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Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime
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Mesoscopic thermoelectric heat engine is much anticipated as a device that allows us to utilize with high
efficiency wasted heat inaccessible by conventional heat engines. However, the derivation of the heat current
in this engine seems to be either not general or described too briefly, even inappropriately in some cases. In
this paper, we give a clear-cut derivation of the heat current of the engine with suitable assumptions beyond
the linear-response regime. It resolves the confusion in the definition of the heat current in the linear-response
regime. After verifying that we can construct the same formalism as that of the cyclic engine, we find the following
two interesting results within the Landauer-Büttiker formalism: the efficiency of the mesoscopic thermoelectric
engine reaches the Carnot efficiency if and only if the transmission probability is finite at a specific energy
and zero otherwise; the unitarity of the transmission probability guarantees the second law of thermodynamics,
invalidating Benenti et al.’s argument in the linear-response regime that one could obtain a finite power with the
Carnot efficiency under a broken time-reversal symmetry [Phys. Rev. Lett. 106, 230602 (2011)]. These results
demonstrate how quantum mechanics constrains thermodynamics.
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I. INTRODUCTION

Thermoelectric heat engine [1–30] is much anticipated as
a device that allows us to utilize wasted heat inaccessible by
conventional heat engines. This engine operates in a nonequi-
librium steady state and converts heat to useful electrical power
steadily, so that we do not need nonsteady processes used
in cyclic engines, such as adiabatic compression, isothermal
expansion, and so forth. Its efficiency, however, so far has been
too low to use in terms of the figure of merit Z(T ), which is a
serious problem in the field of thermoelectricity [31–33].

The mesoscopic thermoelectric heat engine [1,2,4–6,8,10–
19,21–30] has emerged as a possible solution. This engine
is expected to have high efficiency thanks to the potential of
nanoscale thermoelectricity [31–33]. Moreover, this engine
can be a powerful tool to investigate how quantum mechanics
affects thermodynamics. For example, it has been argued that
the heat current may be bounded because of the uncertainty
principle [18,24,28,34] and that the unitarity of the scattering
matrix may give a new bound for the Onsager coefficients in
the linear-response regime [14,15,25].

In order to calculate the efficiency of a mesoscopic
heat engine, we need to know the expression of the heat
current going into or from a mesoscopic system, such
as a quantum dot and a quantum wire. Although many
researchers have already used the definition of the heat
current in the linear-response regime [10,13–16,21,23,25,30],
as well as in nonlinear-response regimes [1,2,4–6,8,11,12,17–
19,22,24,26–29,35–41], they did not give its derivation or
explanation in most of the papers. There are several papers in
which they explain the heat current. In Ref. [42], for example,
Sivan and Imry gave a kind of derivation, which is the only
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one in the linear-response regime as far as we know. However,
it is not clear from the present authors’ point of view; the
derived expression is also inappropriate in nonlinear-response
regimes as we will show below. In nonlinear-response regimes,
although several authors described the heat current [28,29,38–
41], their explanations seem too brief to understand for
readers who are not familiar with the mesoscopic heat engine.
Moreover, since the presentation was done mostly in the
Landauer-Büttiker formalism, the general framework seems
to be hidden.

We, in the present paper, construct a thermodynamic
formalism beyond the linear-response regime under reasonable
assumptions. Since we do not use the Landauer-Büttiker
formalism in the first half, our general formulation is applicable
to systems with interactions as long as the assumptions are
satisfied. In Sec. II, we explain that thermoelectricity works
as a heat engine under suitable conditions. In Sec. III, after
we briefly overview the confusion in the definition of the
heat current in the linear-response regime, we first show the
derivation of the heat currents in the thermoelectric steady-
state heat engine with suitable assumptions. With the heat
currents that we derived, we construct the general formalism.
In Sec. IV, we give an example of the heat engine using the
Landauer-Büttiker formalism, which we call the mesoscopic
thermoelectric heat engine. We can confirm the nonnegativity
of the entropy production of this engine. Moreover, we find
that the efficiency of the mesoscopic thermoelectric engine
reaches the Carnot efficiency if and only if the transmission
probability is finite at a certain energy and zero otherwise. In
Sec. V, we give a model that expresses the situation when
inelastic scatterings occur in the central system in Fig. 1.
In Sec. VI, we consider the system with a broken time-
reversal symmetry using the Landauer-Büttiker formalism.
We find in nonlinear-response regimes that the unitarity
of the transmission probability invalidates Benenti et al.’s
argument [9] in the linear-response regime that one could
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FIG. 1. Schematic picture of a mesoscopic heat engine. We set
the chemical potential of the right reservoir higher than the left, while
the temperature of the left reservoir higher than the right so that an
electric current may go from left to right against the difference of the
chemical potential.

obtain a finite power with the Carnot efficiency under a broken
time-reversal symmetry. It is remarkable that the unitarity, a
quantum-mechanical concept, constrains thermodynamics; it
guarantees that the Carnot efficiency is achieved only at zero
power.

II. THERMOELECTRIC HEAT ENGINE

Let us explain the thermoelectric steady-state heat engine.
Consider a central system, for example, quantum dots or
quantum wires, attached to two reservoirs on both sides; see
Fig. 1. We then make the following three assumptions: (i) the
reservoirs are so much larger than the central system that it
is always at equilibrium even if they interact with the central
system, and hence we can define thermodynamic quantities
of each reservoir, such as the temperature and the chemical
potential; (ii) the central system has reached a nonequilibrium
steady state in which there are constant flows; (iii) there is
no entropy production in the central system because electrons
undergo only elastic scatterings there.

We can regard this system as a heat engine in the following
situation. We set the chemical potential of the right reservoir
higher than that of the left, while the temperature of the left
reservoir higher than that of the right. We particularly set the
reservoirs as well as the central system so that an electric
current may go from left to right against the difference of
the chemical potential. What happens per unit time is the
following. Electrons gain heat JL

Q from the hot left reservoir,
flow to the right against the potential difference, during which
electrons do the work of amount

Ẇ = IV, (1)

where

I = eJN (2)

is the electric current and

V = μR − μL

e
(3)

is the voltage difference, and then dump heat JR
Q to the cold

right reservoir. We can thus consider this system as a heat
engine. This is an explanation specific to the case of electrons,
which we can make more general as follows. The central
system gains heat from the left reservoir, does work, then

dumps heat to the right reservoir. In this perspective, we can
regard the central system as a working system of cyclic heat
engines. We will use this perspective hereafter. Because there
is no entropy production in the central system, we must have

JL
Q − JR

Q = Ẇ . (4)

Its efficiency η is thereby given by

η = Ẇ

JL
Q

= 1 − JR
Q

JL
Q

, (5)

which is the same as the standard cyclic heat engine.
Note that we can regard the system as a heat engine only

when JN and JL
Q are positive. The electrons do not necessarily

flow from the hot reservoir to the cold one; the current which
goes to the left is considered to be negative. The direction of
the flow depends on μL, μR , TL, and TR as well as details of the
system. For example, we can regard the system as a refrigerator
when electrons go from right to left against the temperature
difference. In this case, the efficiency, which is called the
coefficient of performance, is given by ηcop = JL

Q/(IV ), not
as in Eq. (5).

III. HEAT CURRENT OF THE THERMOELECTRIC
HEAT ENGINE

A. Confusion in the definition of the heat current in the
linear-response regime

Based on the above argument, we realize that we need two
heat currents JL

Q and JR
Q in order to discuss the thermoelectric

heat engine properly. Before deriving these heat currents, we
mention the confusion in the definition of the heat current in
the linear-response regime.

We first note that the energy current JE is often referred
to as a “heat” current [43,44]. This would be correct, though
confusing, if the electrons did not do work and hence all energy
became heat. This is certainly not correct in the situation in
Fig. 1.

Another definition JQ = JE − μJN was often used in the
dawn of the research of the heat current in mesoscopic
systems [42]. This definition may have been taken from
Eq. (17.8) in Callen’s textbook [45]. Since this “heat” current
was not microscopically derived, we do not clearly know
where it flows. It is indeed ambiguous of which part of the
system in Fig. 1 the chemical potential μ of the heat current
JQ = JE − μJN is. We should probably choose μ so that JQ

may satisfy Onsager’s reciprocal theorem. For example, in
Ref. [42] the authors chose μ as (μL + μR)/2 and in Ref. [46]
the author chose μ as μL. The choices do not make any
difference in the linear response of the voltage difference
V = (μR − μL)/e between JL

Q and JR
Q but differ in higher

orders.

B. Derivation of the heat currents going into or from a reservoir

We here derive the heat currents JL
Q and JR

Q thermodynami-
cally consistently. Although many researchers have used them,
the derivation is often skipped or described too briefly.

Our starting point is to identify the heat currents coming
into or going out of the central system as those coming from or
going into the reservoirs. We will give an important remark on
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this point later in this section. We now derive the latter using
general thermodynamics. The first law of thermodynamics
gives the relation

dUα = dQα + dWα, (6)

where α = L,R, dUα and dQα denote the energy and heat
flowing into the left or right reservoir, and dWα = μαdNα is
the work done to the reservoir. Using Eq. (6), we can express
dQα in the form

dQα = dUα − μαdNα. (7)

Since we treat the nonequilibrium steady state, we can
define the changes of the particle number and the energy in a
reservoir as a steady current, which enables us to define the
particle and energy currents as

JN = −dNL

dt
= dNR

dt
, JE = −dUL

dt
= dUR

dt
, (8)

where we used the conservation of particle number and energy,
dNL + dNR = 0 and dUL + dUR = 0, because there is no
dissipation in the central system. The negative signs appeared
because we defined the positive direction so that currents going
to the right may be positive. We then define the heat currents
using Eqs. (7) and (8) in the form

JL
Q = −dQL

dt
= JE − μLJN,

(9)

JR
Q = dQR

dt
= JE − μRJN,

where JL
Q is the heat current flowing from the left reservoir

into the system and JR
Q is that flowing from the system into

the right reservoir.
Note that these expressions of the heat currents are valid

in the presence of many-body interactions if our assumptions
(i) to (iii) hold. We can therefore apply them to systems for
which we cannot use the Landauer-Büttiker formula. We will
also discuss a possible formulation in Sec. V when there is an
entropy production in the central system.

Let us come back to our starting point above. It is crucial to
note that the working system of the engine is now the central
system in Fig. 1, for which we cannot define the temperature
and the chemical potential because it is highly nonequilibrium.
In the textbook [47], Datta argued that we could define an
“effective” chemical potential in quantum wires, but it is in
fact not a thermodynamic observable. We should therefore be
aware that it is not trivial at all to define the heat and the
work for the central system. We here identify the heat current
coming into the central system as that coming from a reservoir
under the assumption below, which corresponds to the one that
there is no entropy production in the central system.

According to the first law of thermodynamics, in order
to calculate the heat current coming into or from the central
system, we need to specify the energy current coming into
or from it and the work done to or by it. The former is easy
to specify as JE because the energy current is a conserved
quantity. The problem arises when we try to specify the work
done to or by the central system, in which we cannot define
thermodynamic intensive variables.

We here make the following assumption to specify it: the
work done to or by the central system is equal to that done by
or to the reservoir. This assumption lets us find that the work
done to the system on the left side is equal to that done by
the left reservoir, μLJN , and the work done by the system
on the right side is equal to that done to the right reservoir,
μRJN . We can thus find that the expression of the heat current
coming into or from the central system is equal to those that we
derived in Eq. (9). Although the expression of the heat currents
corresponds to that used in previous researches, we believe
that our derivation is more accurate than the previous ones.
The crucial point is that we derived the heat current coming
into or from the central system, not a reservoir; we need to
make the assumption above to specify it. The assumption is
probably equivalent to the assumption (iii) in Sec. II, that there
is no entropy production in the central system.

C. General formalism of the thermoelectric heat engine

Let us show that we can construct the same formalism as
that of the cyclic engine using the heat currents Eq. (9). We
first easily find that they indeed satisfy Eq. (4). This is the first
check of the consistency of Eq. (9).

We then show that the upper limit of the efficiency Eq. (5)
is the Carnot efficiency as is expected from the theory of the
standard cyclic heat engine. Let

ṠLdt = dQL

TL

(10)

and

ṠRdt = dQR

TR

(11)

denote the entropy productions in the left and right reservoirs,
respectively. Using Eq. (9), we can relate these entropy
productions to the heat currents as

JL
Q = −TLṠL, JR

Q = TRṠR. (12)

According to the second law of thermodynamics, an entropy
production of an isolated system increases. Our whole system,
which consists of the two reservoirs and the central system,
is indeed isolated. The net entropy production of the whole
system

Ṡ = ṠL + ṠR (13)

is thus nonnegative, that is, −ṠR � ṠL; we assumed that there
is no entropy production in the central system. We thus have
from Eqs. (4), (5), and (12),

η = −TLṠL − TRṠR

−TLṠL

� 1 − TR

TL

= ηc, (14)

where ηc is the Carnot efficiency. We can achieve the equality
if and only if ṠL = −ṠR , that is, Ṡ = 0. We conclude that with
the heat currents Eq. (9), we can produce Eqs. (4) and (14),
which are the same formulas as those of the cyclic engine.
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IV. HEAT CURRENT IN THE MESOSCOPIC HEAT
ENGINE USING THE LANDAUER-BÜTTIKER FORMULA

In order to justify the definitions Eq. (9) further, we here
derive microscopic expressions for the mesoscopic thermo-
electric heat engine. We additionally assume here that the
central system in Fig. 1 is a noninteracting coherent conductor
that accommodates the Landauer-Büttiker formalism [47].
Note again that the arguments in Secs. II and III are valid
even in the presence of many-body interactions, to which the
Landauer-Büttiker formalism is not applicable.

We can obtain JN and JE in Eq. (9) microscopically as

JN = 1

h

∫ ∞

−∞
dε τ (ε)[fL(ε) − fR(ε)], (15)

JE = 1

h

∫ ∞

−∞
dε τ (ε)ε[fL(ε) − fR(ε)], (16)

where h is the Planck constant,

fα(ε) = 1

1 + exp[βα(ε − μα)]
(17)

is the Fermi distribution function of the reservoir (α =
L,R), βα = T −1

α is the inverse temperature, and τ (ε) is the
transmission probability at energy ε. Substituting Eqs. (15)
and (16) into Eq. (9), we arrive at

J α
Q = 1

h

∫ ∞

−∞
dε τ (ε)(ε − μα)[fL(ε) − fR(ε)], (18)

where α = L,R.
Note that these heat currents satisfy Onsager’s reciprocal

theorem when we expand them in terms of appropriate
affinities; we can verify the theorem by expanding JN and
JL

Q in terms of AL
N = βL(μL − μR) and AL

Q = −(βL − βR)
or JN and JR

Q in terms of AR
N = βR(μL − μR) and AL

Q =
−(βL − βR) [48].

We can also verify the nonnegativity of the entropy
production with the heat currents Eq. (9) and their microscopic
expressions Eq. (18), although it must be satisfied anyway
according to the second law of thermodynamics. Using
Eqs. (12) and (13), the total entropy production of the system
is generally expressed with the heat currents:

Ṡ = ṠL + ṠR = −JL
Q

TL

+ JR
Q

TR

. (19)

Substituting the microscopic expression of the heat currents
Eq. (18), we obtain the microscopic expression of the total
entropy production in the form

Ṡ =
∫ ∞

−∞
dε τ (ε)[fL(ε) − fR(ε)] log

{
fL(ε)[1 − fR(ε)]

fR(ε)[1 − fL(ε)]

}
,

(20)

which Whitney derived [18] starting from the nonlinear
Landauer-Büttiker formalism. Since τ (ε) � 0, the integrand
in Eq. (20) is always nonnegative, which leads to the nonneg-
ativity of the entropy production. The fact that we reproduced
Whitney’s microscopic expression Eq. (20) endorses our
general expressions of the heat currents Eq. (9).

Since we know that we can achieve the Carnot efficiency
when the total entropy production of the whole system is zero,

FIG. 2. The energy filter transmission probability.

let us find the transmission probability that satisfies Ṡ = 0.
We easily see the following condition: for each value of ε,
τ (ε) = 0 or fL(ε) − fR(ε) = 0. If τ (ε) = 0 for any ε or if
fL(ε) − fR(ε) = 0 for any ε, however, the transport would
not happen, the engine would not work, and the efficiency η

would be trivially 0/0. The only nontrivial condition is given
by τ (ε) �= 0 and fL(ε) − fR(ε) = 0 at one value of energy;
if we demanded fL(ε) = fR(ε) at two values of energy, they
would be equal at any values of energy.

In order to achieve the above condition, the transmission
probability should be of the form

τ (ε) =
{
c for ε = εc

0 otherwise, (21)

where c is a constant satisfying 0 < c � 1 and

εc = TLμR − TRμL

TL − TR

(22)

is derived from the condition fL(εc) = fR(εc). Using
Eqs. (5), (9), (15), and (18), we indeed find that this
transmission probability is a necessary and sufficient condition
for the Carnot efficiency:

η = μL − μR

εc − μL

= 1 − TR

TL

= ηc. (23)

The transmission probability Eq. (21) for the Carnot
efficiency that we derived is well known in the literature
on thermoelectricity [1,2,16,17,24,28,49]. However, in the
mesoscopic thermoelectric engine with the Landauer-Büttiker
formalism that we treat in the present paper, there has been
no discussion that the transmission probability Eq. (21) is a
sufficient condition for the Carnot efficiency [16,17,24,28], as
far as we know. In contrast, we showed that the transmission
probability Eq. (21) is a necessary and sufficient condition for
the Carnot efficiency straightforwardly from the expression
of the entropy production Eq. (20) along with the condition
Ṡ = 0.

In order to see what limit of this engine corresponds to
the quasistatic limit of the cyclic heat engine, let us consider
the transmission probability Eq. (21) in the limit of � → 0
of the energy window [24,28] shown in Fig. 2; we here set c

in Eq. (21) as unity for simplicity. The power is given by [28]

JN (μR − μL) = μR − μL

h

∫ εc+�

εc

dε[fL(ε) − fR(ε)]

= μR − μL

2h
F (εc)�2 + O(�3), (24)
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where F (ε) = ∂/∂ε[fL(ε) − fR(ε)]. The heat current JL
Q =

(εc − μL)F (εc)�2/2h + O(�3) vanishes and the efficiency
η = ηc − O(�) becomes the Carnot efficiency in the limit
of � → 0.

The fact that the power vanishes in this limit is the same as in
the standard heat engine; the Carnot cycle produces zero power
because the quasistatic limit of the Carnot engine takes infinite
time for us to operate the engine. As � → 0, JN goes to zero,
which means that the event that one particle transmits becomes
rarer and rarer because JN is the mean value of the particle
current. In other words, as � → 0, the mean transmission time
of particles, that is, the average time that it takes for one particle
to transmit, becomes longer and longer. We expect that there is
a relation as � ∼ �t−1, where t is the mean transmission time
of particles. It thus takes infinite average time for particles to
transmit from the left reservoir to the right reservoir in the limit
� → 0. This physically corresponds to the quasistatic limit of
the cyclic heat engine, in which it takes infinite time for us to
operate the engine.

V. THE CASE OF INELASTIC SCATTERING

We here extend our theory to the case of inelastic scatter-
ings, such as electron-hole and electron-phonon interactions,
in which the number of electrons is conserved, but their energy
is dissipated from the central system. In reality, the dissipated
energy goes to an environment. In order to model this
situation theoretically, we introduce a third bosonic reservoir
(Fig. 3) [50], into which the dissipated energy goes. By tuning
its temperature TT and chemical potential μT , we can make
the net particle current going into the reservoir zero and the
net energy current going into the reservoir positive. Note that
the energy current going into the third reservoir is equal to
the heat current going into it because the net particle current
going into it is zero; see the expression of the heat current
in Eq. (9). Let us denote Q̇T as the heat current going into
it hereafter. By additionally tuning transmission probabilities
going into the third reservoir from the other reservoirs, we
should be able to set Q̇T at any values observed in experiments.
Note, however, that this model cannot represent all cases of
inelastic scatterings; for example, we may have to consider
a non-Markov reservoir if the dissipation is non-Markov. We
here focus on the dissipation, which we can represent with
the model in Fig. 3. We again let Q̇L and Q̇R denote the
heat flowing per unit time into the left and right reservoirs,

FIG. 3. A three-terminal model. The third bosonic reservoir on
the top represents the energy dissipation.

respectively, and Ẇ the work done by the central system per
unit time. Note that we define the heat currents as Q̇L = −JL

Q

and Q̇R = JR
Q in the present paper.

The first law of thermodynamics then gives the following
relation:

Q̇L + Q̇R + Q̇T + Ẇ = 0. (25)

The efficiency is given by

η = Ẇ

−Q̇L

= Q̇L + Q̇R + Q̇T

Q̇L

=
(

1 + Q̇R

Q̇L

)
+ Q̇T

Q̇L

. (26)

By defining the dissipative heat current as Q̇T = J T
Q , we can

rewrite the efficiency Eq. (26) as

η =
(

1 − JR
Q

JL
Q

)
− J T

Q

JL
Q

� 1 − JR
Q

JL
Q

(27)

and obtain the work in the form

Ẇ = (−Q̇L − Q̇R) − Q̇T = (
JL

Q − JR
Q

) − J T
Q � JL

Q − JR
Q.

(28)

In the case of no dissipation J T
Q = 0, the expressions of the

efficiency and the work reduce to Eqs. (4) and (5) in the case
of two reservoirs, respectively. Since we consider the case in
which Q̇T = J T

Q � 0, we find that the effect of the dissipation
decreases the efficiency and the power. The entropy production
of the whole system is given as follows:

Ṡ = Q̇L

TL

+ Q̇R

TR

+ Q̇T

TT

= −JL
Q

TL

+ JR
Q

TR

+ J T
Q

TT

. (29)

Because J T
Q � 0, the entropy production is still nonnegative if

we introduce the third reservoir.

VI. SECOND LAW, RECIPROCITY, AND UNITARITY

We here remark on the relation of the entropy produc-
tion with the reciprocity and the unitarity. Using Onsager’s
reciprocal theorem, Benenti et al. [9] recently proposed an
interesting argument in the linear-response regime that a
thermoelectric engine could have a finite power with the Carnot
efficiency under a magnetic field. As this proposal is only in
the linear-response regime, we hereafter argue its possibility
in nonlinear-response regimes.

For this purpose, let us first impose Onsager’s reciprocal
relation without the unitarity of the transmission probability.
Without the unitarity, however, we can choose any expressions
of JN because particles are not conserved without the unitarity.
For example, suppose that we choose seemingly plausible
expression of JN as

JN =
∫ ∞

−∞
dε[τL→R(ε,B)fL(ε) − τR→L(ε,B)fR(ε)]. (30)

Here τL→R(ε,B) is the transmission probability for the
electrons from left to right at energy ε and τR→L(ε,B) that
for the electrons from right to left at energy ε. This expression
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of JN leads to the expression of JL
Q in the form

JL
Q =

∫ ∞

−∞
dε(ε − μL)[τL→R(ε,B)fL(ε)−τR→L(ε,B)fR(ε)].

(31)

Let us further choose the transmission probabilities as
τL→R(ε,B) = a(B) at ε = εc and otherwise zero, as well as
τR→L(ε,B) = b(B) at ε = εc and otherwise zero, where a(B)
and b(B) are constants with a(B) > b(B). Note that these
choices are not prohibited under Onsager’s reciprocal relation
τL→R(ε,B) = τR→L(ε, − B) [47]. With Eqs. (30) and (31), we
find that the efficiency

η = IV

JL
Q

= JN (μR − μL)

JL
Q

(32)

becomes the Carnot efficiency η = ηc, whereas the power has
a finite value JN (μR − μL) = [a(B) − b(B)](μR − μL) > 0.
Therefore, we could obtain a finite power with the Carnot
efficiency only under Onsager’s reciprocal theorem, which
is the nonlinear version of Benenti et al.’s argument in the
linear-response regime [9].

However, the unitarity of the transmission probability pro-
hibits this situation. The unitarity condition of the transmission
probability yields τL→R(ε,B) = τR→L(ε,B), which makes
a(B) = b(B) at any B, and hence we find no power at the
Carnot efficiency. This corresponds to the fact that Brandner
et al. [14] found a new bound among Onsager’s coefficients
from the unitarity of the transmission probability considering
the three-terminal model in the linear-response regime. This
bound prevented the power from being finite with the Carnot
efficiency. We also note that not Onsager’s reciprocal theorem
but the unitarity guarantees the nonnegativity of the entropy
production in the mesoscopic transport theory.

Brandner and Seifert [15] argued the attainability of the
Carnot efficiency at a finite power in a multiterminal model
when the number of probes (a probe is a special reservoir
in which we set the temperature and chemical potential so
that the net particle and heat currents flowing into the probe
may be zero) is infinite, but they themselves denied it later in
Ref. [25] because of a numerically conjectured inequality for
the Onsager coefficients. From our point of view, we presume
that the inequality found in Ref. [25] is based on the unitarity.

To summarize, Benenti et al. [9] must have missed
additional constraints that prevent the Carnot efficiency at a
finite power. In mesoscopic thermoelectric heat engines with
the Landauer-Büttker formula, the constraint is the unitarity of
the transmission probability. It is an open problem as to what

constraints prevent the Carnot efficiency at a finite power in
general cases.

VII. CONCLUSION

In this paper, we derived the heat currents coming into
or from the central system under reasonable assumptions,
with which we can produce Eqs. (4) and (14) as those of
cyclic heat engines. The same expressions have been used in
the previous researches without detailed explanations. These
heat currents gave us interesting results when we applied
them to the mesoscopic thermoelectric heat engine within the
Landauer-Büttiker formalism. We found that the heat currents
in this engine Eq. (18) correctly give the nonnegativity of the
entropy production. We also found that the only transmission
probability to achieve the Carnot efficiency is the δ-like
function Eq. (21) and that the unitarity of the transmission
probability guarantees the Carnot efficiency at zero power.

It will be interesting to incorporate electron-electron inter-
actions to our theory. If the interactions are elastic, Eq. (9)
is still valid because it does not break our assumptions;
we may even be able to derive microscopic expressions
extending the Landauer-Büttiker formalism as in Refs. [51,52].
Using Christen and Büttiker’s nonlinear scattering theory, in
which electron-electron interactions are treated as mean-field
charging effects [18,19,35–37,53–55], we can construct the
same formalism by replacing τ (ε) with τ (ε, TL, TR, μL,μR).

It is also interesting to look for stronger bounds than the
second law of thermodynamics in some systems, which make
it impossible to reach the Carnot efficiency. For a system with
many probes, for example, especially under the broken time-
reversal symmetry, the transmission probability may not have
enough degrees of freedom to be in the form of Eq. (21).

We finally mention the possibility of experimental realiza-
tion of the mesoscopic heat engine. It may be easy to make the
setup of the steady-state heat engine, particularly the meso-
scopic thermoelectric heat engine, thanks to the improvement
of experimental techniques in mesoscopic transport systems.
The results in this paper can be used from quantum point
contacts to one-dimensional nanowires, as well as to cold
atoms [56] if we utilize the Landauer-Büttiker formula. A
possible difficulty is how we experimentally observe the heat
currents and the efficiency of the heat engine. This problem
may be solved in the near future because the technique of
observing the energy current has been improved recently [57].
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[36] R. López and D. Sánchez, Phys. Rev. B 88, 045129 (2013).
[37] S.-Y. Hwang, D. Sánchez, M. Lee, and R. López, New J. Phys.
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[39] J. Argüello-Luengo, D. Sánchez, and R. López, Phys. Rev. B
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[55] D. Sánchez and R. López, Phys. Rev. Lett. 110, 026804

(2013).
[56] J.-P. Brantut, C. Grenier, J. Meineke, D. Stadler, S. Krinner,

C. Kollath, T. Esslinger, and A. Georges, Science 342, 713
(2013).

[57] S. Jezouin, F. Parmentier, A. Anthore, U. Gennser, A. Cavanna,
Y. Jin, and F. Pierre, Science 342, 601 (2013).

042165-7

http://dx.doi.org/10.1103/PhysRevLett.102.130602
http://dx.doi.org/10.1103/PhysRevLett.102.130602
http://dx.doi.org/10.1103/PhysRevLett.102.130602
http://dx.doi.org/10.1103/PhysRevLett.102.130602
http://dx.doi.org/10.1103/PhysRevB.82.235428
http://dx.doi.org/10.1103/PhysRevB.82.235428
http://dx.doi.org/10.1103/PhysRevB.82.235428
http://dx.doi.org/10.1103/PhysRevB.82.235428
http://dx.doi.org/10.1103/PhysRevLett.105.060601
http://dx.doi.org/10.1103/PhysRevLett.105.060601
http://dx.doi.org/10.1103/PhysRevLett.105.060601
http://dx.doi.org/10.1103/PhysRevLett.105.060601
http://dx.doi.org/10.1103/PhysRevB.83.085428
http://dx.doi.org/10.1103/PhysRevB.83.085428
http://dx.doi.org/10.1103/PhysRevB.83.085428
http://dx.doi.org/10.1103/PhysRevB.83.085428
http://dx.doi.org/10.1103/PhysRevLett.106.230602
http://dx.doi.org/10.1103/PhysRevLett.106.230602
http://dx.doi.org/10.1103/PhysRevLett.106.230602
http://dx.doi.org/10.1103/PhysRevLett.106.230602
http://dx.doi.org/10.1103/PhysRevB.84.201306
http://dx.doi.org/10.1103/PhysRevB.84.201306
http://dx.doi.org/10.1103/PhysRevB.84.201306
http://dx.doi.org/10.1103/PhysRevB.84.201306
http://dx.doi.org/10.1103/PhysRevB.85.205301
http://dx.doi.org/10.1103/PhysRevB.85.205301
http://dx.doi.org/10.1103/PhysRevB.85.205301
http://dx.doi.org/10.1103/PhysRevB.85.205301
http://dx.doi.org/10.1209/0295-5075/102/57003
http://dx.doi.org/10.1209/0295-5075/102/57003
http://dx.doi.org/10.1209/0295-5075/102/57003
http://dx.doi.org/10.1209/0295-5075/102/57003
http://dx.doi.org/10.1103/PhysRevB.87.165419
http://dx.doi.org/10.1103/PhysRevB.87.165419
http://dx.doi.org/10.1103/PhysRevB.87.165419
http://dx.doi.org/10.1103/PhysRevB.87.165419
http://dx.doi.org/10.1103/PhysRevLett.110.070603
http://dx.doi.org/10.1103/PhysRevLett.110.070603
http://dx.doi.org/10.1103/PhysRevLett.110.070603
http://dx.doi.org/10.1103/PhysRevLett.110.070603
http://dx.doi.org/10.1088/1367-2630/15/10/105003
http://dx.doi.org/10.1088/1367-2630/15/10/105003
http://dx.doi.org/10.1088/1367-2630/15/10/105003
http://dx.doi.org/10.1088/1367-2630/15/10/105003
http://arxiv.org/abs/arXiv:1311.4430
http://dx.doi.org/10.1103/PhysRevB.88.085426
http://dx.doi.org/10.1103/PhysRevB.88.085426
http://dx.doi.org/10.1103/PhysRevB.88.085426
http://dx.doi.org/10.1103/PhysRevB.88.085426
http://dx.doi.org/10.1103/PhysRevB.87.115404
http://dx.doi.org/10.1103/PhysRevB.87.115404
http://dx.doi.org/10.1103/PhysRevB.87.115404
http://dx.doi.org/10.1103/PhysRevB.87.115404
http://dx.doi.org/10.1103/PhysRevB.88.064302
http://dx.doi.org/10.1103/PhysRevB.88.064302
http://dx.doi.org/10.1103/PhysRevB.88.064302
http://dx.doi.org/10.1103/PhysRevB.88.064302
http://dx.doi.org/10.1103/PhysRevLett.110.070604
http://dx.doi.org/10.1103/PhysRevLett.110.070604
http://dx.doi.org/10.1103/PhysRevLett.110.070604
http://dx.doi.org/10.1103/PhysRevLett.110.070604
http://dx.doi.org/10.1088/1367-2630/16/8/085001
http://dx.doi.org/10.1088/1367-2630/16/8/085001
http://dx.doi.org/10.1088/1367-2630/16/8/085001
http://dx.doi.org/10.1088/1367-2630/16/8/085001
http://dx.doi.org/10.1103/PhysRevLett.112.076803
http://dx.doi.org/10.1103/PhysRevLett.112.076803
http://dx.doi.org/10.1103/PhysRevLett.112.076803
http://dx.doi.org/10.1103/PhysRevLett.112.076803
http://dx.doi.org/10.1209/0295-5075/107/47003
http://dx.doi.org/10.1209/0295-5075/107/47003
http://dx.doi.org/10.1209/0295-5075/107/47003
http://dx.doi.org/10.1209/0295-5075/107/47003
http://dx.doi.org/10.1103/PhysRevLett.112.130601
http://dx.doi.org/10.1103/PhysRevLett.112.130601
http://dx.doi.org/10.1103/PhysRevLett.112.130601
http://dx.doi.org/10.1103/PhysRevLett.112.130601
http://dx.doi.org/10.1103/PhysRevE.91.012121
http://dx.doi.org/10.1103/PhysRevE.91.012121
http://dx.doi.org/10.1103/PhysRevE.91.012121
http://dx.doi.org/10.1103/PhysRevE.91.012121
http://dx.doi.org/10.1088/0957-4484/26/3/032001
http://dx.doi.org/10.1088/0957-4484/26/3/032001
http://dx.doi.org/10.1088/0957-4484/26/3/032001
http://dx.doi.org/10.1088/0957-4484/26/3/032001
http://dx.doi.org/10.1088/0953-8984/27/1/015302
http://dx.doi.org/10.1088/0953-8984/27/1/015302
http://dx.doi.org/10.1088/0953-8984/27/1/015302
http://dx.doi.org/10.1088/0953-8984/27/1/015302
http://dx.doi.org/10.1103/PhysRevB.91.115425
http://dx.doi.org/10.1103/PhysRevB.91.115425
http://dx.doi.org/10.1103/PhysRevB.91.115425
http://dx.doi.org/10.1103/PhysRevB.91.115425
http://dx.doi.org/10.1088/1751-8113/48/5/055003
http://dx.doi.org/10.1088/1751-8113/48/5/055003
http://dx.doi.org/10.1088/1751-8113/48/5/055003
http://dx.doi.org/10.1088/1751-8113/48/5/055003
http://dx.doi.org/10.1103/PhysRevLett.114.146801
http://dx.doi.org/10.1103/PhysRevLett.114.146801
http://dx.doi.org/10.1103/PhysRevLett.114.146801
http://dx.doi.org/10.1103/PhysRevLett.114.146801
http://dx.doi.org/10.1002/adma.200600527
http://dx.doi.org/10.1002/adma.200600527
http://dx.doi.org/10.1002/adma.200600527
http://dx.doi.org/10.1002/adma.200600527
http://dx.doi.org/10.1038/nmat2090
http://dx.doi.org/10.1038/nmat2090
http://dx.doi.org/10.1038/nmat2090
http://dx.doi.org/10.1038/nmat2090
http://dx.doi.org/10.1146/annurev-matsci-062910-100445
http://dx.doi.org/10.1146/annurev-matsci-062910-100445
http://dx.doi.org/10.1146/annurev-matsci-062910-100445
http://dx.doi.org/10.1146/annurev-matsci-062910-100445
http://dx.doi.org/10.1088/0305-4470/16/10/012
http://dx.doi.org/10.1088/0305-4470/16/10/012
http://dx.doi.org/10.1088/0305-4470/16/10/012
http://dx.doi.org/10.1088/0305-4470/16/10/012
http://dx.doi.org/10.1088/0953-8984/25/8/082201
http://dx.doi.org/10.1088/0953-8984/25/8/082201
http://dx.doi.org/10.1088/0953-8984/25/8/082201
http://dx.doi.org/10.1088/0953-8984/25/8/082201
http://dx.doi.org/10.1103/PhysRevB.88.045129
http://dx.doi.org/10.1103/PhysRevB.88.045129
http://dx.doi.org/10.1103/PhysRevB.88.045129
http://dx.doi.org/10.1103/PhysRevB.88.045129
http://dx.doi.org/10.1088/1367-2630/15/10/105012
http://dx.doi.org/10.1088/1367-2630/15/10/105012
http://dx.doi.org/10.1088/1367-2630/15/10/105012
http://dx.doi.org/10.1088/1367-2630/15/10/105012
http://dx.doi.org/10.1088/1367-2630/16/1/015004
http://dx.doi.org/10.1088/1367-2630/16/1/015004
http://dx.doi.org/10.1088/1367-2630/16/1/015004
http://dx.doi.org/10.1088/1367-2630/16/1/015004
http://dx.doi.org/10.1103/PhysRevB.91.165431
http://dx.doi.org/10.1103/PhysRevB.91.165431
http://dx.doi.org/10.1103/PhysRevB.91.165431
http://dx.doi.org/10.1103/PhysRevB.91.165431
http://dx.doi.org/10.1103/PhysRevB.33.551
http://dx.doi.org/10.1103/PhysRevB.33.551
http://dx.doi.org/10.1103/PhysRevB.33.551
http://dx.doi.org/10.1103/PhysRevB.33.551
http://dx.doi.org/10.1143/JPSJ.79.045003
http://dx.doi.org/10.1143/JPSJ.79.045003
http://dx.doi.org/10.1143/JPSJ.79.045003
http://dx.doi.org/10.1143/JPSJ.79.045003
http://dx.doi.org/10.1103/PhysRevB.83.241404
http://dx.doi.org/10.1103/PhysRevB.83.241404
http://dx.doi.org/10.1103/PhysRevB.83.241404
http://dx.doi.org/10.1103/PhysRevB.83.241404
http://dx.doi.org/10.1088/0953-8984/2/22/008
http://dx.doi.org/10.1088/0953-8984/2/22/008
http://dx.doi.org/10.1088/0953-8984/2/22/008
http://dx.doi.org/10.1088/0953-8984/2/22/008
http://arxiv.org/abs/arXiv:1504.05493
http://dx.doi.org/10.1073/pnas.93.15.7436
http://dx.doi.org/10.1073/pnas.93.15.7436
http://dx.doi.org/10.1073/pnas.93.15.7436
http://dx.doi.org/10.1073/pnas.93.15.7436
http://dx.doi.org/10.1103/PhysRevB.91.054302
http://dx.doi.org/10.1103/PhysRevB.91.054302
http://dx.doi.org/10.1103/PhysRevB.91.054302
http://dx.doi.org/10.1103/PhysRevB.91.054302
http://dx.doi.org/10.1103/PhysRevLett.102.146803
http://dx.doi.org/10.1103/PhysRevLett.102.146803
http://dx.doi.org/10.1103/PhysRevLett.102.146803
http://dx.doi.org/10.1103/PhysRevLett.102.146803
http://dx.doi.org/10.1103/PhysRevB.91.045140
http://dx.doi.org/10.1103/PhysRevB.91.045140
http://dx.doi.org/10.1103/PhysRevB.91.045140
http://dx.doi.org/10.1103/PhysRevB.91.045140
http://dx.doi.org/10.1088/0953-8984/5/50/017
http://dx.doi.org/10.1088/0953-8984/5/50/017
http://dx.doi.org/10.1088/0953-8984/5/50/017
http://dx.doi.org/10.1088/0953-8984/5/50/017
http://dx.doi.org/10.1209/epl/i1996-00145-8
http://dx.doi.org/10.1209/epl/i1996-00145-8
http://dx.doi.org/10.1209/epl/i1996-00145-8
http://dx.doi.org/10.1209/epl/i1996-00145-8
http://dx.doi.org/10.1103/PhysRevLett.110.026804
http://dx.doi.org/10.1103/PhysRevLett.110.026804
http://dx.doi.org/10.1103/PhysRevLett.110.026804
http://dx.doi.org/10.1103/PhysRevLett.110.026804
http://dx.doi.org/10.1126/science.1242308
http://dx.doi.org/10.1126/science.1242308
http://dx.doi.org/10.1126/science.1242308
http://dx.doi.org/10.1126/science.1242308
http://dx.doi.org/10.1126/science.1241912
http://dx.doi.org/10.1126/science.1241912
http://dx.doi.org/10.1126/science.1241912
http://dx.doi.org/10.1126/science.1241912



