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Phase transition and surface sublimation of a mobile Potts model
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We study in this paper the phase transition in a mobile Potts model by the use of Monte Carlo simulation. The
mobile Potts model is related to a diluted Potts model, which is also studied here by a mean-field approximation.
We consider a lattice where each site is either vacant or occupied by a q-state Potts spin. The Potts spin can
move from one site to a nearby vacant site. In order to study the surface sublimation, we consider a system of
Potts spins contained in a recipient with a concentration c defined as the ratio of the number of Potts spins Ns to
the total number of lattice sites NL = Nx × Ny × Nz. Taking into account the attractive interaction between the
nearest-neighboring Potts spins, we study the phase transitions as functions of various physical parameters such as
the temperature, the shape of the recipient, and the spin concentration. We show that as the temperature increases,
surface spins are detached from the solid phase to form a gas in the empty space. Surface order parameters
indicate different behaviors depending on the distance to the surface. At high temperatures, if the concentration
is high enough, the interior spins undergo a first-order phase transition to an orientationally disordered phase.
The mean-field results are shown as functions of temperature, pressure, and chemical potential, which confirm
in particular the first-order character of the transition.
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I. INTRODUCTION

Phase transition is a fascinating subject that has attracted an
enormous number of investigations in various areas during the
last 50 years. Much progress has been achieved in the 1970s in
the understanding of mechanisms which characterize a phase
transition. The renormalization group shows that the nature of
a phase transition depends on a few parameters such as the
space dimension, the symmetry of the order parameter, and
the nature of the interaction between particles [1–3].

Recently there has been growing interest in using spin
systems to describe properties of dimers and liquid crystals
[4]. Spin systems are used in statistical physics to describe
various systems where a mapping to a spin language is
possible. In two dimensions (2D) Ising-Potts models were
studied extensively [5–7]. Interesting results, such as hybrid
transitions on defect lines, were predicted with renormalizaton
groups and confirmed with Monte Carlo (MC) simulations [8].
Unfortunately, as for other systems of interacting particles,
exact solutions can be obtained only for systems up to 2D with
short-range interactions [9,10]. We focus in this paper on the
q-state Potts model in three dimensions (3D), where Bazavova
et al. have recently shown precise results for various values
of q for the localized Potts models [11]. High-temperature
series expansions for random Potts models have been studied
by Hellmund and Janke [12]. Other investigations have been
carried out on critical properties in the 3D site-diluted Potts
model [13] and Potts spin glasses [14–18].

We are interested here in the problem of moving particles
such as atoms or molecules in a crystal. To simplify, we
consider the case of mobile q-state Potts spins moving from
one lattice site to a nearby one. The q states express the
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number of internal degrees of freedom of each particle, such as
molecular local orientations. We simulate the mobile six-state
Potts model on a cubic lattice. It is known that the pure Potts
model in three dimensions undergoes a continuous transition
for q = 2 and a first-order transition for q = 3,4,... We use
here MC simulation and a theoretical analysis to elucidate
properties of such a system. The mobility depends on the
temperature. At low temperatures, all spins gather in a solid,
compact phase. As the temperature increases, spins at the
surface are detached from the solid to go to the empty
space, forming a gaseous phase. We show that the phase
transformation goes through several steps and depends on the
concentration of Potts spins in the crystal.

The mobile Potts model presented here is expected to
be equivalent to the dilute Potts model as far as the bulk
thermodynamics is concerned. The kinematics at the interface
between the solid and the gas phases may be affected by the
constraint that atoms move only to empty neighboring cells in
the mobile model, as opposed to the case where atoms move
to any other vacant cell in the diluted model.

At a sufficiently high concentration, spins are not entirely
evaporated and the remaining solid core undergoes a transition
to the orientationally disordered phase. We anticipate here that
there is only one phase transition in the model, a first-order
transition from a higher-density (solid) phase with a nonzero
Potts order parameter to a lower-density phase with vanishing
Potts order parameter. The sublimation observed below is
analogous to surface melting, which in the melting of a solid
can begin well below the bulk melting temperature. Details
are shown and discussed in terms of surface sublimation and
melting. We note in passing that direct studies of melting
using continuous atomic motions are efficient for bulk melting
[19–21], but they have often many difficulties to provide clear
results for complicated situations such as surface melting
(see references cited in Ref. [22]). Using discrete spin
displacements as in the present model, we show that bulk
melting and surface sublimation can be clearly observed. We
believe that these results bear essential features of real systems.
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Section II is devoted to the description of our mobile Potts
model. The mobile Potts model is related to a diluted Potts
model. The latter model is analyzed within the mean-field
approximation for bulk properties in Sec. III below. The two
models are not identical. While in the mobile Potts model a
spin can move to a void location nearby, in the diluted model
there is no constraint on the proximity of the locations of the
spin and the vacancy. The thermodynamics of two models may
be identical in the long run, even though the kinematics may
be different. Section IV is devoted to the presentation of MC
simulation results. Concluding remarks are given in Sec. V.

II. MOBILE POTTS MODEL

We consider a lattice of NL sites. A site i can be vacant or
occupied at most by a Potts spin σi of q states: σi = 1,2, . . . ,q.
Potts spins can move from one site to a neighboring vacant
site under effects of mutual spin-spin interaction and/or of
temperature T . In order to allow for spin mobility, the number
Ns of Potts spins should be smaller than NL. Let us define the
spin concentration c by c = Ns/NL. The Hamiltonian is given
by the Potts model,

H = −J
∑

i,j

δ(σi,σj ), (1)

where J is the interaction constant between nearest neighbors
(NN) and the sum is taken over NN spin pairs. To this simple
Hamiltonian we can add a chemical potential term when we
deal with the system in the grand-canonical description [23]
and an interaction term between neighboring vacancies (see
below).

The ground state (GS) of the system described by Eq. (1)
is the one with the minimum of interaction energy: each
spin maximizes the number of NN of the same values. As a
consequence, all spins have the same value and form a compact
solid. If the lattice is a recipient of dimension Nx × Ny × Nz,
then the GS is a solid with a minimum of surface spins.
(Surface spins have higher energies than interior spins due to
a smaller number of NN.) In a recipient with Nx = Ny < Nz

with periodic boundary conditions in the xy plane and close
limits on the z direction, for example, the free surface is the
xy surface. We show in Fig. 1 such an example.

When T is increased, surface spins are detached from the
solid to go to the empty space. At high T , the solid becomes a
gas. The path to go to the final gaseous phase will be shown in
this paper. We start with the bulk case and examine the surface
behavior in what follows.

III. MEAN-FIELD THEORY

In this section, we present the mean-field theory for the
mobile Potts model. It is more convenient to work in the grand-
canonical description. The results do not depend on the
approaches for large systems [23]. To that end we consider
a vacancy as a spin with value zero. The model becomes a
(q + 1)-state model. In addition, we add a chemical term in
the Hamiltonian and rewrite it in a more general manner in the
following.

FIG. 1. (Color online) Ground state of the system with Nx =
Ny < Nz.

A. Hamiltonian

We divide the space into M cells, of equal volume v,
centered each on a site of a cubic lattice. Any cell is either
vacant or occupied by a single particle characterized by a
q-value spin. Neighboring particles that have the same spin
value get a lower interaction energy −J than if they have
different spin values. Zero energy is assigned to neighboring
cells that have at least a vacancy. We assign an energy −K

to neighboring cells that are occupied irrespective of their
spin values. In the grand-canonical ensemble we allow for a
fluctuating number of particles and include in the Hamiltonian
a single site (cell) term proportional to the chemical potential
H if there is a particle at the cell. This model can be described
by assigning at each site a (q + 1) Potts spin σ = 0,1, . . . ,q.
The zero value corresponds to vacancy, while the values 1, 2,...,
q correspond to a particle having a spin. The Hamiltonian is

− H
kBT

= J
∑

i,j

δ(σi,σj )[1 − δ(σi,0)][1 − δ(σj ,0)]

+K
∑

i,j

[1 − δ(σi,0)][1 − δ(σj ,0)]

+H
∑

i

[1 − δ(σi,0)]. (2)

This corresponds to the grand-canonical ensemble: fixed tem-
perature T , chemical potential H = μ/kBT , and volume V .

B. Mean-field theory

The mean-field theory of the diluted Potts model [24] is
exact for the equivalent-neighbor lattice. The thermodynamic
potential divided by M is proportional to the pressure:

−pv = �

M
= −kBT

ln Z

M
= kBT min(�), (3)

where

� = J

2

(
m2

1 + m2
2 + m2

q + · · · )

− ln(1 + eJm1+H + eJm2+H + · · · + eJmq+H ). (4)
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Note that the above equations are for K = 0. The optimization
equations are

ma = eJma+H

1 + eJm1+H + eJm2+H + · · · + eJmq+H
(5)

for a = 1,...,q. The ma gives the average number of particles
of spin a normalized by the total number of sites (cells) M .
The number of particles normalized by M is

n =
q∑

a=1

ma =
q∑

a=1

eJma+H

1 + eJm1+H + eJm2+H + · · · + eJmq+H
.

(6)
Assuming the ordering of the Potts spin to occur in state 1, we
parametrize the m′s as follows:

m1 = n

q
+ (q − 1)m; m2 = m3 = ... = mq = n

q
− m. (7)

The optimization equations (5) and (6) are now

qm

n
= eJqm − 1

eJqm + q − 1
, (8)

n = eJ (n/q−m)+H (eJqm + q − 1)

eJ (n/q−m)+H (eJqm + q − 1) + 1
. (9)

In the following we denote mq/n = X. The energy U scaled
by M number of cells is

U = −1

2

q∑

a=1

m2
a = − n2

2q
− (q − 1)n2X2

2q
. (10)

The specific heat at a fixed number of particles n is

Cv = dU

dT
= −q − 1

2q
n2 dX2

dT
. (11)

The second optimization equation, Eq. (9), provides a formula
for the chemical potential, since H = μ/T ,

μ = T ln
n

1 − n
+ T ln

1 − X

q
− n(1 − X)

q
. (12)

The pressure p is obtained from Eq. (3):

pv = − n2

2q
[1 + (q − 1)X2] − T ln(1 − n). (13)

Note that in the disordered (gas) phase X = 0 and n � 1.
The equation of state reduces to the ideal gas equation pv =
nT . The entropy S normalized by M is obtained from the
thermodynamic Euler equation:

S = u + pv − μn

T

= −n ln(n) − (1 − n) ln(1 − n)

−n ln
1 − X

q
− n2

qT
[(q − 1)X2 + X]. (14)

The model exhibits a first-order phase transition tied to
the Potts q-state transition. In Fig. 2 we show n by curve 1
(red) and the order parameter Q = qm [see Eq. (7)] by curve
2 (blue) as functions of T for fixed chemical potential μ =
−0.4 [Fig. 2(b)]. Increasing the chemical potential reduces
the discontinuity in n, as seen for μ = −0.3 [Fig. 2(a)], while

FIG. 2. (Color online) Average number of particles per site n

(curve 1, red, left scale) and order parameter Q (curve 2, blue, right
scale) versus temperature T with (a) μ = −0.3, (b) μ = −0.4, and
(c) μ = −0.51. See text for comments.

decreasing the chemical potential below μ = −0.5 destroys
order at all temperatures, as seen for μ = −0.51 [Fig. 2(c)].

This is understood by comparing the energy of any pair
(i,j ) in the ordered (solid) phase Ei,j = J + 2H to the energy
in the disordered (gaseous) phase Ei,j = 0. The two energies
cross when H = −0.5J , or when μ = −0.5.

The phase diagram in the (T ,μ) plane shown in Fig. 3
includes an ordered (solid) phase (low T and high μ) and a
disordered (gas) phase. The two phases are separated by a line
of first-order transitions.

In the limit of large chemical potential the number of
vacancies becomes negligible and thus the model reduces to the

FIG. 3. (Color online) Phase diagram in the plane (T ,μ). The
solid line is a first-order transition line.
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FIG. 4. (Color online) Phase diagram in the plane (T ,p).

q-state Potts model. As a result the transition line approaches
T = 0.25.

The phase diagram in the temperature-pressure plane is
shown in Fig. 4.

Isotherms pressure p vs n are shown in Fig. 5. For T = 0.25
there is no phase transition, while for T = 0.23, 0.2, 0.18 the
first-order transitions line is crossed. As a result, we see the
gap in the density n.

The higher n branch corresponds to the ordered solid. Note
that the solid exists only for n large enough (n > 0.95). In other
words the presence of 5% vacancies destroys the solid. This
is summarized in the phase diagram in the (T ,n) plane shown
in Fig. 6. The two lines represent the densities of the solid
(red squares) and of the gas (blue circles). The two branches
coalesce at a temperature of 0.25. Note that this is not a critical
point but the end of the thermodynamic space as it occurs in
the limit of infinite chemical potential (i.e., no vacancies).

Entropy and energy versus temperature and chemical
potential are shown in Fig. 7. The fundamental equation,
chemical potential as a function of temperature and pressure,
is concave as required by the second law of thermodynamics
(thermodynamic stability). It is a continuous function and the
first-order transitions manifest as discontinuities in the slope
of the chemical potential when graphed against temperature
and pressure (Fig. 8).

IV. MONTE CARLO RESULTS

In this section, we present our results from MC simulations.
The method can be briefly described as follows. At a given T ,

FIG. 5. (Color online) Isotherms (p,n) are shown by thick curves
for T = 0.25 (curve 1, violet), 0.23 (curve 2, green), 0.2 (curve
3, blue), and 0.18 (curve 4, red). Thin broken lines indicate
discontinuities of n.

FIG. 6. (Color online) Phase diagram in the plane (T ,n). See text
for comments.

we take a spin and calculate its interaction energy with its NN.
We then move it to one of the nearby vacant sites chosen at
random, and change its state chosen at random among q states.
We calculate its “new energy.” If this is lower than its old
energy, then the new spin state and new position are accepted.
Otherwise, we use the Metropolis criterion [25] to accept or
reject its new situation. We repeat this update procedure for all
spins; such a system sweeping is called one MC step (MCS).

In our simulations, we used 105 MCS/spin to equilibrate the
system before averaging physical quantities over the following
106 MCS/spin. We have verified that longer MC run times do
not change the results. We used various system sizes and shapes
to examine finite-size and shape effects on the results.

A. Transition

We study here the melting behavior of a solid contained in a
recipient described in Sec. II. The recipient has the dimension
Nx = Ny < Nz and is filled with molecules (Potts spins) in
the lower part of the recipient. The number of filled layers is
smaller than Nz (Fig. 1). Molecules under thermal effect can
be evaporated from the upper surface to the empty space. To
study the behavior of such a system, we choose to heat the
system from low to high T . Cooling the system from a random
initial configuration, namely, molecules in a gas state with
positions distributed over all space, will result in a compact
solid phase at low temperature, but the surface of this solid is
not so flat, so that the system energy is about 5% higher than
the GS energy shown in Fig. 1. However, the system behavior
at higher T and the phase transition are the same as obtained
by heating. We will show this later.

FIG. 7. (Color online) Entropy (left) and energy (right) as func-
tions of temperature and chemical potential.
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FIG. 8. (Color online) Surface in the space “temperature, pres-
sure, and chemical potential.”

Let us show now results for a lattice of 15 × 15 × 30 sites
where only the first 15 layers in the z direction are filled
(c = 50%) in the GS configuration shown in Fig. 1. As said
above, this configuration corresponds to the one with a minimal
free surface when the system is in the solid state.

Our simulation in real time shows that when T increases
atoms on the surface are progressively evaporated. The solid
core of the system remains in a Potts spin order, though its
volume is little by little reduced with increasing T . At a high
enough value of T , say Tc, the Potts orientational order of the
solid core is broken. However, the spins still stay in the solid
state up to a very high T , when the whole system melts to a gas
(or liquid) phase. Later we show evidence of such a change
of the system at several T with snapshots and corresponding
distributions of the NN number.

The magnetization M versus T is displayed in Fig. 9,
where M indicates a perfect order at low T . When T is
increased M decreases linearly with T ; a careful examination
of the system dynamics reveals that this regime corresponds
to the evaporation of surface spins. This regime ends with a
discontinuity of M at a transition temperature Tc � 1.234.

The discontinuity at Tc indicates a first-order phase
transition. We have verified this by recording the energy

FIG. 9. (Color online) Magnetization M versus temperature T

(in unit of J/kB ) for a lattice of 15 × 15 × 30 sites with a spin
concentration c = 50%. The system is completely ordered at T = 0,
and then surface spins are evaporated little by little with increasing
T . The phase transition of spin orientations of the solid core occurs
at Tc � 1.234.

FIG. 10. (Color online) Energy histogram P (U ) recorded at Tc =
1.234 for a 15 × 15 × 30 lattice with c = 50%. The presence of the
two peaks indicates that the transition is of first order.

histogram P (U ) at the transition temperature Tc = 1.234. The
double-peak structure shown in Fig. 10 confirms the first-order
character of the transition. Note that disordered evaporated
atoms, namely, atoms outside the system solid core, do not
participate in the transition.

We have studied the finite-size effect on the transition at c =
50%. Since the shape of the recipient has a strong effect on the
phase transition as seen below, we have kept the same recipient
shape to investigate the finite-size effect. To compare results at
the same concentration with those of the lattice 15 × 15 × 30
sites, we have used lattices of 20 × 20 × 40, 25 × 25 × 50,

FIG. 11. (Color online) Comparison of the evolution of (a) the
magnetization and (b) energy versus the temperature of a half-filled
lattice Nx × Ny × Nz for several sizes Nx = Ny = Nz/2 = 20 (red
void circles), 30 (blue filled circles), 40 (green void diamonds), 50
(black stars), 60 (magenta crosses), and 70 (sky-blue void squares).
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FIG. 12. (Color online) Transition temperature versus lattice size
Nx × Ny × Nz at c = 50% where Nx = Ny = Nz/2, with Nz = 30,
40, 50, 60, 70, and 80.

30 × 30 × 60, and 35 × 35 × 70 sites in which half of the
recipient is filled with spins, namely, c = 50%. We show in
Fig. 11 the magnetization and energy versus T for several
sizes.

Figure 11 shows that the transition looks like a second-order
transition when the size of the box is small. This is a well-
known finite-size effect: when the linear size of a system is
smaller than the correlation length at the transition, the system
behaves as a second-order transition. Therefore we have to use

FIG. 13. (Color online) Simulation for a half-filled lattice size
35 × 35 × 70 (c = 50%): (a) snapshot at T = 1.312 8 close to the
transition and (b) R vs Z, R being the percentage of lattice sites
having Z nearest neighbors, at T = 1.312 8. Note that the solid phase
is well indicated by the number of sites with six neighbors.

a finite-size scaling to ensure that the transition is of first order.
To do this, let us show the transition temperatures for systems
at various sizes in Fig. 12. By fitting simulation results with
the finite-scaling formula

Tc(L) = Tc(∞) + A

Lα
,

we find the following best nonlinear least mean square fit
with the relative change of the last (8th) iteration less than
−1.309 54 × 10−10:

Tc(∞) = 1.352 56 ± 0.004 089 (0.302 3%),

α = 2.9, A = −2335.24 ± 170.9 (7.316%).

This is shown by the continued line in Fig. 12.
Several remarks are in order: (i) The value of α indicates

that, within statistical error, Tc(L) does scale with the system
volume L3, as it should for a first-order transition [11,26].
(ii) Our value of Tc(∞) is in excellent agreement with
that found for the localized model Tc = 1.352 42 ± 0.000 01
obtained with the state-of-the-art multicanonical method [11]
with periodic boundary conditions in three directions. (Note
that in the original paper the authors have used a factor of 2
in the Hamiltonian). (iii) The fact that our system follows the
same finite-size scaling as the localized model confirms that
the transition observed in our mobile model is triggered by the
orientational disordering of Potts spins in the remaining solid
core at the transition temperature.

FIG. 14. (Color online) Effect of concentration. (a) Magnetiza-
tion versus temperature for a lattice 15 × 15 × Nz where Nz = 20
(red crosses), 30 (black stars), 40 (green diamonds), 50 (blue filled
circles), and 60 (red void circles). For each case, only the 15 first layers
are filled, corresponding to concentrations 15/Nz. (b) Transition
temperature versus the recipient height Nz.
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FIG. 15. (Color online) (a) Total magnetization M and (b) energy
per spin U versus T . Red void circles indicate results of localized
spins and blue filled circles indicate those of the completely mobile
model. Between these two limits, green void diamonds, black stars,
and magenta crosses correspond respectively to the cases where one,
two, and four surface layers are allowed to be mobile.

Following the last argument, it is then obvious that if the
quantity of matter remaining in the solid phase is so small due
to the evaporation, then there is no transition. This should be
seen if we lower the concentration.

Before showing the effect of concentration, let us show a
snapshot in the case of c = 50% in Fig. 13. The transition
scenario discussed above is seen in these snapshots: the
observed transition is that of Potts orientational order in the
solid core.

Note that unlike the crystal melting where atoms suddenly
quit their low-T equilibrium positions to be in a liquid state,
our model shows that the passage to the gaseous phase takes
place progressively with slow evaporation, atom by atom, with
increasing T .

Before showing the concentration effect, let us compare
the results of heating and cooling. As said above, cooling
the system from an initial configuration where molecules are
distributed at random over the whole space results in a compact
solid phase at low T , shown in Fig. 1. However, this is realized
only if we do a slow cooling. The final configuration at a tem-
perature is used as the initial configuration for a little bit lower
temperature and so on. A rapid cooling will result in a solid
with an irregular form having flat surfaces of various sizes.

B. Effect of concentration

Let us examine now results of simulations with smaller
concentrations. The absence of the phase transition is seen

FIG. 16. (Color online) Diffusion coefficient D versus T . Red
void circles (lowest curve) indicate results of localized spins and blue
filled circles (topmost curve) indicate those of the completely mobile
model. Between these two limits, from below green void diamonds,
black stars, and magenta crosses correspond, respectively, to the cases
where one, two, and four surface layers are allowed to be mobile.

when we decrease the concentration to c = 20%. As we can
see in Fig. 14, at low temperatures, in all cases the system is in a
condensed state. As T increases, the magnetization decreases
faster at lower concentrations. All atoms are evaporated for
small concentrations below the Potts transition temperature.

FIG. 17. (Color online) (a) Magnetic susceptibility χ and (b) heat
capacity CV versus T . Red void circles indicate results of localized
spins, and blue filled circles indicate those of the completely mobile
model. Between these two limits, green void diamonds, black stars,
and magenta crosses correspond, respectively, to the cases where one,
two, and four surface layers are allowed to be mobile.
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FIG. 18. (Color online) Layer magnetizations for the first four
layers. Red void circles, blue filled circles, green diamonds, and
black stars are the magnetizations of the first, second, third, and
fourth layers. See text for comments.

FIG. 19. (Color online) (a) Magnetization, (b) energy, and (c)
diffusion coefficient for two system shapes, 20 × 20 × 40 (red void
circles) and 40 × 20 × 20 (blue filled circles), at c = 50%.

Note, however, that for low concentrations, there is no
transition but the magnetization disappears only when the very
small solid core disappears, namely, at T � 1.1.

C. Surface sublimation

Let us show the results using the system size 20 × 20 × 40
with c = 50%. To appreciate the surface sublimation, we also
show the results of the localized model where spins stay each
on its site. Figure 15 shows the total magnetization and the
energy per spin.

We show in Fig. 16 the diffusion coefficient D for the cases
where one, two, and four layers are allowed to be mobile. As
seen, the evaporation is signaled by the change of curvature
of D. Only when all layers are allowed to be mobile does the
transition really become of first order with a discontinuity.

The magnetic susceptibility and the heat capacity are shown
in Fig. 17 where the same observation is made: only when all
layers are allowed to be mobile is the sublimation a first-order
transition. Note that the small peaks at low T correspond to
the surface evaporation.

We show in Fig. 18 the layer magnetization in the cases
where one, two, and four surface layers are mobile. As seen,
the layer next to the solid substrate is “retained” by the latter up
to the bulk transition occurring at Tc � 1.330. Other layers are
evaporated starting from the first layer, at temperatures well
below Tc.

To close this section, let us compare the results obtained
for two system shapes 20 × 20 × 40 and 40 × 20 × 20 with
c = 50% in Fig. 19. It is obvious that the second shape has
a larger free surface, which facilitates the evaporation. As a
consequence, there is no first-order transition because the solid
core disappears at a temperature lower than the Potts transition
temperature Tc � 1.330 at the size 20 × 20 × 40.

V. CONCLUSION

In this paper, we studied the properties of the mobile
Potts model by use of a mean-field theory and Monte Carlo
simulations. The two methods confirm the first-order character
of the phase transition in the bulk with q = 6. As discussed in
the Introduction, the mean-field approach does not consider the
real-time dynamics of the particles on the lattice sites. Rather,
it considers the average numbers of particles per site. In other
words, it is equivalent to taking the spatial average first before
considering the interaction between the particles uniformly
distributed on lattice sites. Such a mean-field average is often
used while dealing with disordered systems (dilution, bond
disorder, etc.). In MC simulations, the local environment of
each particle is first taken into account before calculating
its average over all particles. During the MC averaging, all
local situations are expected to be taken into account in the
final results. Hence the mean-field approximation takes the
spatial average before the ensemble average, while in MC
simulations the calculation is first done for each spatial particle
configuration and the statistical average is next made over
configurations. Furthermore, the mean-field approximation is
applied to the diluted Potts model, which is somewhat different
than the mobile Potts model. In the MC simulations of the
mobile Potts model a particle can be moved to a nearby
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vacant site, while in the diluted Potts model a particle could be
moved to a vacant site anywhere on the lattice. This difference
is expected to be important for the kinetics but not for the
thermodynamics of the two models.

From a finite-size scaling we showed that the transition
of an evaporating solid belongs to the q = 6 localized Potts
model. The reason is that a portion of the low-T solid
phase of the mobile Potts model still remains solid at the
transition temperature of the localized Potts model so that the
orientational disordering of Potts spins occurs in this solid
portion before the complete melting. Mean-field results for
various parameters in the phase space are shown and discussed.
In particular, we showed that there exists a threshold value
of the chemical potential above which there is a solid-gas

transition. Monte Carlo simulations have been carried out to
study the surface evaporation behavior. We found that atoms
are evaporated little by little from the surface at temperatures
much lower than the bulk transition. We believe that the model
presented in this paper, though simple, possesses the essential
evaporation properties.
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