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Quantum recurrences in a one-dimensional gas of impenetrable bosons
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It is well-known that a dilute one-dimensional (1D) gas of bosons with infinitely strong repulsive interactions
behaves like a gas of free fermions. Just as with conduction electrons in metals, we consider a single-particle
picture of the resulting dynamics, when the gas is isolated by enclosing it into a box with hard walls and preparing
it in a special initial state. We show, by solving the nonstationary problem of a free particle in a 1D hard-wall
box, that the single-particle state recurs in time, signaling the intuitively expected back-and-forth motion of a
free particle moving in a confined space. Under suitable conditions, the state of the whole gas can then be made
to recur if all the particles are put in the same initial momentum superposition. We introduce this problem here
as a modern instance of the discussions giving rise to the famous recurrence paradox in statistical mechanics:
on one hand, our results may be used to develop a poor man’s interpretation of the recurrence of the initial state
observed [T. Kinoshita et al., Nature 440, 900 (2006)] in trapped 1D Bose gases of cold atoms, for which our
estimated recurrence time is in fair agreement with the period of the oscillations observed; but this experiment,
on the other hand, has been substantially influential on the belief that an isolated quantum many-body system
can equilibrate as a consequence of its own unitary nonequilibrium dynamics. Some ideas regarding the latter
are discussed.

DOI: 10.1103/PhysRevE.92.042164 PACS number(s): 05.30.Jp, 03.65.Aa, 67.85.−d

I. INTRODUCTION

The mechanism for the approach to statistical equilibrium
of isolated many-body systems is one of the oldest problems in
science that is still awaiting a satisfactory solution. It first grew
in popularity with a tough debate [1] in the late 19th Century
between Boltzmann, who thought about molecular chaos as
an ingredient for the equilibration process, and Zermelo who,
using a theorem of Poincaré, argued that a given initial state
would always recur in time, raising doubts of any equilibration
at all. With modern experimental techniques able to reach a
high degree of isolation, the problem of the nonequilibrium
dynamics of isolated quantum many-body systems can now
be addressed as never before, especially in cold-atom systems
[2–6]. A remarkable outcome is given by the persistent
oscillations of the initial state observed by Kinoshita, Wenger,
and Weiss (KWW) [2] in trapped 1D Bose gases of cold atoms,
where equilibration is not observed even after thousands of
atomic collisions. The long-time behavior of this system is
believed [7] to be an unusual kind of equilibrium, which
carries a good memory of the initial state through conserved
quantities, and described by a generalized Gibbs ensemble
(GGE).

We recall that a crucial property to reach equilibration in
(infinite) quantum systems with a continuous energy spectrum,
as typical condensed matter systems in the thermodynamic
limit are usually treated, was recognized a long time ago
by Van Hove [8–10] and marked the foundations of modern
nonequilibrium statistical mechanics [11–14]. That is, when
the approach to equilibrium can be attributed to a perturbation
term in the Hamiltonian that is able to produce self-energy
effects, as is the case, e.g., of phonon-phonon interaction in
the theory of heat conduction in crystals or magnon-magnon
and magnon-phonon interaction in ferromagnetic relaxation
phenomena, then starting from initial statistical states that
are diagonal in the energy representation of the unperturbed
system, the expectation value of all diagonal operators,

which happen to be the slowly varying or thermodynamic
observables of the quantum theory (in the ideal limit of
single-level energy resolution [15]), can be rigorously proved
to tend to their microcanonical values in the long-time
limit.

For finite isolated quantum many-body systems, which have
discrete energy spectrum, there is a natural reason to believe
that equilibration can also take place, at least partially and in
a definite time window [16], leading to a GGE [7] accounting
for the full set of conserved quantities in integrable systems, or
again to a microcanonical ensemble for nonintegrable systems
[17,18]. Loosely speaking, this is due to dephasing: the idea
that the probability of constructive interference among the
stationary states comprising a given initial state, which gives
periodic behavior in few-body systems, decreases with time
under the effect of the perturbation, as more degrees of freedom
(e.g., particles) are in the system. The time evolution in the
long-time limit is then expected to be described by a diagonal
ensemble, where any reference to the quantum coherences
disappears.

Although dephasing or the random-phase assumption for
wave-function interference is expected to be true for an
overwhelming majority of initial states in infinite systems
[9], there are many-body examples, such as the collapse and
revival of the population inversion in the one-atom maser
[19], of the matter-wave field of a Bose-Einstein condensate
[20], or the spin echoes in pulsed NMR experiments [21],
where constructive interference appears at a time when the
system is apparently observed in a steady state, and therefore
the dephasing hypothesis should be taken with caution when
applied to systems with a large, but finite, number of degrees
of freedom. In this paper, we investigate a different alternative
for the dynamics of a finite isolated quantum many-body
system, which is the recurrence of its initial state as opposed
to equilibration, taking the KWW observations as a test
experiment with an observable recurrence time.
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II. GEOMETRY OF THE DYNAMICS

In the geometrical picture offered by the Liouville repre-
sentation of quantum mechanics [22], we can see all operators
acting on Hilbert space as vectors, with an inner product
between any two operators A and B defined as (A,B) =
Tr (AB†). The general idea of quantum recurrences exploited
here comes from the fact that the unitary evolution of an
isolated quantum system conserves the norm (ρ,ρ) = Tr(ρ2)
and then the density matrix, seen as a vector in Liouville
space, must be rotating about some generalized axes. The
situation we will encounter is then reminiscent of the classical
problem of finding the principal axes about which the general
complicated rotational motion of a 3D rigid body can be seen
as elementary orthogonal rotations. As is well-known, these
axes are closely connected with the symmetries of the body and
then, following this analogy, we should look for an operator
basis or “coordinates,” Uα , of Liouville space connected to
the relevant symmetry properties of the system. The quantum
interference of the corresponding elementary oscillations in
our test case will be shown to produce the recurrent behavior.

We recall that a complete orthonormal operator basis, Uα ,
with the identity matrix belonging to the set, can always be
constructed out of the generators of infinitesimal unitary trans-
formations in the Hilbert space of any quantum-mechanical
system. These operators satisfy the Lie-algebraic relations
i [Uα,U

†
β] = ∑

γ c
γ

αβUγ , where the so-called structure con-
stants, c

γ

αβ , are antisymmetric under the interchange of lower
indices. The completeness property allows any operator in
Liouville space to be expanded as A = ∑

α(A,U †
α) U †

α ≡∑
α AαU †

α . In this geometrical picture, the Liouville-von
Neumann equation for the evolution of the density matrix
reads [22]

∂ρ

∂t
= � · ρ, (1)

where �αβ ≡ ∑
γ c

γ

αβHγ , with Hγ the components of the
Hamiltonian along U †

γ , and ρ is the vector with components ρα

along U †
α . Due to the antisymmetry of the structure constants,

it is easy to show that (∂ρ/∂t,ρ) = 0 and then the action of �

on ρ is an orthogonal transformation that continually “rotates”
the density matrix in Liouville space.

The simplest example of this formalism is a system
of noninteracting two-level systems. The SU(2) symme-
try of these systems suggests the single-particle operator
basis {1̂,σx,σy,σz}, with respect to which the rotation of
the density matrix in Liouville space leads to well-known
recurrent phenomena such as the Larmor precession of
magnetic moments in a magnetic field [23], or the Rabi
oscillations of two-level atoms (dipoles) in a microwave field
[24]. Higher-dimensional examples, still with few degrees
of freedom, can be developed [22,25] by constructing the
corresponding symmetrical operator basis. We contemplate
here the application of this formalism to a system with an
almost infinite number of degrees of freedom. It is interesting
by itself for pedagogical reasons since it constitutes, in the
end, a sophisticated nonstationary version of the textbook
quantum-mechanical problem of a particle in a box undergoing
a back-and-forth motion.

FIG. 1. One-dimensional elastic collision of point particles with
equal masses. (a) The particles are approaching each other with
equal speeds before the collision. (b) The only possible outcome
after the collision if the particles are distinguishable classical objects.
(c) Allowed outcome if the particles are quantum objects. In this case
there is perfect transmission of one particle through the other and the
situation is physically indistinguishable from the perfect reflection in
(b).

We consider an ensemble of spatially nonoverlaping point
particles with equal masses confined in a 1D box and divided
into two groups, the particles in different groups differing by
the direction of their momentum |k|. We note that, classically,
for a pair of particles of different groups undergoing a collision,
the result of their contact interaction is the perfect transmission
of the momentum of one of the particles to the other, as shown
in Fig. 1. For indistinguishable quantum particles, however,
tunneling may occur after the collision, and the outcome cannot
be physically distinguished from a perfect reflection. We can
then treat these particles as “ghosts”[2] perfectly transmitting
through each other and concentrate on the dynamics of just
one of them.

The system described above can be used as a poor man’s
version of a trapped 1D system of interacting bosons, as in
the KWW experiment, in which the harmonic longitudinal
confinement is instead replaced by a flat-bottom-like potential
resembling the confinement to a box. In the dilute limit of
infinitely strong repulsive interactions (a.k.a., gas of impen-
etrable bosons or Tonks-Girardeau gas) the single-particle
spacing is of the order of the spread of the single-particle wave
functions [26], and then the particles in the same group are
essentially nonoverlapping. Since in this regime the particles
behave as free fermions [27], it is then justified to use the
single-particle picture referred to above, just as it is justified
to use a single-particle picture to study the nonequilibrium
dynamics of conduction electrons in metals.

The problem is therefore that of a free particle in a 1D
box. Note that a general way to construct a complete unitary
and orthonormal operator basis for any quantum system with
Hilbert space dimension N was given by Schwinger [28]
in terms of complementary pairs of shift operators. In the
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continuum case, which is approached as a limit [29], the basis
vectors in Liouville space are elements of the Heisenberg group
[30]. We take the Schwinger basis Uqp = eipq̂eiqp̂, where q̂ and
p̂ are, respectively, the position and momentum operators of
the particle, and where q and p are values that change (with a

the lattice constant) in steps 	q = a,	p = 2π/Na. In these
coordinates for the Liouville space, the state is represented by
the components, ρqp = (Uqp,ρ), of the density matrix along
the unit vectors.

The confinement of the particle to the 1D (flat-bottom)
box, which is centered at the origin and of length L =
(N − 1)a, is modeled by repulsive δ-potentials, V (q̂) =
(gL/2) [δ(q̂ − L/2) + δ(q̂ + L/2)], at the box edges (im-
penetrable walls). In the following, we consider the contin-
uum limit, N (odd) → ∞, a → 0, with L finite. Then, in
units of 2m = 1, the component of the Hamiltonian of the
“free” particle along the unit vector U

†
qp is given by Hqp =

εqδ(p) + vpδ(q), where we have defined the Fourier transform
εq = (1/2π )

∫
dp′eiqp′

p′2, and vp = gL cos(p L/2). Using
the structure constants of the Heisenberg group, crs

qp,q ′p′ =
i[e−ip′(q−q ′) − e−iq ′(p−p′)]δr,q−q ′δs,p−p′ , we then find that Eq.
(1) is equivalent in this case to the spinor equation (see
Appendix B),

∂

∂t

(
ρ̃kp

ρ̃∗
−k,p

)
= i

(
ε̃p−k − ε̃−k 0
0 ε̃k − ε̃k+p

)(
ρ̃kp

ρ̃∗
−k,p

)
, (2)

where the tilde denotes an inverse Fourier transform in
the q index, which diagonalizes � and then represents the
ultimate transformation to the principal axes. Here, ε̃k = k2

is the bare energy of a particle with momentum k, and
ρ̃kp = 〈k| ρ |k + p〉 is the transition amplitude, |k〉 → |k + p〉,
between momentum eigenstates. Note that any reference to the
properties of the walls is translated to the boundary condition
quantizing the momentum in integer factors of π/L.

The results can now be used to explain the KWW exper-
iment in the strong-coupling regime if we interpret p as a
slight momentum imbalance between the atoms in the two
groups, arising due to imperfection in their preparation. As
can be readily observed from Fig. 2, we get oscillations of
the states |k〉 ↔ |k + p〉 embodied in ρ̃kp, which take place
at the frequency ω2 = ε̃p−k − ε̃−k and, similarly, of the states
| − k + p〉 ↔ | − k〉 embodied in ρ̃∗

−k,p and taking place at
the frequency ω1 = ε̃k − ε̃k+p. The quantum interference of
these modes give oscillations with the average frequency |ω2 +
ω1|/2 = 2kp, from which we identify the recurrence time,
which in an ideal experiment (p = 0), interpreted as the limit
|k| 
 p (i.e., p = pmin = π/L the minimum nonzero wave
vector in the reciprocal lattice) gives, τk = 2π/(2kp)p=pmin , or

τk = 2mL

�k
= 2mL2

π�nk

, (3)

where nk is an integer representing the position of k in
reciprocal space, that is k = nkπ/L. The period of these
recurrences corresponds, classically, to the time it takes for
the back-and-forth motion of a free particle in a 1D box, if we
take vk = �k/m as the classical velocity.

That the result we have established from a single-particle
picture is valid in the Tonks-Girardeau limit of a 1D system
of impenetrable bosons is supported by the results obtained

FIG. 2. Time evolution of an initial single-particle superposition.
(a) Initially the particle is described by a superposition of two waves
“freely” propagating in opposite directions and with the magnitude
of their momentum slightly differing by an amount p. (b) After half a
recurrence period, the component waves have perfectly reflected off
the walls. (c) A subsequent wall reflection brings the single-particle
superposition to the initial configuration, and an exact recurrence is
completed.

recently by Kaminishi et al. [31] who, by calculating the square
amplitude between an initial state and the time-evolved state,
and observing its periodicity, derived rigorously our L2-law
for the recurrence time in the free-fermionic and free-bosonic
limit of the Lieb-Liniger model, independent of the initial state.
They made an estimate of the order of 10 ms for cold atoms
confined in one dimension of 10 μm, in a superposition of
Lieb’s type II (one-hole) excitations, and posed the challenge
for its observation. This is of the same order of magnitude that
we estimate for the initial state of the KWW experiment in the
strong-coupling regime (see Appendix A).

III. DISCUSSION

In the KWW experiment, the atoms go back-and-forth with-
out noticeably equilibrating even after thousands of collisions.
A slow relaxation of the initial momentum distribution is
observed, attributed to dephasing of the oscillating atoms due
to trap anharmonicities, although the effect of the boundary
conditions, revealing the lack of perfect isolation, is believed
here to play an important role. In fact, we can show within
our picture (see Appendix B) that a slight deviation from the
hard-wall boundary condition, meaning a small but nonzero
probability for the particles to leave the box, produces
decoherence, manifested as a slow decay with time of the
off-diagonal elements of the single-particle density matrix,
ρ̃kp, superimposed to the oscillations already discussed. This
source of decoherence is actually measured in the KWW
experiment, as atomic losses (besides others such as heating
effects), and points to the fact that a relaxation toward a
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steady state in the nonequilibrium dynamics of a quantum
many-body system requires, in some degree, the contact with
an environment.

The possibility for an isolated quantum system to approach
equilibrium without the need of an environment is still there
but requires a more explicit theoretical demonstration of
how exactly this can take place. To illustrate this, let us
consider isolated integrable systems for which the long-time
expectation value of local operators has been conjectured
[7] to be described by a GGE, which is represented by
ρGGE ∝ exp(−∑

i αiIi), where the Ii are the local conserved
quantities, and the αi are Lagrange multipliers chosen so
as to ensure that these conserved quantities remain constant
over time. Hard-core bosons in a 1D finite lattice fall in this
category and constitute a model studied numerically in Ref.
[7] to emulate the conditions in the KWW experiment. For
a satisfactory answer to the question posed there of whether
the system relaxes to an equilibrium state (being described
by GGE), it must then be proved that the unitary dynamics
take the initial density matrix along a path whose asymptotics
coincides with ρGGE.

A proof that a steady-state density matrix of an exponential
form (as the GGE is) can arise from the unitary dynamics
of a general isolated quantum system was given sometime
ago by Hershfield [32], assuming that an unspecified physical
relaxation process causes correlation functions to decay at long
times. This assumption, which is hard to imagine without the
presence of an environment (or wrong boundary conditions
playing the role of it), can be avoided for the steady state
in some transport problems by making use of the “open
system limit” [33], which, however, requires going to the
thermodynamic limit. It is then challenging to show that
the GGE is the natural fate for the unitary time evolution
of the density matrix in a finite system, as considered here.

IV. SUMMARY

We have shown that in a finite isolated quantum many-body
system such as a 1D gas of impenetrable bosons enclosed in
a hard-wall box, where a single-particle picture of the whole
dynamics is possible due to fermionization and the preparation
of all the particles in the same initial superposition, that the
initial state of the gas inevitably recurs as a consequence of
the unitary evolution, in contrast to the possibility that the gas
equilibrates. The recurrence time is proportional to L2, with
L the length of the box, and by using our model as a poor
man’s version of the conditions in the KWW experiment in
the strong-coupling regime, this recurrence time is found to
be in fair agreement with the oscillations of the initial state
observed in that experiment in the mentioned regime. The
possibility of having trajectories for the density matrix of an
isolated quantum system, which in the long-time limit tend
to a time-independent exponential form, as the GGE, will be
investigated elsewhere.
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APPENDIX A: ESTIMATING THE RECURRENCE TIME
IN THE KWW EXPERIMENT

In the KWW experiment [2], there is an ensemble of
thousands parallel (and noninteracting) 1D Bose gases, with
a number of 87Rb atoms ranging from 40 to 250 in each
tube. These are put, in an initial time, in a momentum
superposition with �ke to the right and �ke to the left, with
ke ≡ 2k determined from the total atomic collision energy
8(�k)2/2m = 0.45 �ωr , where ωr is the lowest transverse ex-
citation frequency (ωr/2π = 67 kHz). An “effective” length,
L, for the statistical ensemble of parallel Bose gases can be
determined from the weighted average of the 1D coupling
strength in each tube, γ0 = |2/a1Dn1D|, and the 1D density
n1D = Ntube/L, where Ntube is the weighted average of atoms
per tube, |a1D| ≈ a2

r /2a is the 1D scattering length, with ar =
41.5 nm the transverse oscillator width, and a = 5.3 nm the
3D scattering length. By taking, say Ntube = 211, and the value
γ0 = 4 reported in the experiment for the strong-coupling
regime, we get an effective length of L  70 μm, whereby
nke

 353 
 1, as required from the condition |ke| 
 p. The
corresponding recurrence time, from Eq. (3), is τke

 12 ms,
which is to be compared with the observed value τ = 34 ms.

APPENDIX B: DERIVATIONS

1. Conventions

We note that, originally, Schwinger used [29] a convention
in which 	q = 	p = √

2π/N , which is equivalent to the
symmetric direct and inverse Fourier transforms. Here we
use the standard convention for direct and reciprocal lattices,
namely, 	q = a (with a the lattice constant) and 	p =
2π/Na, which conserve the phase-space volume 	q	p, and
we consider the limit a → 0, N → ∞, with (N − 1)a = L

fixed.

2. Hamiltonian and density matrix in Liouville space

First we need to project all operators along the Schwinger
coordinates, Uqp = eipq̂eiqp̂, which can be shown to constitute
a complete othonormal operator basis. For the Hamiltonian,
H = p̂2 + V (q̂), we need to calculate Hqp = (Uqp,H ) =
Tr [ p̂2 + V (q̂) ]eipq̂eiqp̂, that is

Hqp =
∫

dp′

2π
〈p′| p̂2 eipq̂eiqp̂|p′〉

+
∫

dq ′〈q ′| V (q̂) eipq̂eiqp̂|q ′〉,

=
∫

dp′

2π
eiqp′

p′2δ[p′ − (p′ + p)]

+
∫

dq ′eipq ′
V (q ′)δ[q ′ − (q ′ + q)],

= εq δ(p) + vp δ(q), (B1)
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where we have defined εq = (2π )−1
∫

dp′eiqp′
p′2 and, with

V (q ′) = (gL/2)[δ(q ′ − L/2) + δ(q ′ + L/2)], we easily get
vp = gL cos(pL/2). Note that we have used the shift operator
properties: eipq̂ |p′〉 = |p′ + p〉 and 〈q ′| eiqp̂ = 〈q ′ + q|. For
the density matrix we need to calculate ρqp = (Uqp,ρ) =
Tr ρ eipq̂eiqp̂, that is

ρqp =
∫

dp′

2π
〈p′| ρ eipq̂eiqp̂ |p′〉=

∫
dp′

2π
eiqp′ 〈p′| ρ |p′ + p〉.

(B2)

3. Structure constants of the Heisenberg group

The structure constants of the Heisenberg group are
obtained from i [Uα,U

†
β] = ∑

γ c
γ

αβUγ , by repeated use of
the Baker-Campbell-Hausdorff formula in the form ex̂eŷ =
ex̂+ŷ+[x̂,ŷ]/2, which holds whenever [x̂,ŷ] is proportional to
the identity matrix. This leads, with [q̂,p̂] = i, to the more
convenient form

Uqp = ei(pq̂+qp̂−qp/2),

and hence

[Uq ′p′ ,U †
qp] = [e−ip(q ′−q) − e−iq(p′−p)]

× ei[(p′−p)q̂+(q ′−q)p̂−(q ′−q)(p′−p)/2].

Rewriting this as i[Uq ′p′ ,U
†
qp] = ∑

r,s crs
q ′p′,qpUrs , we get

crs
q ′p′,qp = i[e−ip(q ′−q) − e−iq(p′−p)]δr,q ′−qδs,p′−p. (B3)

A mixed notation with sums and integrals will be kept to
remind that the values of q and p, although possibly very
large, remain finite [29].

4. Combining all in the Fano equation

Using Eqs. (B1)–(B3) we can express the Liouville-Von
Neumann equation for the density matrix in Liouville space
[22] as

∂ρqp

∂t
=

∫ ∫
dq ′dp′ �qp,q ′p′ρq ′p′ =

∑
rs

∫ ∫
dq ′dp′crs

qp,q ′p′Hrsρq ′p′ ,

= i
∑
rs

∫ ∫
dq ′dp′[e−ip′(q−q ′) − e−iq ′(p−p′)]δr,q−q ′δs,p−p′ [εr δ(s) + vs δ(r)] ρq ′p′ ,

= i

∫ ∫
dq ′dp′[e−ip′(q−q ′) − e−iq ′(p−p′)] [εq−q ′ δ(p − p′) + vp−p′ δ(q − q ′)] ρq ′p′ ,

= i

∫
dq ′[e−ip(q−q ′) − 1]εq−q ′ρq ′p + i

∫
dp′[1 − e−iq(p−p′)]vp−p′ρqp′ .

(B4)

5. Transformation to principal axes

We now perform an inverse Fourier transformation over the
q index. Define

ρ̃kp =
∫

dq e−ikqρqp, and ε̃k =
∫

dq e−ikqεq . (B5)

With these we can deconvolve Eq. (B4) and obtain our main
result

∂ρ̃kp

∂t
= i(ε̃k−p − ε̃k) ρ̃kp + i

∫
dp′vp′(ρ̃k,p−p′ − ρ̃k−p′,p−p′ ).

(B6)
Note that, from the definitions, we easily get

ρ̃kp = 〈k| ρ |k + p〉, and ε̃k = k2, (B7)

which are the transition amplitudes between the momentum
eigenstates |k〉 → |k + p〉, and the bare-particle energies,
respectively.

APPENDIX C: BOUNDARY CONDITIONS

1. Hard walls

In the textbook problem of a free particle in a symmetric
box, i.e., with the origin at the center, the hard-wall condition

is imposed by the vanishing of the wave function at the box
walls. The stationary states (which are also the momentum
eigenstates) then have either even parity with k = noddπ/L

and nonzero probability for the particle to be at the center,
or odd parity with k = nevenπ/L and zero probability for the
particle to be at the center. In our lattice problem, with N odd
(as in Schwinger’s treatment), the center of the box is a lattice
site, and then the particle is likely to hop to it. This means
that all our momentum eigenstates must have the same (even)
parity, a reason why 	p = 2π/L and not 	p = π/L. It is
then easy to see that, imposing vanishing transition amplitudes
between momentum eigenstates with different parities makes
the second term in Eq. (B6) vanish.

Alternatively, we can impose the hard-wall boundary
condition by saying that the probability of the transition
|k〉 → |k + p〉 does not depend on k. This can be written as
〈k + k′| ρ |k + k′ + p〉 = e−ik′L〈k| ρ |k + p〉, which implies

ρ̃k−p′,p−p′ = eip′L ρ̃k,p−p′ . (C1)

With this, the second term in Eq. (B6) is proportional to∑
p′ 	p′ sin(p′L)eip′L/2ρ̃k,p−p′ = 0, vanishing due to momen-

tum quantization, and then Eq. (2) in the main article follows.
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2. Slightly penetrable walls

Motivated by Eq. (C1) we can imagine a boundary condition
that produces decaying coherences. Consider, for example,

ρ̃k−p′,p−p′ = [1 − iL−1δ(p′)(ε̃k/g)2] ρ̃k,p−p′ . (C2)

In this case, the second term in Eq. (B6) becomes
−g(ε̃k/g)2

∫
dp′ cos(p′L/2)δ(p′) ρ̃k,p−p′ = −(ε̃2

k/g) ρ̃kp, and
we get as solution of Eq. (B6) oscillating coherences, as in the

hard-wall case, but damped by the probability of the particle
to leave the box. The decay time is

τd,k = g/ε̃2
k , (C3)

which expresses the fact that for a harder wall and/or a less-
energetic incoming particle, the characteristic time to leak out
of the box is longer. Slightly penetrable walls corresponds to
g/ε̃k 
 1.
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