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Based on an analysis of Feynman’s path integral formulation of the propagator, a relative criterion is proposed
for validity of a semiclassical approach to the dynamics near critical points in a class of systems undergoing
quantum phase transitions. It is given by an effective Planck constant, in the relative sense that a smaller effective
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are given in the XY model and in the Dicke model.
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I. INTRODUCTION

Quantum phase transitions (QPTs) have attracted a great
deal of attention in recent years [1–13], with most of the
studies focusing on equilibrium properties. Recently, due to
significant progress in experimental techniques, simulation of
the time evolution of models undergoing QPTs is becoming
realizable [14,15], and their dynamical properties are receiving
increasing attention. Only a few analytical methods have been
shown to be useful in the study of the dynamics near QPTs,
for example the so-called Kibble-Zurek mechanism for slow
variation of a controlling parameter λ passing the critical
point [16–24], and the adiabatic perturbation theory [25–28].

For quench dynamics, a semiclassical approach has been
found to be useful in several models in predicting decaying
behaviors of the survival probability (SP) near quantum critical
points at which the ground levels have infinite degener-
acy [29,30]. Numerical results suggest that the semiclassical
approach may work well even in the neighborhood of the
critical points [31]. However, not much is known about
the condition under which this semiclassical approach is
applicable; in fact, only qualitative arguments have been
given [29], based on properties such as a high density of states
and relatively high initial energy.

In this paper, we study the above-mentioned condition in
a more quantitative way. Based on analysis of Feynman’s
path-integral formulation of the propagator, we propose that
an effective Planck constant can be introduced and used to
give a relative criterion for the validity of the semiclassical
approach. That is, a smaller effective Planck constant should
imply a better performance of the semiclassical approach.
To numerically test this prediction, we utilize the SP, which
has been shown recently, both theoretically [7–9,32–35] and
experimentally [36,37], to exhibit a highly enhanced decay
near critical points and can be used as an indicator of QPTs.
We test the criterion in two models, namely a one-dimensional
(1D) XY model [38–40] and the Dicke model [41], which
belong to two different universal classes, respectively [29,35].

The paper is organized as follows. In Sec. II, we introduce
the above-mentioned effective Planck constant and present
arguments that lead to the relative criterion. In Sec. III, we
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discuss the properties of the effective Planck constant in the
two models mentioned above. Then, in Sec. IV, we numerically
study the deviation of the SP decay from predictions of the
semiclassical theory in the two models. The numerical results
show that the relative criterion works well. Finally, conclusions
and discussions are presented in Sec. V.

II. A RELATIVE CRITERION FOR THE VALIDITY
OF THE SEMICLASSICAL APPROACH

In this section, we present arguments that lead to a relative
criterion for the validity of the semiclassical approach to
dynamics near quantum critical points, which was discussed
in the preceding section. We consider systems whose Hamil-
tonians are written as H (λ), with a critical point at λ = λc of
the controlling parameter λ. We assume that the ground level
of H (λc) has infinite degeneracy in the thermodynamic limit
and that each system H (λ) with λ close to λc has a classical
counterpart at least in the low-energy region. For the sake of
convenience in presentation, here we introduce some notation
that is to be used in what follows, namely

δ = λc − λ, δ0 = λc − λ0, ε = λ − λ0. (1)

A. Basic ideas

Feynman’s path-integral formulation of quantum mechan-
ics supplies the most convenient framework for discussing the
semiclassical approach. For a quantum system whose classical
counterpart lies in a d-dimensional configuration space with
points denoted by q, in terms of Feynman’s path integral, the
time evolution of an initial packet ψ0(q0,t0) is written as

ψ(qb,tb) =
∫

dq0K(qb,tb; q0,t0)ψ0(q0,t0). (2)

Here, K(qb,tb; q0,t0) is the propagator [42,43],

K(qb,tb; q0,t0) =
∫

�

D[C]eiS/�, (3)

where � denotes the set of paths that carries an initial point
q0 at an initial time t0 to a final point qb at a final time tb, C =
{q(t)} indicates an element of �, and S = ∫ tb

t0
dt L(q(t), d

dt
q(t))

is the action along a path, with L denoting the Lagrangian
function of the system. In 1D configuration space, the
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path-integral symbol
∫
�
D[C] is defined by∫

�

D[C] = lim
n→∞

√
1

2i�πε

n−1∏
k=1

[∫ +∞

−∞

√
1

2i�πε
dq(k)

]
, (4)

where ε = (tb − t0)/n.
In the case in which the action S changes sufficiently fast

with a variation of the paths and its amplitude is sufficiently
large compared with �, the stationary-phase approximation
may become valid. In this case, the main contribution to the
propagator should be given by those paths not far from the
stationary solutions satisfying δS = 0, leading to the well-
known semiclassical Van Vleck–Gutzwiller propagator,

Ksc =
∑

s

D
1/2
s

(2πi�)d/2
exp

[
i

�
Ss − iπ

2
μs

]
, (5)

where the label s [more exactly s(qb,tb; q0,t0)] indicates a
classical trajectory starting from q0 and ending at qb within
a time period [t0,tb], Ss is the action along the trajectory s,
Ds = |det(∂2Ss/∂q0i∂qbj )|, and μs is the Maslov index.

Due to complexity of the paths, it is usually not an easy
task to show directly whether the action S varies sufficiently
fast with a sufficiently large amplitude to guarantee the ap-
plicability of the stationary-phase approximation. Therefore,
we adopt an alternative approach to the problem of the
validity of semiclassical treatment. Our approach is based
on the observation that, at least for an important class of
systems undergoing QPTs, their classical counterparts have the
following rescaling property in the neighborhood of the critical
points. That is, for each pair (λ,λ′) close to λc, some rescaling
procedure can carry classical trajectories of the system H (λ)
to those of the system H (λ′), at least in an approximate way.
(A class of systems possessing this property will be discussed
in Sec. II C.)

The basic ideas of our approach are as follows: First, for
systems possessing the above-discussed rescaling property,
the integrand eiS/� in Eq. (3) for a classical trajectory of each
system H (λ) can be written in terms of the related quantity for
a fixed system H (λm) of a fixed value λm. Specifically, with
the dependence of S on λ written explicitly, one may write

1

�
S(λ) = g

�eff(λ)
S(λm), (6)

where �eff is some effective Planck constant as a function of λ,
and g is a quantity that does not change much with variation
of λ, say, within one order of magnitude. [The explicit form of
�eff(λ) will be discussed in the following subsection.] Second,
(nonclassical) paths not far from the classical trajectories in the
two systems H (λ) and H (λm) should have a relation similar
to that discussed above for classical trajectories. As a result,
S(λ) along these paths can also be written in terms of those
for λm. Third, since the action S(λm) is independent of λ and
the quantity g can be regarded approximately as a constant,
variation of S(λ)/� lies mainly in the variation of the quantity
�eff(λ). This suggests that a smaller �eff(λ) should imply a
better performance of the stationary phase approximation,
and thus one has a relative criterion for the validity of the
semiclassical approach.

B. Detailed discussions for a relative criterion

In this subsection, we discuss the details of the relative
criterion discussed above. In many cases, one is interested
in a time period [t0,tb] whose length is proportional to some
characteristic time scale τ of the system H (λ), namely, T =
(tb − t0) ∝ τ . Near the critical point, the characteristic time
scales as τ ∼ |λ − λc|−α , with some exponent α > 0, and it
diverges at the critical point. For brevity, we do not write
explicitly the λ dependence of τ .

Since T ∝ τ , we can perform a time rescaling, such that
the rescaled time periods of interest in systems H (λ) lie in the
same region. Specifically, we do this by

t → t̃ = t/η with η = τ/τm, (7)

where τm is the characteristic time scale of the system H (λm).
Here, we use a tilde to indicate rescaled quantities. For
example, the rescaled time region is written as [̃t0,̃tb] with
a length T̃ = t̃b − t̃0 ∝ τm.

Let us consider systems possessing the rescaling property
discussed in the previous subsection, with the time rescaling
in Eq. (7) being part of it. The action along a trajectory s of the
system H (λ) has the expression S(s) = ∫ tb

t0
Ldt . Using L to

denote the average value of L along the trajectory s and making
use of the time rescaling in Eq. (7), this action is written as
S(s) = LηT̃ . Using the rescaling procedure mentioned above,
the trajectory s is mapped to a rescaled trajectory s̃ that is close
to a trajectory sm of the system H (λm). Using Lm to denote
the average value of the Lagrangian along the trajectory sm,
the action for sm is written as S(sm) = ∫ Lmdtm = LmT̃ . If we
write L = γLm, then we have

S(s) = γ ηS(sm). (8)

Furthermore, we note that Eq. (8) also holds, approximately,
for Feynman paths close to the classical trajectories s and sm

in the two system, respectively. For such paths in the system
H (λ), the integrand in Eq. (3) can be written in terms of
Sm of the fixed system H (λm), namely eiγ ηSm/�. The point
is that, with variation of λ, Sm remains unchanged and it
is (γ η) that changes. It is not difficult to see that, if (γ η)
may become sufficiently large, it should be reasonable to
expect that the stationary approximation can be applicable
and the semiclassical approach can be valid. Clearly, the
quantity �/(γ η) plays the role of a rescaled, effective Planck
constant.

With the system H (λm) fixed, to get a criterion in a relative
sense for the validity of the semiclassical approach, one can
use τ to replace η. Similarly, one can use L to replace γ .
Moreover, in most cases, apart from some constant, the value
of L lies in the same order of magnitude as the initial energy.
Hence, instead of L, we can consider the expectation value of
the energy of the initial state with respect to the ground level,
which we denote by �E . For example, for an initial state such
as the ground state of H (λ0), denoted by |�0(λ0)〉, �E is given
by

�E = 〈�0(λ0)|H (λ)|�0(λ0)〉 − E0(λ), (9)

where E0(λ) denotes the ground level of H (λ). Finally, in the
relative criterion discussed above, one can use the following
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form of the effective Planck constant:

�eff = �

τ�E

. (10)

Hereafter, we set � unit.
To summarize, based on the arguments given above, we

propose the following relative criterion for the validity of the
semiclassical approach to dynamics near a quantum critical
point. That is, if (i) trajectories of the classical counterparts
of the system H (λ) have similar shapes after a certain
rescaling procedure, and (ii) the contribution from Feynman
paths far from classical trajectories can be neglected, then a
smaller effective Planck constant �eff should imply a better
performance of the semiclassical approach.

C. Classical trajectories in a class of systems possessing
the required rescaling property

In this subsection, we show that a prerequisite of the relative
criterion given above, namely the closeness of rescaled clas-
sical trajectories, is satisfied in a class of systems undergoing
QPTs. In fact, in many cases, in the low-energy region of
a system close to a critical point, the Hamiltonian can be
approximately written as harmonic oscillators, i.e.,

H (λ) 	
n∑

i=1

ωi(λ)c†i (λ)ci(λ), (11)

where c
†
i (λ) and ci(λ) are bosonic creation and annihilation

operators for the ith mode with frequency ωi(λ). In terms of
the action-angle variables, the classical motion is given by

θi(t) = ωi(λ)t + θi(0), Ii(t) = Ii(0). (12)

In the vicinity of the critical point, one may focus on the
zero modes. For these modes, the frequencies ωi(λ) have the
following form:

ωi(λ) 	 νi(λc)|δ|αi , (13)

where δ is defined in Eq. (1). If these zero modes belong to the
same class of universality, their values of αi should be equal,
say, being α. Then, one has

ωi(λ)

ωi(λm)
	
∣∣∣∣ δ

δm

∣∣∣∣α, (14)

independent of the mode i. Making use of the relation in
Eq. (14), it is not difficult to find a rescaling procedure, under
which trajectories of the classical system H (λ) are mapped to
those of H (λm).

III. PROPERTIES OF THE EFFECTIVE PLANCK
CONSTANT IN TWO MODELS

To test the above-discussed relative criterion for the validity
of the semiclassical approach, we first need to study the
properties of the effective Planck constant �eff in Eq. (10) in
some concrete models. In this section we do this in two models,
namely the XY model [38–40] and the Dicke model [41].

A. Effective Planck constant in an XY chain

We first discuss an XY chain of N 1
2 -spins in a transverse

external field. The Hamiltonian is written as

H = −
N∑

i=1

(
1 + γ

2
σx

i σ x
i+1 + 1 − γ

2
σ

y

i σ
y

i+1 + λσ z
i

)
, (15)

where γ gives a measure to the anisotropy of the in-plane
interaction, and λ denotes the intensity of the external magnetic
field applied along the z axis. We use the periodic boundary
condition. This model reduces to an Ising chain in a transverse
field at γ = 1 and gives the XX model for γ = 0. This
XY model has two critical points λc = ±1, independent
of the value of γ , with the correlation length scaling as
|λ − λc|−ν [6,8,44,45]. Without loss of generality, we discuss
only the critical point λc = 1.

The Hamiltonian in Eq. (15) can be diagonalized analyti-
cally. To do this, one may first map the system to that of spinless
fermions through the Jordan-Wigner transformation [11,38–
40],

σx
i =

∏
j<i

(1 − 2d
†
j dj )(d†

i + di),

σ
y

i = −i
∏
j<i

(1 − 2d
†
j dj )(d†

i − di), (16)

σ z
i = 1 − 2d

†
i di,

where d
†
i and di are fermionic creation and annihilation

operators for a site i. In terms of d
†
i and di , the Hamiltonian is

written as

H = −
N∑

i=1

[d†
i+1di + d

†
i di+1 + γ (d†

i d
†
i+1 + didi+1)]

− λ

N∑
i=1

(1 − 2d
†
i di). (17)

Next, transform to momentum space by the transformation

d
†
k = 1√

N

N∑
i=1

d
†
i e

kri , dk = 1√
N

N∑
i=1

die
−kri , (18)

where d
†
k and dk are fermionic creation and annihilation

operators for a wave vector k, and ri represents the position
at a site i. Setting as a unit the distance between neighboring
sites, the wave vectors k are given by k = 2πm/N , where m =
−N/2, . . . ,(N/2 − 1) for an even N . Then, the Hamiltonian
is written as

H =
∑

k

[2(λ − cos k)d†
kdk + iγ sin k(d†

−kd
†
k + d−kdk) − λ].

(19)

This Hamiltonian can be diagonalized by the following
Bogoliubov transformation:

fk = uk(λ)dk − ivk(λ)d†
−k,

(20)
f

†
k = uk(λ)d†

k + ivk(λ)d−k,
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where

uk(λ) = cos[θk(λ)/2], vk(λ) = sin[θk(λ)/2], (21)

with θk defined by

tan[θk(λ)] = γ sin k

λ − cos k
. (22)

The result is

H =
∑
k>0

εk

(
f

†
k fk − 1

2

)
, (23)

where

εk = 2
√

(λ − cos k)2 + γ 2 sin2 k. (24)

When λ is sufficiently close to λc = 1, in the low-energy
region with |m| � N , Eq. (24) gives

εk 	 4πγ |m|/N. (25)

Due to this linear dependence of εk on m, these fermionic
modes can be mapped to bosonic modes via the method of
bosonization [11]. The bosonic modes, labeled by r with r =
1,2, . . ., have energies E

(r)
bos = ωr�bos, where

ωr ≈ r (26)

and �bos = 4πγ/N . A characteristic time of the system is
given by

τ = 2π

E
(1)
bos

	 N

2γ
. (27)

To compute �E , we express |�0(λ0)〉 in terms of the
eigenmodes diagonalizing H (λ) in Eq. (23). Using ηk to
represent the annihilation operators for the eigenmodes of
H (λ0), ηk and fk are connected by the relation [7,8]

η±k = cos αkf±k − i sin αkf
†
∓k, (28)

where

αk = [θk(λ) − θk(λ0)]/2. (29)

Note that ηk|�0(λ0)〉 = 0 for all k. The ground state |�0(λ0)〉
can be rewritten as [7,8]

|�0(λ0)〉 =
∏
k

[cos αk − i sin αkf
†
k f

†
−k]|�0(λ)〉, (30)

where |�0(λ)〉 is the ground state of H (λ). Let us compute

〈�0(λ0)|H (λ)|�0(λ0)〉
= 〈�0(λ)|

∏
k

[cos αk + i sin αkf−kfk]

×H (λ)
∏
k

[cos αk − i sin αkf
†
k f

†
−k]|�0(λ)〉. (31)

Making use of the relation

H (λ)f †
k = f

†
k [εk(λ) + H (λ)], (32)

after some algebra, we get

〈�0(λ0)|H (λ)|�0(λ0)〉 = E0(λ) +
∑
k>0

2εk(λ) sin2 αk. (33)

Finally, we have

�E =
∑
k>0

2εk(λ) sin2 αk. (34)

To see the main properties of the energy scale �E in
Eq. (34), let us compute sin2 αk . Making use of Eqs. (22)
and (29), after some algebra, we get

sin2 αk = 1

2
− 1

2

pk√
p2

k + q2
k

, (35)

where

pk = (λ0 − cos k)(λ − cos k) + γ 2 sin2 k, (36)

qk = (λ0 − λ)γ sin k. (37)

For fixed values of δ and δ0, numerically we found that, when
N is sufficiently large, the main contribution to �E comes from
those k for which |k| � |δ| and |k| � |δ0| and the number of
these k is proportional to N . Making use of this fact, and the
fact that |δ| � γ and |δ0| � γ , we get εk ≈ 2δ and

sin2 αk ≈ (δ − δ0)2

4δ2δ2
0

γ 2k2. (38)

Therefore, for sufficiently large N ,

�E ∝ γ 2N

δδ2
0

(δ − δ0)2, (39)

proportional to both N and (δ − δ0)2 (see Fig. 1 for direct
numerical simulations).

Now, we can discuss the behaviors of the effective Planck
constant �eff in Eq. (10). Substituting Eqs. (27) and (34) into
Eq. (10), we get

�eff = γ

N
∑

k εk(λ) sin2 αk

. (40)

Variation of �eff with δ for a fixed δ0 and a fixed N is shown in
Fig. 2. It is seen that �eff reduces to a quite small but nonzero
value when δ → 0. On the other hand, when δ → δ0, one has

FIG. 1. (Color online) Variation of the energy scale �E in
Eq. (34) with δ in the XY model for δ0 = 10−3 and γ = 0.7. Inset:
�E (triangles) increases linearly with the particle number N [see
Eq. (39)], with δ = 10−5. The solid line is a fitting straight line.
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FIG. 2. (Color online) The effective Planck constant �eff (in the
logarithm scale) vs δ in the XY model, for N = 16 000, δ0 = 10−3,
and γ = 0.7. Inset: �eff is approximately proportional to N−2 (δ =
4 × 10−4).

�E → 0; as a result, �eff → ∞. Moreover, since both τ and
�E are linear in the system’s size N , the effective Planck
constant decreases as 1/N2 (see the inset of Fig. 2).

B. Effective Planck constant in the Dicke model

The Dicke model describes the interaction of N atoms with
a number of bosonic modes via dipole interaction within an
ideal cavity [41]. In our study, we consider a single-mode
bosonic field. In terms of a collective operator J for the
N atoms, whose components satisfy the same commutation
relations as those of the angular momentum, the single-mode
Dicke Hamiltonian is written as [46]

H (λ) = ω0Jz + ωa†a + λ√
N

(a† + a)(J+ + J−). (41)

Making use of the Holstein-Primakoff representation [47–49],

J+ = b†
√

2j − b†b,

J− =
√

2j − b†b b, (42)

Jz = b†b − j,

where b and b† satisfy [b,b†] = 1 and j = N/2, the Hamil-
tonian can be diagonalized in the thermodynamic limit [46],
giving

H (λ) =
∑
n=1,2

εn(λ)c†n(λ)cn(λ) + f, (43)

where c
†
n(λ) and cn(λ) are bosonic creation and annihilation

operators, εn(λ) are the quasiparticle energies in increasing
order, and f is a c-number function. In this limit, the system
undergoes a QPT at a critical value λc = √

ωω0/2, with a
normal phase for λ < λc and a superradiant phase for λ > λc.
In the normal phase,

ε1,2(λ) = { 1
2

[(
ω2 + ω2

0

)±
√(

ω2
0 − ω2

)2 + 16λ2ωω0
]}1/2

,

(44)

FIG. 3. (Color online) Variation of a characteristic time τ with δ

in the Dicke model, for N = 30, δ0 = 10−2, and ω = ω0 = 1. Inset:
τ vs the system’s size N for δ = 10−3.

and in the superradiant phase,

ε1,2(λ) =
⎧⎨⎩1

2

⎡⎣ω2 + ω2
0

μ2
±
√(

ω2
0

μ2
− ω2

)2

+ 4ω2ω2
0

⎤⎦⎫⎬⎭
1/2

,

(45)

where μ = ωω0/(4λ2). It is easy to check that ε1(λ) = 0 at λc

in both phases.
In the thermodynamic limit, the Dicke model has a

characteristic time scale τ given by

τ = 2π

ε1(λ)
, (46)

diverging in the limit λ → λc, and the SP has a period τ/2 [50].
For finite N , we utilize the revival of the SP to compute
numerically the characteristic time τ . In Fig. 3, it is seen that
τ increases with decreasing δ and remains finite in the limit
δ → 0 at finite N .

The energy scale �E in the Dicke model cannot be
calculated analytically, and to understand its properties we
have to resort to numerical simulations (see Fig. 4 for an
example). Making use of the obtained �E , the effective Planck
constant �eff can be computed. Variation of �eff with δ is shown
in Fig. 5. It is seen that �eff in the Dicke model behaves in a way
that is qualitatively similar to that in the XY model discussed
above, e.g., it also decreases with increasing N (inset of Fig. 5).

IV. NUMERICAL TEST OF THE RELATIVE CRITERION
IN TWO MODELS

In this section, we discuss a numerical test for the relative
criterion proposed in Sec. II, that is, a smaller effective
Planck constant �eff implying a better performance of the
semiclassical approach. The two models discussed in the
previous section satisfy a prerequisite of the relative criterion,
which is discussed in Sec. II C (for the XY model, see
discussions in Sec. IV A for details), hence they are suitable
for this purpose.

042157-5



QIAN WANG, PINQUAN QIN, AND WEN-GE WANG PHYSICAL REVIEW E 92, 042157 (2015)

FIG. 4. (Color online) Variation of �E with δ in the Dicke model
for δ0 = 10−2 and ω = ω0 = 1. Inset: �E increases almost linearly
with the system’s size N , for δ0 = 10−2 and δ = 10−4.

Specifically, we study the SP decay for an initial state as
the ground state of H (λ0), written as

M(t) = |〈�0(λ0)|e−iH (λ)t |�0(λ0)〉|2. (47)

The SP is a special case of the so-called quantum Loschmidt
echo (LE) [51–53], defined by the overlap of the time
evolution of the same initial state under two slightly different
Hamiltonians, namely

MLE(t) = |〈�(0)| exp[iH (λ)t] exp[−iH (λ0)t]|�(0)〉|2. (48)

In the study of the LE, usually one writes H (λ) = H (λ0) +
εV . In recent years, the LE has been studied extensively in the
field of quantum chaos [54–69].

The semiclassical approach has been shown to be useful
in predicting decaying behaviors of the SP for times that are
not long in the two models discussed above [29]. Here, we are
interested in the deviation of the semiclassical prediction from

FIG. 5. (Color online) Variation of �eff (in the logarithm scale)
with δ in the Dicke model, for N = 30, δ0 = 10−2, and ω = ω0 = 1.
Inset: �eff vs the system’s size N for δ = 10−4.

the exact SP. Suppose we consider a time period from t = 0 to
t = TL. We divide this time period into m intervals, separated
by instants ti = iTL/m of i = 1,2, . . . ,m − 1. The following
quantity gives a measure to the deviation mentioned above:

D ≡
√√√√ 1

m

m∑
i=1

(xi − x̄)2, (49)

where

xi ≡
∣∣∣∣ ln M(ti) − ln Msc(ti)

ln M(ti)

∣∣∣∣ (50)

and x̄ indicates the average value of xi . Here, Msc(t) represents
the semiclassical prediction of the SP. To test the relative
criterion, we must compare the behaviors of the derivation
D and those of the effective Planck constant �eff with the
variation of the parameter δ.

A. Test in the XY model

In the XY model, the SP has the following expression [8]:

M(t) =
∏
k>0

Fk, (51)

where

Fk = 1 − sin2(2αk) sin2(εkt) (52)

evaluated at the parameter value λ. In this model, when δ is
small, the SP shows a periodic behavior in time, with a period
proportional to the system size N [7,32]. In our numerical
simulations, we found that the period is given by τ/2, where
τ is the characteristic time given in Eq. (27). However, for δ

large the SP exhibits an irregular behavior [32].
The model does not have any classical counterpart in the

whole energy region. However, in the close neighborhood of
the critical point and in the low-energy region, as discussed in
Ref. [29], a classical counterpart can be constructed. In fact,
as discussed in Sec. III A, near the critical point λc, low-lying
states of the system can be mapped to a bosonic system, such
as harmonic oscillators with frequencies ωr . In the case in
which the frequencies ωr are sufficiently incommensurable,
the classical counterpart has a motion resembling a chaotic
one when the time is not long. In this case, the semiclassical
theory predicts an exponential decay of the SP [29],

Msc(t) 	 e−2Rε2t/�
2
, (53)

where

R = 1

2t

(〈[ ∫ t

0
V (t)dt

]2〉
−
〈 ∫ t

0
V (t)dt

〉2)
. (54)

Direct computation of the value of R in the classical system
is very difficult, hence, instead, we evaluate it numerically by
fitting Msc(t) to the exact SP at a very large value of N .

The SP may follow the semiclassically predicted exponen-
tial decay for a finite time period only. Examples are given
in Fig. 6. We first take TL = 60, which is the approximate
time at which obvious deviation appears for δ = 2 × 10−4. In
Fig. 7, we plot the deviation D, computed with this TL, as a
function of the parameter δ for a fixed δ0. It is seen that the
value of D remains small outside the region of δ close to δ0,
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FIG. 6. (Color online) Decay of the SP (circles) (in the logarithm
scale) in the XY model. Parameters: δ0 = 10−3, N = 16 000, γ =
0.7; δ = 2 × 10−4 in the upper panel and δ = 9 × 10−4 in the lower
panel. The solid line indicates the semiclassical prediction.

and it decreases with increasing N (right inset of Fig. 7). It is
important to note that the shape of the curve of the distance D

in Fig. 7 is similar to that of the effective Planck constant �eff in
Fig. 2. This confirms the relative criterion proposed in Sec. II
that �eff can serve as a relative measure for the validity of the

FIG. 7. (Color online) The deviation D (in the logarithm scale)
vs δ in the XY model. Parameters: N = 16 000, δ0 = 10−3, γ = 0.7,
and TL = 60. Left inset: D vs δ for TL = 120. Right inset: Variation
of D with the system’s size N for δ = 4 × 10−4.

FIG. 8. (Color online) The deviation D vs δ in the Dicke model
for N = 30, δ0 = 10−2, ω = ω0 = 1, and TL = τ/5. Inset: variation
of D with the system’s size N for δ = 2 × 10−3.

semiclassical approach. Furthermore, we found that variation
of the computed time period TL does not alter this conclusion
(see the left inset of Fig. 7 for results obtained with another
value of TL).

B. Dicke model

In the vicinity of the critical point of the Dicke model, the
semiclassical approach predicts the following decay behavior
of the SP [29]:

Msc(t) 	 c0(1 + ξ 2t2)−1/2e−�t2/(1+ξ 2t2), (55)

where c0 ∼ 1 and

� = 1

2

(
εwp

�

∂U

∂p0

)2

, ξ =
∣∣∣∣∣εw2

p

2�

∂2U

∂p2
0

∣∣∣∣∣, (56)

with the derivatives evaluated at the center of the initial state
of the system. Here, ωp is the width of the initial Gaussian
wave packet in momentum space, U = ∫ Tp

0 V dt , and Tp is the
period of the classical motion corresponding to the nonzero
mode. Equation (55) predicts an initial Gaussian decay e−�t2

,
followed by a long-time power-law decay 1/t .

In our computation, as in the XY model, the values of �

and ξ are evaluated by fitting Msc(t) to the exact SP at large
N . In the computation of the deviation D, we take TL = τ/5.
As seen in Fig. 8, variation of D with δ shows a feature similar
to that of the effective Planck constant �eff given in Fig. 5.
In addition, as �eff shown in the inset of Fig. 5, D decreases
with increasing N . These results confirm the validity of the
above-discussed relative criterion in the Dicke model.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, a relative criterion is proposed for the validity
of a semiclassical approach to the dynamics near quantum
critical points, which should work at least for an important
class of systems undergoing QPTs. Specifically, an effective

042157-7



QIAN WANG, PINQUAN QIN, AND WEN-GE WANG PHYSICAL REVIEW E 92, 042157 (2015)

Planck constant �eff is introduced that can give a relative
measure to the extent of the validity; that is, a smaller
�eff should imply a better performance of the semiclassical
approach. This criterion implies that, under a fixed initial
condition and in the thermodynamic limit, the closer the
controlling parameter λ is to the critical value λc, the better the
semiclassical approach should work. This relative criterion has
been tested numerically in two models, namely the XY model
and the Dicke model.

Still, several problems remain concerning the above-
discussed semiclassical approach to the dynamics near QPTs.
First, the arguments given for the above-mentioned relative
criterion are based on the closeness between classical tra-
jectories of different systems H (λ) under a certain rescaling
procedure. The closeness has been shown to really exist in a
class of systems, however a generic condition for the existence
of the closeness is still lacking. Second, the contribution is
still unclear for the paths that are not close to any classical
trajectory. Third, the proposed criterion has a semiquantitative

feature in the sense that it gives a relative measure only, and
several approximations have been used in the introduction of
the effective Planck constant.

Finally, it should be reasonable to expect that the semi-
classical approach discussed above may be useful in the
study of other properties of the nonequilibrium dynamics of
a system near a quantum critical point. This nonequilibrium
dynamics is an important topic and is under investigation both
numerically [70] and experimentally [71]. For example, it is
relevant to the problem of defect creation in an approximately
adiabatic process [27].
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