of the N-heap state, as long as the heaps make contact with
neighboring heaps on each side, scales as 7y o« N~2. This
result implies, with increasing accuracy towards the end of the
coarsening process, that the (ensemble-averaged) number of
heaps decays inversely proportional to the total time elapsed
since the start of the experiment: (N(7)) o 1/¢.

For systems with an ample amount of sand, which never
develop depleted regions, we have demonstrated that the
ensemble-averaged radius (r(¢)) of the heaps grows as t!/2.
In this case the coarsening always ends up with a single heap
on a sublayer of sand.

If the amount of sand is less, such that toward the end of the
coarsening process regions appear which are devoid of sand,
(r(t)) grows more slowly, namely as ¢!/3, in agreement with
experimental observations [ 12]. For severely depleted systems,
in which the heaps at some point lose contact with each other,
the growth stops altogether and the coarsening is arrested in a
state with multiple isolated, conical heaps.

Intriguingly, the above laws coincide precisely with two
main universality classes of how length scales grow in a
multitude of coarsening, aging, and ripening processes in
nature. For processes in which the order parameter is a
nonconserved quantity one generically finds that the length
scale grows as L(t) o t'/2, whereas for the more special case
in which the order parameter is conserved one may anticipate
on general grounds that L(z) o t'/3 [32]. This suggests that the
volume of sand contained in the active parts of the heaps (which
is nonconserved in the case without depletion, and conserved
in the presence of depletion) may be identified as the proper
order parameter for Faraday heaping. It will be interesting
and highly relevant to further investigate this link with the
modern theory of phase transitions and aging processes in
nonequilibrium systems [33-36].
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APPENDIX: HOW THE INTERSECTION LINE BETWEEN
TWO CONES IS CALCULATED

In this Appendix we outline the method by which we
calculate the intersection line between two cones, since this
is an important step in the analysis. Just as in the main text,
we freely switch between Cartesian and polar coordinates
(x =rcosf, y = rsin6) as the occasion demands.

Consider two conical heaps with their peaks (of height
hy and hj) located above the ground points (x;,y;) and
(x2,y2), respectively, and slope angle « all around. In Cartesian
coordinates, these cones are given by the equation:

(z — hi)?

x—x)P 4+ —y)l=—C i=12.

Al
tan? o0 (AD

In polar coordinates, taking (x,y;) = (0,0), the equation for
the first cone is simply

— h)?
rZ:(Z 1)

A2
tan? o (A2)
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Now let rjp denote the distance between the origins of
the first and second cone and 6, the corresponding angle,
then (x2,y2) = (712 cos 612,712 sin 0;,) and the equation for the
second cone in polar coordinates becomes

— h,)?
(r cos O — 115 c0s 012)* 4 (rsinf — ryp sinfy,)* = 2= ho) 2 ) ;
tan” o
(A3)
or equivalently,
—h)?
P~ 2rracos® — o = S (ag)

Solving Eq. (A2) for z and substituting this result in
Eq. (A4) yields

2
2 2 hy hy
re4rp —2rripcos(@ —612) — | r + — =0,
tanoe  tano

(AS)
which is a quadratic equation for » and hence directly yields
the radial coordinate r of the intersection line as a function of
the angle 6 [which in the main text is called r,(6)]:

rfztanzoz —(hy, — h1)2
r= .
2tan a[ry tana cos(@ — 01) + ho — hy]

(A6)

Repeating this procedure for all the surrounding heaps
provides us with the set of intersection lines necessary for
the calculation of Egs. (4) and (5).
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