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Temporal analysis of acoustic emission from a plunged granular bed
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The statistical property of acoustic emission (AE) events from a plunged granular bed is analyzed by means
of actual-time and natural-time analyses. These temporal analysis methods allow us to investigate the details of
AE events that follow a power-law distribution. In the actual-time analysis, the calm-time distribution, and the
decay of the event-occurrence density after the largest event (i.e., the Omori-Utsu law) are measured. Although
the former always shows a power-law form, the latter does not always obey a power law. Markovianity of the
event-occurrence process is also verified using a scaling law by assuming that both of them exhibit power laws.
We find that the effective shear strain rate is a key parameter to classify the emergence rate of power-law nature
and Markovianity in granular AE events. For the natural-time analysis, the existence of self-organized critical
states is revealed by calculating the variance of natural time χk , where kth natural time of N events is defined
as χk = k/N . In addition, the energy difference distribution can be fitted by a q-Gaussian form, which is also
consistent with the criticality of the system.
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I. INTRODUCTION

Power-law distributions can be observed in various fields
of natural and artificial phenomena [1]. Examples include
the distribution of incomes (Pareto’s law), the frequency of
appearance of English words (Zipf’s law), the number of
meteorites impacting on a planet, and the number of species
per genus in flowering plants [2]. For seismic activity, one of
the best-known power-law relations is the Gutenberg-Richter
(GR) law [3]:

G(Q) ∼ Q−γ , (1)

where Q, G(Q), and γ are the emitted energy per event,
its frequency of occurrence, and a characteristic exponent
(positive constant), respectively. Recently, experiments and
simulations of soft materials which are related to seismic
activity have been performed. These studies have reported
various power-law event-size distributions (e.g., sliding fric-
tion of gels [4] and granular avalanches in simulations [5]).
Although this kind of power-law event-size distribution has
also been discovered in many natural phenomena (e.g., forest
fire areas [6], floods [7], fragments [8], and Tsunami runup
heights [9]), they are empirical laws and not fully understood
in terms of their physical origin.

The physical mechanisms determining the power-law ex-
ponent have long been studied. For instance, the exponent of
the power-law size distribution in brittle fragmentation shows
particular relations to the higher order moment and system
size [10–12]. Besides, the exponent value depends on the
dimensionality and the manner of crack propagation [8]. Also,
stress relaxation mechanisms in plastic deformation can be
classified by the power-law exponent of stress drop distribu-
tions [13]. Although some fundamental aspects concerning the
power-law size distributions have been revealed as mentioned,
much deeper investigation associated with the appropriate
classification of the system is necessary for truly understanding
the universality of the whole power-law distributions.
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In this study, acoustic emission (AE) burst events emitted
from a plunged granular bed are particularly examined. In
Ref. [14], the behavior of granular matter has been studied
using AE technique, in which the size distribution of AE burst
events obeys a power law. In the experiment, the power-law
exponent [γ in Eq. (1)] varies depending on the experimental
conditions. Although the exponent value was related to the
mode of deformation (brittle-like or plastic-like), the analysis
was still very qualitative in Ref. [14]. Thus, further detailed
analyses are necessary to identify the underlying physical
mechanisms governing the power-law nature of granular
AE events. Such a deeper understanding of granular AE
events might also provide a universal framework for various
power-law distributions. Moreover, because the statistical
behavior of dry granular matter is somewhat similar to that of
seismicity [15], the detailed study of granular behavior could
be helpful to understand geophysical phenomena as well.

The most serious deficiency in previous analyses of AE
event-size distributions is the lack of temporal information. A
power-law event-size distribution such as the GR law usually
neglects the time series of event occurrence. It only deals with
the size of events, while the events indeed occur in time series.
In order to consider the temporal information, here we employ
two analysis methods: actual-time and natural-time analyses.

In the actual-time analysis, the amplitude of events is
omitted, in contrast to the analysis of event-size distributions
such as the GR law. Then the time interval between successive
AE events, called calm time (a.k.a. interoccurrence time or
waiting time), and the event-occurrence density are measured.
The distribution of calm time has been found to be power law
in many AE measurements (e.g., tensile failure experiment
on paper sheets [16] and volcanic rocks at Stromboli [17]).
For the event-occurrence density, the power-law decay of
aftershock activity is known as the Omori-Utsu (OU) law
in seismology [18,19]. OU-like behavior is also observed
in various AE measurements (e.g., microfracturing in a
compressed rock [20,21]).

If both these quantities (calm time and event-occurrence
density) exhibit power-law distributions and each power-law
exponent can be determined, we can evaluate Markovianity
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of the event time series using these exponents. This powerful
method to verify Markovianity was first developed for an-
alyzing real seismic data, and the non-Markov nature of real
seismic activity was revealed by Abe and Suzuki [22,23]. In the
current study, we discuss the statistical properties of granular
AE events by applying this method to the granular AE event
data.

Natural-time analysis, on the other hand, discards calm-
time information. It only uses the order of events and
corresponding amplitudes. The idea of natural time has also
been proposed for the analysis of seismicity [24–34]. For an
event time series comprising N events, natural time χk serves
as an index for the occurrence of the kth event and is defined
as χk = k/N . Then the variance κ1 is computed as

κ1 =
N∑

k=1

pkχ
2
k −

(
N∑

k=1

pkχk

)2

= 〈χ2〉 − 〈χ〉2, (2)

where pk = Qk/
∑N

i=1 Qi is the normalized released energy
Qk in the kth event. Seismic electrical signals right before
earthquakes tend to show a critical value κ1 = 0.07 [24].
Similar κ1 behaviors can be confirmed in some self-organized
critical systems [31–34], the original concept of which was
introduced by Bak et al. [35]. Furthermore, AE signals from the
deformed rock have exhibited behavior similar to seismicity
in terms of the natural-time analysis [36].

In this study, the temporal properties of AE events emitted
from a plunged granular bed are thoroughly investigated
through these analyses. The relation between the measured
results and the previously obtained event-size distributions
(GR law) [14] is also discussed on the basis of the experimental
data.

II. EXPERIMENT

The experimental methodology and data used in this study
are the same as those in Ref. [14]. Glass beads (grain diameter
d = 0.4, 0.8, or 2.0 mm) are poured into a cylindrical Plexiglas
container. A steel sphere (radius r = 5, 10, or 20 mm) is then
penetrated into the granular bed. The penetration speed is fixed
as v = 0.5, 1.0, or 5.0 mm s−1. The top surface of the granular
bed is open to the atmosphere and any confining pressure is not
applied to the bed. An AE sensor (NF AE-900s-WB) is buried
and fixed in the granular bed to capture AE events created by
the penetration. The AE sensor is a piezoelectric transducer
which converts dynamic motions (e.g., ultrasonic elastic wave)
into electric signals [37]. Because the AE signals are very
weak, they are amplified by an amplifier (NF AE-9913)
and a discriminator (NF AE-9922). The sampling rate of
the AE data is 1 MHz. Three experimental realizations for
each set of experimental conditions are performed to check
the reproducibility. In general, granular behaviors have a
strong memory effect and history dependence [38]. The sphere
penetration must leave its memory in the granular bed such as
the force chain structure in a tapped granular bed [39]. Thus, a
fresh granular bed is deposited before every experimental run
to erase the memory of penetration.

Let us summarize the experimental results briefly. A raw
data example of AE signals A (in V) as a function of time
is shown in Fig. 1(a). While the origin of time in Fig. 1(a) is

FIG. 1. (Color online) (a) Example of AE signals during the
penetration of a sphere into a glass-bead bed. (b) Average power
spectra of AE events produced per penetration for some experimental
conditions. Inset: An example of typical attenuating oscillation with
a short decay time.

defined by z = 0 (z is the penetration depth of the intruder),
similarly to Ref. [14], it is arbitrary in the current study.
Actually, the origin of time t = 0 is defined later by the
main event. The corresponding experimental conditions are
d = 0.8 mm, r = 10 mm, and v = 5.0 mm s−1. Henceforth,
we use these experimental conditions for subsequent plots
shown in this paper unless otherwise noted. Because all AE
events show typical attenuating oscillation with a short decay
time as depicted in the inset in Fig. 1(b), each AE event can
be picked up from the measured AE signals using a threshold
value Ath = 0.06 V and deadtime tdead = 300 μs [14]. The
total number of AE events identified by this method ranges
from 102 to 104. Figure 1(b) shows average power spectra of
AE events for several experimental conditions. The dominant
frequencies, 20 and 75 kHz, seem to be independent of
the experimental conditions and might result from complex
coupling of both the AE device and the granular media. For
more details of the experimental setting, see Ref. [14].
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FIG. 2. (Color online) (a) Calm-time distribution dN (τ ) obeying a power law [Eq. (3)]. Inset: dN (τ ) with logarithmically increasing bins,
where the slope corresponds to −μ, not −(1 + μ). Bin widths are given as 0.001(

√
2)n s (e.g., 0.001 s, 0.001

√
2 s, 0.002 s,...). Dashed (red)

lines in both plots show the power law with μ = 0.82 obtained by the MLE method. (b) The exponent of the calm-time distribution μ as a
function of the penetration speed v. The μ value depends on various experimental conditions, in contrast to γ in Eq. (1). The calm-time data
used here were obtained after the main event defined in Sec. III B.

III. ACTUAL-TIME ANALYSIS

A. Calm-time distribution

First, we focus on analysis of the calm time τ , which
corresponds to the time interval between two successive
events. Specifically, the frequency distribution of calm time
P (τ ) is measured. The occurrence time of each event is
determined by the moment at which the signal amplitude
exceeds the threshold value Ath. In Fig. 2(a), an example of
a P (τ ) distribution obeying the power-law form is presented.
All other P (τ ) distributions also exhibit power-law forms.
Namely, P (τ ) always obeys

P (τ ) = dN(τ )

Ntot
∼ τ−(μ+1), (3)

where dN(τ ) and Ntot are the number of events with calm-time
τ intervals and the total number of events in the time series,
respectively. The minimum (binning) time scale used in dN(τ )
measurement is 1 ms. Since the number of events is limited
and the finite-size effect must be considered carefully, here
we employ the method of maximum likelihood estimation
(MLE) [1,40,41] to determine the exponent value. MLE
determines the exponent to maximize the likelihood function
L defined as

L(1 + μ|τ ) =
N∏

k=1

τ
−(1+μ)
k

ζ (1 + μ)
, (4)

where τk is the calm time of the kth event normalized to the
minimum value and ζ (1 + μ) is the Riemann zeta function
expressed as

∑N
k=1 k−(1+μ). To apply MLE, the exponent μ

must be greater than 0. Otherwise, the Riemann zeta function
diverges. Because MLE enables us to avoid large bias error
in many frequency distributions (e.g., [40], [42], [43]), MLE
is a preferred method for accurately estimating the power-law
exponent. The determined μ value in the data in Fig. 2(a) is
0.82. To check the validity of the determined exponent from

another aspect, the frequency distribution of τ with logarithmic
bins using a constant rate

√
2 is shown in the inset in Fig. 2(a).

Although the data in the inset are scattered, the global trend can
be reproduced by the power-law fitting determined by MLE
(μ = 0.82).

For the obtained power-law exponent, μ depends on the
experimental conditions. According to the previous study [14],
the exponent of event-size distributions (GR law) γ mainly
depends on the grain size d. In contrast, the exponent of the
calm-time distribution P (τ ) is sensitive to various parameters.
Figure 2(b) shows the v dependence of the exponent μ, where
v and μ are positively related. This means that the faster the
penetration speed is, the more the relative frequency of shorter
calm time increases.

B. Event-occurrence density distribution

Second, the number of events occurring per unit time after
the main event S(t) is considered. S(t) is defined by

S(t) = dN ′(t)
dt

∼ t−p, (5)

where p is a characteristic exponent, t stands for the time
elapsed after the main event, and dN ′(t) is the number of events
occurring in the short time interval between t and t + dt . We
call P (t) the event-occurrence density. Because the time t = 0
should be defined by the moment of main-event occurrence, it
is necessary to locate the main event. In usual seismic activity,
the main event (main shock) can be located by subsequent
smaller aftershocks [44]. Thus, in this work, we employ the
largest AE event in the time series as the main event. Then the
event-occurrence density after the main event is measured from
the experimental data. For real seismic activity, the universal
power law is well known as the OU law, which states that S(t)
decays with time following a power-law relationship expressed
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FIG. 3. (Color online) Power-law histograms with logarithmic
bins of the event-occurrence density decay for (a) a nonsteady
(OU-like) AE event and (b) a steady (constant) AE event. Since the
main plots show the logarithmically binned data, OU law is expressed
as dN ′(t) = t1−pd ln t . Here, the range dt = 0.1(

√
2)0 − 0.1(

√
2)9 s

is used. The least-squares method is used to determine the p value.
Insets: Power-law histograms dN ′(t) ∼ S(t)dt with the constant
linear binning dt = 0.3 s.

on the right-hand side in Eq. (5). The exponent p usually ranges
from 0.8 to 1.5 for real seismic activity [30].

However, the current experimental result shows various
behaviors. Some dN ′(t) distributions follow power-law-like
decay [inset in Fig. 3(a)]; others seem to be almost constant
[inset in Fig. 3(b)]. The former and latter correspond to the
nonsteady and steady processes, respectively. The nonsteady
process means the existence of the main event followed
by power-law-like decay of subsequent aftershock-like AE
events. In other words, the meaningful main event cannot
be identified in the latter (steady) case. Actually, even in the
power-law (nonsteady) case, the scaled range is not very wide
(only one order of magnitude) as shown in the inset in Fig. 3.
This implies that it is not very easy to confirm a clear OU
law (power-law decay of aftershocks) in granular AE events.
Although the decay range is limited, the insets in Figs. 3(a)
and 3(b) are significantly different. To discriminate these two

phases and discuss the statistical property from the aspect of
Markovianity, here we assume the power-law form for dN ′(t).
The estimated power-law exponent values will play a crucial
role to characterize the AE event statistics.

In contrast to the calm-time distributions, which show
clear power-law behavior, care must be taken in precisely
determining the fitted p value for event-occurrence density
distributions. Because most of the fitted p values appear to
be less than 1, the method of MLE cannot be used due
to the divergence of the Riemann zeta function. Instead,
logarithmically increasing bins are employed here. Unequal
bin widths are usually used to obtain a more homogeneous
number of data per bin than that with a constant bin width,
which can reduce statistical errors in the power-law tail due to
the poor number of samples [41,45]. Here, the bin widths are
given by 0.1(

√
2)n s (e.g., 0.1,0.1

√
2,0.2, . . . s). Figures 3(a)

and 3(b) show histograms of the number of aftershock-
like events dN ′(t) after the main event obtained using the
logarithmic bins. By applying the logarithmic binning, the
power-law exponent of the data plot varies as

dN ′(t)
d ln t

∼ S(t)t ∼ t1−p. (6)

Namely, the slopes in the main plots in Fig. 3 correspond to
1 − p. Although the data scatter considerably in Fig. 3(a),
we assume the power-law behavior at least in the range of
0.1 < t < 3 s. Then the Markovianity of the event series after
the main event can be evaluated as discussed in Sec. III C.
Using this procedure, all the data are fitted by power-law forms.
The fitted p values for Figs. 3(a) and 3(b) are 0.39 and −0.02,
respectively. The corresponding slopes are also shown in the
insets.

In Fig. 4, the histogram of the fitted p values for the whole
data set is presented. As shown in Fig. 4, the histogram shows
a bimodal distribution and the valley around p = 0.3 seems to
discriminate two phases. Thus, we define the case of p > 0.3
as nonsteady (OU-like) states. One can also confirm a small

FIG. 4. (Color online) Histogram of the fitted p value showing a
bimodal structure. To distinguish nonsteady (OU-like) distributions
from steady distributions, the value at the valley between two peaks
(p = 0.3) is used [dashed vertical (red) line].
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FIG. 5. (Color online) Effective shear strain rate (v/r) depen-
dence of the emergence rate of OU-like behavior. The larger shear
strain rate (v/r � 0.25 s−1) tends to cause more OU-like behaviors
than the small shear strain rate (v/r < 0.25 s−1). We express these
two distinctive regimes as steady and OU-like (nonsteady) regimes.

portion of the population in the negative-p regime. This might
be interesting behavior, possibly indicating the precursor of
the large event. However, here we only focus on the power-law
decay corresponding to the OU-like state.

As discussed thus far, some experiments show OU-like
behavior and others do not. What is the most important
parameter determining the behavior of the event-occurrence
density? To answer this question, we study some parameter
dependencies and find that the effective shear strain rate v/r

(the penetration speed divided by the radius of a penetra-
tor) [38] is relevant to characterize the state. Specifically, the
emergence rate of OU-like states is shown as a function of
v/r in Fig. 5. The emergence rate of the OU law is defined
by the ratio of the experimental realizations showing p > 0.3
to the total experimental realizations with an identical v/r .
Since the number of experimental realizations with an identical
v/r is not constant, we employ the normalized occurrence
ratio to estimate the emergence frequency. One can confirm
that the emergence rate of the OU law (nonsteady state)
abruptly increases at v/r � 0.25 s−1. Although the complete
reproducibility of OU-like behavior is not established even
in the range of v/r � 0.25 s−1, Fig. 5 implies that v/r =
0.25 s−1 is the marginal value between the steady and the
nonsteady (OU-like) regime.

Next, to verify the v/r dependence of p, the averaged
p value of the OU law is plotted as a function of v/r in
Fig. 6. In the OU-like regime (v/r � 0.25 s−1), the p values
show a roughly constant value, p � 0.45, in contrast to the
steady regime, suggesting p � 0.3, which might result from
the defined marginal value between the steady regime and
the OU-like regime (p = 0.3). Since the emergence rate of
OU-like behavior is very low at v/r < 0.25 s−1, the value is
sensitive to the threshold. However, the data errors in Fig. 6
are considerably large, thus the difference between p = 0.3
and p = 0.45 is not very clear.

FIG. 6. (Color online) Effective shear strain rate (v/r) depen-
dence of the fitted p value. The dashed (red) line represents the level
p = 0.45, while the solid black line refers to the marginal value p =
0.3. The p value obtained in the OU-like regime (v/r � 0.25 s−1) is
almost independent of v/r .

C. Markov scaling

Using two exponents, μ and p, defined in Eqs. (3) and (5),
the Markovianity of the event time series after the main event
can be discussed in terms of a scaling law. The specific values
used in the evaluation of the Markov scaling are μ (Fig. 2) and
p (Fig. 6) computed from the data after the main event. The
scaling law used here was originally developed and applied to
real seismicity. As a result, a non-Markov nature of earthquake
aftershocks was reported [22,23]. Here, we slightly expand this
scaling law. If a process of event occurrence is Markovian, the
following equation holds [46]:

S(t) = P (t) +
∫ t

0
P (t − t ′)S(t ′)dt ′, (7)

which can be derived from the Kolmogorov forward equa-
tion [47]. Then the Laplace transformation of Eq. (7) yields

L[S](s) = L[P ](s)

1 − L[P ](s)
, (8)

where L[f ](s) = ∫ ∞
0 e−stf (t)dt . Here, we assume that both

P (t) and S(t) decay following the power-law forms as written
in Eqs. (3) and (5) for a large value of t . Then the Laplace
transformations of P (t) and S(t) result in different expressions
depending on the ranges of the exponents. If the exponents μ

and p are in the ranges

0 < μ < 1 and 0 < p < 1, (9)

the Laplace transformations of P (t) and S(t) behave as

L[P ](s) ∼ 1 − αsμ, (10)

L[S](s) ∼ 1

s1−p
(11)
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FIG. 7. (Color online) p + μ as a function of the effective shear
strain rate v/r . The dashed horizontal (red) line indicates the level
p + μ = 1 (Markov scaling law). Circles are distributed around
p + μ � 1 (or p + μ � 1); triangles, clearly above this value.

for a small limit of s, where α is a positive constant.
Substituting Eqs. (10) and (11) into Eq. (8), we obtain a simple
scaling relation [22,23]:

p + μ = 1. (12)

However, if the exponent μ lies in the range

1 < μ < 2, (13)

the resultant Laplace transformation becomes

L[P ](s) ∼ 1 − βs (14)

for a small limit of s, where β is a positive constant. Using
Eqs. (11) and (14), Eq. (8) results in

p = 0. (15)

Note that this result is inconsistent with the assumed range
of Eq. (9); this implies that Eq. (15) is only an asymptotic
solution. In the case of μ > 2, the scaling relation fulfilled in
a Markov process does not exist.

Equation (12) indicates the criterion for Markovianity in an
OU-like (nonsteady) event time series in the range of Eq. (9).
To verify Markovianity of the granular aftershock-like AE
events showing OU-like behavior, p + μ as a function of v/r

is depicted in Fig. 7. The dashed (red) line in Fig. 7 indicates
the Markov scaling law [Eq. (12)]. One can confirm that some
data (triangles) show clearly large values (p + μ > 1) that are
somewhat similar to those of earthquake aftershocks [22,23].
In the current experimental result, however, the other data
points (circles) are distributed around p + μ � 1 (or p + μ �
1). This means that there might be a certain parameter
range in which the event time series can be regarded as
a Markov process. This result is contrary to real seismic
activity, which always shows p + μ > 1, i.e., a non-Markov
property.

FIG. 8. (Color online) Phase diagram of the temporal statistics
of granular AE events. The x and y axes represent d/r and v/r ,
respectively. The meaning of each symbol is as follows. Triangles
represent cases in which nonsteady (OU-like) behaviors are observed.
Note that a triangle does not indicate the complete reproducibility
of OU-like behavior. As mentioned in the text, three experimental
realizations of each experimental condition were carried out. When
two of three realizations showed OU-like behavior, a triangle is used.
The gray scale in triangles indicates the value of |p + μ − 1| as
shown in the legend. The open circle indicates the steady Markov
process (1 < μ < 2, p � 0), while filled circles indicate the steady
non-Markov process (0 < μ < 1 or 2 < μ, p � 0). The vertical line
d/r = 0.04 is the boundary between the brittle-like and the plastic-
like regimes [14]. The dashed horizontal (red) line at v/r = 0.25 s−1

is considered to be the characteristic shear strain rate above which
OU-like behavior can often be observed.

Actually, the effective shear strain rate v/r is not a unique
parameter to characterize the system. To describe the global
behavior of all granular AE events in this study, the normalized
grain size d/r is also used here. Indeed, d/r can be a
characteristic parameter to classify the event-size distribution
(GR law) [14]. d/r = 0.04 is regarded as a marginal value
between brittle-like and plastic-like behavior. As discussed
in the last subsection, on the other hand, v/r = 0.25 s−1

is considered a marginal value between the steady and the
nonsteady (OU-like) states. Therefore, we show a phase
diagram in Fig. 8, where the vertical and horizontal axes
indicate the effective shear strain rate v/r and normalized grain
size d/r , respectively. Although it is difficult to draw clear
phase boundaries, there might be several classes of behavior
in the phase diagram. In the large-v/r and large-d/r regime,
the nonsteady (OU-like) event time series, which is shown by
triangles, can be frequently observed. In this OU-like regime,
the value of |p + μ − 1| is indicated by the gray scale in each
triangle as long as μ is less than 1 [i.e., the range defined
by Eq. (9)]. Namely, the dark triangle means that the process
is non-Markov. The steady (p � 0) cases are represented by
circles. Open and filled circles correspond to steady Markov
(1 < μ < 2, p � 0) and steady non-Markov (0 < μ < 1 or
2 < μ, p � 0), respectively.
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IV. NATURAL-TIME ANALYSIS

A. Variance κ1

Next, the natural-time analysis is applied to the identical
data set. In the definition of natural time, calm time is
completely neglected. Instead, the order and magnitude of
events are utilized to characterize the event statistics. By
simply applying Eq. (2) to the data set, we can readily
calculate κ1. Here we use the squared maximum amplitude
of each AE event for its released energy value Qk [14].
Some examples of κ1(k) are shown in Fig. 9. As expected,
κ1 appears to fluctuate around κ1 � 0.07 in some data, which
indicates the criticality of the system. However, this tendency
is not universal. For instance, the asymptotic value of κ1(k) in
Fig. 9(c) appears to be different from 0.07. To verify the κ1

behavior in more detail, the probability density function (PDF)
of κ1 is computed by the following procedure [28,30]. First,
the κ1 value is computed from the natural-time windows for
6–40 consecutive events. Second, this process is performed
for all events by scanning the whole data set. Figure 10 shows
the PDF computed from the data used in Fig. 9. The most
probable value κ1,p estimated by the peak location of the
PDF depends on the experimental conditions. Particularly, the
grain diameter d seems to be an important parameter. This
d-dependent tendency is similar to the behavior of γ in Eq. (1)
(event-size distribution exponent) [14].

B. Returns distribution

Although the measurement of κ1 is easy and useful to briefly
characterize the critical state in the time series, it is in general
not sufficient to evaluate the criticality of the event time series.
Caruso et al. [48] have suggested another way to characterize
the criticality in the system.

The variable returns x(k) are defined as x(k) = Qk+1 − Qk .
Namely, x(k) corresponds to the energy difference between
two successive events. Here the returns are normalized to the
mean 〈x〉 and standard deviation σ , ξ = (x − 〈x〉)/σ . Then

FIG. 9. (Color online) Evolution of κ1 as a function of the number
of events k for various experimental conditions: (a) d = 2.0 mm,
(b) d = 0.8 mm, and (c) d = 0.4 mm. Other parameters are fixed at
r = 10 mm and v = 5.0 mm s−1. The evolutions of each κ1 are shown
up to k = 3000. Dashed horizontal black lines represent κ1 = 0.07,
indicating the criticality of the system. (a, b) Data fluctuate around
0.07; (c) data are clearly offset.

FIG. 10. (Color online) PDF of the κ1 value under the same
experimental conditions as in Fig. 9. The color code is identical
to that in Fig. 9. The dashed vertical line indicates κ1 = 0.07. Peak
values of the blue (d = 2.0 mm) and red (d = 0.8 mm) curves are
around 0.07.

the PDF of ξ is calculated for each experimental condition
(e.g., inset in Fig. 11). As a result, it is clarified that the
functional form of the PDF is independent of the experimental
conditions. Therefore, to obtain better statistics, all the data on
the normalized returns under various experimental conditions
are merged into a single PDF. The entire PDF as a function
of ξ is shown in the main plot in Fig. 11, in which the
PDF has much broader tails than a normal Gaussian distribu-
tion, f (ξ ) = exp(−ξ 2/2)/

√
2π (dashed black curve). Instead,

the q-Gaussian form f (ξ ) = Aq[1 − (1 − q)ξ 2/Bq]1/(1−q) fits
the data well [solid (red) curve], where Aq and Bq are

FIG. 11. (Color online) PDF of the normalized returns ξ com-
puted from the whole AE events under all experimental conditions.
Data obtained in the current experiment are better fitted by the q-
Gaussian [solid (red) curve] than the normal Gaussian (dashed black
curve). Inset: An example of a single PDF under the experimental
conditions d = 0.8 mm, r = 10 mm, and v = 5.0 mm s−1.
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constants [49]. The computed q value is q = 1.9. If the data of
a single experimental run are used for the PDF as shown in the
inset in Fig. 11, the agreement between the q-Gaussian and
the data is limited, particularly in the tail part. However, the
qualitative tendency of the distribution is basically identical.
Because the q-Gaussian PDF of ξ can be observed in the
self-organized critical model satisfying both the power-law
event-size distribution and the finite-size scaling [48], this
result provides supportive evidence for the presence of the
critical state.

C. Relation between κ1 and γ

Finally, we consider the relation between natural-time
analyses and event-size distributions. As shown in Figs. 9
and 10, the κ1 value is mainly affected by the grain diameter
d. Additionally, the exponent of power-law event-size distri-
butions γ [Eq. (1)] also depends on d [14]. Thus, κ1 and γ

might show a certain relation. To check the relationship, κ1

vs γ is plotted in Fig. 12. As expected, a correlation between
them can be confirmed. The symbols (and colors) in Fig. 12
indicate the different deformation modes: the brittle-like
mode, characterized by a smaller γ [(blue) circles]; and the
plastic-like mode, characterized by a larger γ [(red) triangles].
The solid black curve in Fig. 12 represents a fitting by the
exponentially asymptotic function κ1,p = 0.083 − 3.4e−3.1γ .
The asymptotic value coincidentally agrees with κu = 0.083
(� 1/12) of a uniform distribution [25–27,29]. In Fig. 12, κ1 =
0.07 seems to be satisfied under the experimental conditions of
brittle-like behavior. Put simply, the brittle-like regime shows
κ1 � 0.07, while κ1 approaches 0.083 with increasing γ , i.e.,
in a more plastic-like (flowing) regime. The condition that κ1

FIG. 12. (Color online) The most probable value κ1,p located by
the peak of the PDF as a function of the power-law event-size
distribution (GR law) exponent γ . Colors and symbols represent
the difference between the brittle-like regime [(blue) circles] and
the plastic-like regime [(red) triangles]. The (blue) circles tend to be
distributed around 0.07. The asymptotic value estimated by the fitting
is approximately 0.083, which coincidentally corresponds to κ1 of a
uniform distribution [25–27,29].

approaches 0.083 means that the critical state is not established
in the time series of AE events.

V. DISCUSSION

Thus far, various temporal analysis methods have been
applied to the granular AE event data. Here let us discuss
their physical meaning and relations.

In the actual-time analysis, power-law exponents for the
calm-time distribution and the decay of the event-occurrence
density were measured. All of the experimental data show
power-law forms for the calm-time distribution. However,
the obtained exponent value μ significantly depends on the
penetration speed v. This tendency is in contrast to the case
of power-law event-size distributions (GR law), in which
the exponent γ is mainly determined by the grain size d

and almost independent of the penetration speed v. For the
event-occurrence density, power-law behavior is not universal.
The emergence rate of the power-law decay (OU-like behavior)
can be characterized by the effective shear strain rate v/r .
Since the dimension of v/r corresponds to the inverse of
time, this quantity indirectly represents a characteristic time
scale in the penetration system. Additionally, the time range of
OU-like behavior is equal to or less than the order of 100 s (e.g.,
Fig. 3), suggesting that the relaxation process occurs within the
characteristic time scale (0.25−1 = 4 s). Therefore, it is natural
that a temporal property such as the event-occurrence density
can be sorted by v/r . In the range of the OU-like regime in
granular AE events (v/r � 0.25 s−1), the power-law exponent
p shows an almost-constant value p � 0.45 independent of
v/r (Fig. 6). This p value is less than the typical value for real
seismicity and AE events from the microfracturing of rocks,
p � 1 [21]. The reason for this discrepancy remains unsolved.
Perhaps this difference originates from the peculiar nature of
deformation in bulk granular matter.

For the natural-time analysis, on the other hand, the variance
κ1 is related to the exponent of the power-law event-size
distribution (GR law) γ . Since the exponent γ is mainly
determined by the grain size d [14], the κ1 in granular AE event
time series is also related to the grain size d. Additionally, in the
natural-time analysis, the interval time between events (calm
time) is completely neglected and only the order and amplitude
of events are used. This is the reason why a geometrical
parameter such as d or d/r becomes more essential than
the temporal parameter v or v/r in the natural-time-related
analysis. These two analysis methods (actual-time and natural-
time analyses) are complementary to each other.

As a matter of fact, a correlation between κ1,p and γ

similar to that in Fig. 12 has also been observed in artificially
randomized (shuffled [27]) event series data [30]. However,
the agreement remains qualitative; the specific value ranges
are slightly different between the randomized event series and
the current experimental data. This difference might stem from
the effect of memory among events, as the randomized data
do not have memory.

The statistical behavior of granular AE events becomes
similar to that of real seismicity when both d/r and v/r are in
the appropriate ranges: d/r > 0.04 and 0.25 < v/r < 1.0 s−1

(Figs. 7, 8, and 12 and Ref. [14]). In this regime, the values
of γ , κ1, and p + μ show similar values between granular AE
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events and real seismic activity. Note, however, that the specific
values of p and μ are different between granular AE events and
real seismicity. Furthermore, this coincidence in characteristic
quantities might not directly mean the correspondence of
underlying physical mechanisms.

For instance, the OU law for real seismic activity can be
considered as the relaxation process after the main shock.
When the penetration speed is rapid, the available time for
relaxation becomes relatively short (and might be insufficient)
in general. Thus, it is difficult to see the relaxation in the
large-v/r regime. On the other hand, a large v/r is necessary
to reproduce OU-like behavior in the granular AE experiment.
This implies that a large v/r might result in a large shear
field, which causes a number of aftershock-like AE events.
These two effects will compete with each other and the
qualitative tendency seems to be the opposite. As a result,
complex statistical properties are observed. To simplify the
problem, a controlled experiment in a different geometrical
setup should be performed. The current experimental setup
actually originates from previous research concerning the
slow-penetration drag force in granular matter [14,50,51]. A
simpler setup such as a simple shear, which can mimic a fault
slip, might be better for future studies.

VI. CONCLUSION

The statistical properties of granular AE events were inves-
tigated using two approaches: actual-time analysis (Sec. III)
and natural-time analysis (Sec. IV). In the actual-time analysis,
the calm-time distribution always shows a power-law form,
while OU-like behavior can only be observed frequently in

the range v/r � 0.25 s−1. In the OU-like (nonsteady) regime,
non-Markov behavior is observed in a particular v/r regime.
However, steady (not OU-like) behavior is actually dominant
in granular AE events. To control the emergence of OU-like
behavior and Markovianity, the appropriate tuning of v/r

(inverse of the time scale) is necessary. Natural-time analyses
revealed that the κ1 value is distributed around 0.07–0.083.
In addition, q-Gaussian fits distribution of the returns (i.e.,
energy difference among events). This result supports the
self-organized critical state of the system. The κ1 value can be
related to the exponent of power-law event-size distributions
(GR law) γ . This means that the grain size d is the important
parameter for κ1 because γ is directly related to d [14]. We
find that κ1 � 0.07 can be established in the brittle-like regime
(d/r > 0.04).

In summary, statistical properties of seismic activity can
be mimicked by granular AE events in the range d/r >

0.04 and 0.25 < v/r < 1.0 s−1. Although the current ex-
perimental system is different from the microfracturing of
rocks and geological-scale phenomena, the AE data obtained
from plunged granular matter exhibit some similarities to
geological-scale phenomena like earthquakes in terms of
actual-time and natural-time analyses.
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