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Full distribution of work done on a quantum system for arbitrary initial states
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We propose an approach to define and measure the statistics of work, internal energy and dissipated heat in a
driven quantum system. In our framework the presence of a physical detector arises naturally and work and its
statistics can be investigated in the most general case. In particular, we show that the quantum coherence of the
initial state can lead to measurable effects on the moments of the work done on the system. At the same time, we
recover the known results if the initial state is a statistical mixture of energy eigenstates. Our method can also be
applied to measure the dissipated heat in an open quantum system. By sequentially coupling the system to a de-
tector, we can track the energy dissipated in the environment while accessing only the system degrees of freedom.
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I. INTRODUCTION

One of the cornerstones of the Copenhagen interpretation
of quantum mechanics is the measurement postulate: after
a projective measurement, the wave function collapses into
an eigenstate of the measured observable. In this framework,
two subsequent measurements of an observable are not
independent, as the first measurement perturbs the state of
the system and thereby affects the result of the second [1].
Still, there are quantities in classical physics that are not
“local” in time and need two (or more) observations to be
determined. Among them are the charge flowing through and
the work done on a system. In such cases, the extension
of classical definitions and protocols to the quantum realm
is not straightforward. Recently, the statistics of the work
done on a quantum system and, more generally, its energy
exchanges have attracted much attention [2–9]. Besides a
fundamental interest, the thermodynamics of quantum systems
has important implications to the energetic performance of
quantum devices [10] and quantum heat engines [11].

An established protocol to measure work involves a double
projective measurement of the energy of the system at the
beginning and at the end of the evolution. Such a two-
measurement protocol (TMP) can be described in terms of
classical conditional probabilities [2,3,12,13]. It has proven
successful in formulating quantum fluctuation relations in a
setting where the system is initially in a statistical mixture of
energy eigenstates. However, TMP has limitations that have
so far failed to receive the due attention. These limitations
become apparent when one tries to apply TMP to a more
general class of processes, namely, those in which the system
is initially in a quantum-coherent superposition of different
energy eigenstates. Most quantum gates developed in the
context of quantum information and computation [10] belong
to this class. The problem with TMP is that the initial
measurement forces the system into an eigenstate of the initial
Hamiltonian. The ultimate result of this operation is to reduce
the dynamics to a classical statistical one [7] and to destroy
the interference effects that generate, in Feynman’s words, the
“interfering alternatives” in the dynamics [14]. In this respect,
TMP fails to answer in a general way the most straightforward
and important question [15,16]: how much energy is needed in
order to perform a given quantum operation on an arbitrarily
prepared quantum system?

In this Article, we address the key question we have
just posed by proposing a measurement protocol that is
meant to preserve the quantum-mechanical nature of the work
performed on a quantum system. In this protocol, a quantum
detector is coupled to the system at the beginning and at
the end of the evolution. The information on the energy is
stored in a phase shift that can be measured, for example, by
interferometric means. Our protocol can be formally derived
from a path-integral description of the dynamics by adding
a constraint on the admissible paths [17–19]. Its predictions
coincide with that of TMP for a mixed initial state. However,
as soon as we introduce quantum coherence in the initial state,
we find a stark disagreement between the two protocols, even
at the level of the first moment of the distribution, that is, the
average work. We discuss the reasons for this disagreement and
set the stage for further investigation. We also discuss how to
extend our protocol to measure the dissipated work in driven,
open quantum systems, by accessing the degrees of freedom of
the system only. As compared to previous proposals relying on
measurements of the environment [6,20,21], our protocol may
provide an experimentally more accessible way to measure the
statistics of heat and work in this case.

II. GENERAL FORMALISM

It is known that the work done on a quantum system cannot
be associated to a hermitian operator and, therefore, it is not
an observable [3,22]. In general, the work performed on an
open system depends on the full evolution of the system and
not only on its initial and final state. As quantum trajectories
(or paths) play a key role in determining energy exchanges and
dissipation, we find it natural to tackle the work measurement
problem by using a path integral approach [14]. The formalism
we describe in this section is an adaptation of that developed
by Sokolovski in a series of papers [17–19]. We refer to
Appendix A and to the original papers for more technical
details.

We consider a closed quantum system whose dynamics
is generated by a time-dependent Hamiltonian ĤS(t). The
drive starts at t = 0 and ends at t = T. The corresponding
unitary evolution operator can be approximated as U (T) =−→
T exp [−i

∫ T

0 dtĤS(t)] ≈ �N
k=0e

−i�tĤ k
S , where

−→
T denotes

the time-ordering product and in the second writing we have
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discretized the time in N + 1 steps of length �t and used the
notation ĤS(k�t) = Ĥ k

S .
The probability amplitude to go from the initial state |ψ0〉 to

a given final state |ψT〉 can be decomposed into Feynman paths
[14]. Differently from the usual approach, in which the dynam-
ics is described in the position-momentum basis, we exploit the
freedom to choose any complete basis at each time to decom-
pose the paths. If we are interested in the behavior of a time-
dependent operator Â(t), the preferred basis is the one com-
posed of its eigenstates, i.e., Â(t) |ai(t)〉 = ai(t) |ai(t)〉. The
idea behind this choice is that it allows us to associate to Â(t)
a value a(t) depending on the path traversed during the evolu-
tion. In a more formal way, we write tk = k�t and {|ai(tk)〉} ≡
{|ak

ik
〉} for a complete basis set. By inserting the completeness

relation for |ak
ik
〉 into the expression for the probability

amplitude to go from |ψ0〉 to |ψT〉, we obtain (see Appendix A)

〈ψT|U (T)|ψ0〉 ≈ 〈ψT|�N
k=0e

−i�tĤ k
S |ψ0〉 =

∑
allP

AP, (1)

where P is the path defined by the sequence of states
{|a0

i0
〉 , |a1

i1
〉 , . . . , |aN

iN
〉} (see Fig. 1) and AP is the probability

amplitude to go from |ψ0〉 to |ψT〉, associated to that path.
Along the path P, the operator Â(t) takes the set of values
(a1

i1
,a2

i2
, . . . ,aN

iN
) ≡ a(t). Thus, we can also associate to P any

functional F [P] of a(t).
At this point, we add a constraint to the evolution by requir-

ing F [P] to take the value f . The constrained probability am-
plitude reads A[f ] = ∑

P δ(F [P] − f )AP. As in Ref. [19],

we consider functionals of the form F [P] = ∫ T

0 dtβ(t)a(t) =
�t

∑N
k=0 βka

k
ik

, where β(t) is an arbitrary function. The Dirac
δ in the expression for A[f ] can be written as a Fourier
transform in a conjugate space described by the variable λ,
as follows: δ(F [P] − f ) = ∫

dλ exp [iλ(F [P] − f )]. Notice
[17] that λ and f can be thought of as eigenvalues of conjugate
operators λ̂ and f̂ acting on an additional Hilbert space, their
corresponding eigenstates |λ〉 and |f 〉 satisfying the relation
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FIG. 1. (Color online) Quantum work and path integral. Pictorial
representation of the unitary evolution of a quantum system from the
initial state ψ0 (in this case an eigenstate for the initial Hamiltonian) to
the generic final state ψT , described in terms of paths in energy space.
The time-dependent energy spectrum εi(t) of the system Hamiltonian
is plotted in black (dotted lines). Quantum trajectories (dashed blue
and solid red) consists of a sequence of jumps between different
eigenstates. The solid red trajectory satisfies the constraint (in this
case �U = 0) while the blue ones do not.

〈λ|f 〉 = e−iλf . Denoting with Âk ≡ Â(k�t) and recalling
that ÂN |aN

iN
〉 = aN

iN
|aN

iN
〉, we can write (see Appendix A)

A[f ] = ∫
dλ

∑
P A

λf

P , where

A
λf

P =〈ψT,λ|e−i�t(ĤN
S −λ̂βN ÂN )

∣∣aN
iN

〉 · . . . ·
× 〈

a1
i1

∣∣e−i�t(Ĥ 0
S −λ̂β0Â0)

∣∣a0
i0
〉 · 〈

a0
i0

∣∣ψ0,f
〉

(2)

is the probability amplitude to go from the state |ψ0,f 〉 to
the state |ψT,λ〉 [17–19]. The evolution described by A

λf

P is
generated by the effective Hamiltonian

Ĥ (t) = ĤS(t) − λ̂β(t)Â(t). (3)

Equation (3) plays a central role in our work and it is worth a
few comments. (i) The additional Hilbert space we introduced
can be related to a detector in the von Neumann measurement
scheme [23]. Therefore, requiring that the functional F

assumes the value f along the evolution is equivalent to
introducing a detector and coupling it to the observable
we wish to measure. Here, λ̂ and f̂ act as the momentum
and position operator of the detector, respectively. (ii) The
interaction described by Eq. (3) does not induce any transition
between the eigenstates |λ〉 of the detector momentum.
(iii) The information about the system-detector interaction—
and hence about the value taken by the functional F—is
encoded in the phase accumulated between the eigenstates
|λ〉 and |λ′〉.

Observation (iii) suggests that the statistics of the integrated
observable Â(t) can be determined by measuring the phase of
the detector, as done in the full-counting-statistics approach
(FCS) [24–26]. Let the composite system be initially described
by the factorized density operator ρ0 = ρ0

S ⊗ ρ0
D , where ρ0

S and
ρ0

D are the density operators of the system and the detector,
respectively. Then the phase difference acquired between the
eigenstates |λ/2〉 and |−λ/2〉 of the detector reads

Gλ = 〈λ/2|ρD(t)|−λ/2〉
〈λ/2|ρ0

D|−λ/2〉 = TrS
[
Uλ/2(t)ρ0

SU
†
−λ/2(t)

]
, (4)

where Uλ(t) = −→
T exp [−i

∫ t

0 dt ′(ĤS − λβÂ)] is the evolution
operator generated by Eq. (3). The function Gλ plays the role
of a moment generating function, as the nth moment of A is
given by 〈An〉 = (−i)ndnGλ/dλn|λ=0 [27,28].

III. INTERNAL ENERGY OF A CLOSED SYSTEM

We now have the instruments to determine the variation of
the internal energy of a driven closed system. Starting from
Eq. (3), we take Â(t) = ĤS(t) and β(t) = δ(t − T) − δ(t) [19].
This corresponds to coupling the detector and the system only
at the beginning and at the end of the drive. (More precisely,
we couple the system and the detector at time t = 0− and at
time t = T+, i.e., immediately before and after the starting and
ending drive.) The resulting Gλ is given by Eq. (4), with the
evolution operator (see Appendix A)

Uλ/2(T) = ei λ
2 HS (T)U (T)e−i λ

2 HS (0). (5)

The so-obtained Gλ is a measurable quantity and can be used to
determine all moments of the internal-energy variation �U in
the system. However, the interpretation of this result presents
some subtleties, which we are now going to discuss.
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It is known from previous work [26–29] that, in general,
the Fourier transform of the Gλ in Eq. (4) cannot be
associated to a probability distribution. A similar problem is
encountered when defining the FCS of electron transfer across
a superconducting device [30]. If a probability distribution
cannot be defined for the variation of the internal energy,
the question then arises what is the meaning of the moments
generated by Gλ. To clarify this point, let us first analyze
the first moment, which for a closed system corresponds
to the average work performed on the system. A physical
expectation for the result can be developed by considering
the following gedankenexperiment. We repeatedly prepare the
system in the same initial state ρS(0). Half of the times we
just measure ĤS(0) and determine its average 〈ĤS(0)〉. The
remaining times we first apply the desired evolution to arrive at
ρS(t) = U (t)ρS(0)U †(t) and then measure ĤS(T) to determine
〈ĤS(T)〉. According to this procedure, we estimate variation of
the internal energy as �U = 〈ĤS(T)〉 − 〈ĤS(0)〉. This result is
the same as obtained from Eq. (4); by contrast, it cannot be re-
produced by TMP. To pinpoint the differences between the two
methods, let us explicitly write �U as obtained from Eq. (4):

�U =
∑
i0

ρ0
S,i0,i0

∑
k

Wk,i

(
εT
k − ε0

i

)

+
∑

k,i0 	=j0

ρ0
S,i0,j0

εT
k Uk,iU

†
j,k, (6)

where ρ0
S,i0,j0

= 〈εi0 |ρ0
S |εj0〉, Uk,i = 〈εT

k |U (T)|ε0
i 〉,

U
†
j,k = 〈ε0

j |U †(T)|εT
k 〉, Wk,i = |〈εT

k |U (T)|ε0
i 〉|2, and |ε0

k〉
and |εT

k 〉 are the eigenstates of the Hamiltonian at the
beginning and at the end of the evolution, respectively. The
first term in Eq. (6) is the same as in TMP [2,3,31] and can be
straightforwardly interpreted in terms of classical conditional
probabilities. On the contrary, the remaining terms, which
depend on the initial coherences ρ0

S,i0,j0
, are of a purely

quantum nature. These terms are destroyed by the initial
measurement of ĤS(0) performed in TMP. The fact that the
interfering terms can have important effect in the statistics of
the work was first pointed out in Refs. [15,32].

The situation is well exemplified by the cyclic evolution
of a coherent superposition of energy eigenstates into itself.
As both the initial and final state and the initial and final
Hamiltonians are the same, we would naturally expect �U =
0. However, this needs not be the case in TMP, as the
individual energy eigenstates after the first measurement can
evolve into different states with different energies. As a
specific example, we consider the case of a two-level system
driven by a periodic Hamiltonian so that ĤS(T) = ĤS(0).
We initialize the system in a state |ψ0〉 that, apart from a
phase factor, is left unchanged by the evolution generated
by ĤS(T), i.e., U (T) |ψ0〉 = eiξ |ψ0〉. The existence of such
a state is guaranteed, for instance, by Floquet theorem [33].
Clearly, the internal energy of the system does not change
and, therefore, �U = 0. This is correctly predicted by the first
moment calculated from Gλ.

But, in general, |�0〉 needs not be an eigenstate of HS(0).
We consider the case in which |�0〉 = cos α |ε1〉 + sin α |ε2〉
where |εi〉 (i = 1,2) are eigenstates of the initial (and final)
Hamiltonian. If we take α to be a free parameter, then the
requirement of cyclic evolution for |�0〉 forces the evolution

operator to take the form in the {|ε1〉 , |ε2〉}

U (T) =
(

cos ξ + i cos 2α sin ξ i sin 2α sin ξ

i sin 2α sin ξ cos ξ − i cos 2α sin ξ

)
.

With the TMP, after the first measurement, the system is found
in |ε1〉 with probability cos2 α and in |ε2〉 with probability
sin2 α. These two states now evolve independently as the
“interfering alternatives” have been destroyed by the projective
measurement. The final result for the work distribution can be
computed in terms of classical conditional probabilities Pij for
the system to make a transition between states i and j . In par-
ticular, for the average change in the internal energy, one finds

�U = �E(P12 − P21) = �E cos 2α sin2 2α sin2 2ξ,

where �E = 〈ε2|HS(0)|ε2〉 − 〈ε1|HS(0)|ε1〉. We have thus
found that �U is generally nonzero, except in the cases ξ = 0
(trivial evolution), α = 0,π/2 (the initial state is an energy
eigenstate), and α = π/4 (equal superposition of the two
eigenstates).

The interpretation of higher-order moments is not trivial
and stands as an open question in the field [28]. As already
mentioned, it is known from the FCS [26–29] that the Fourier
transform of Gλ is a quasiprobability that can assume negative
values. A probability distribution can be retrieved in some
cases after partial integration of the relevant Wigner function
[26,27]. Ultimately, these complications are rooted in the full
quantum treatment of the detector [27]. Indeed, different types
of measurements performed at the end of the evolution yield
different distributions for the same quantity, each of which
must be interpreted accordingly. The measurement of the phase
of the detector has the advantage that, since λ̂ is a constant
of motion, preserves the “quantumness” of the evolution and
leads to Eq. (4). It is our belief that the quantum correlations
stemming from Eq. (4) should not be ignored; instead, they
deserve further exploration. For instance, the negativity in the
quasiprobability distribution of work can be thought of as due
to nonclassical temporal correlations of the energy, leading
to the violation of a Leggett-Garg-type inequality [27,28,34].
Further progress in this direction will hopefully appear in
future work.

IV. OPEN SYSTEM AND HEAT STATISTICS

We now turn our attention to the more general case in which
the system is coupled to an environment during the drive. In
order to determine the work performed on the system, we
need to complement the measurement of the internal energy
discussed above with one of the dissipated heat. To this
end, different approaches have been proposed, including the
measurement of an engineered environment [3,20,21,35,36].
Yet measuring the environment is a challenging task, restrict-
ing the applicability of these proposals to specific physical
realizations. In the following, we describe an extension of our
measurement protocol that allows one to obtain the statistics
of the work and dissipated heat by accessing only the system
degrees of freedom.

We describe the open system by the Hamiltonian Ĥ =
ĤS + ĤSE + ĤE where ĤE and ĤSE are the environment and
system-environment coupling Hamiltonians, respectively, and
assume weak coupling between the system and environment.
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We first take both Ĥ and ĤS to be time independent and
consider a measurement of ĤS . Then Eq. (5) simplifies into
U−λ/2 = e−i λ

2 ĤS e−iTĤ ei λ
2 ĤS . As Ĥ and ĤS are constant, no

external work is done on the system and the variation of internal
energy must correspond to the dissipated heat. We can also
show (see Appendix B) that the statistics obtained from the
above equation is the same as the one obtained by measuring
the environment degrees of freedom [2,35,37,38]. We conclude
that for an open system with constant Hamiltonian, the scheme
gives the statistics of the dissipated heat Q (Appendix B).

For a time-dependent ĤS(t), we discretize the evolution
in N time intervals �t , denote Ĥ k = Ĥ k

S + ĤSE + ĤE with
Uk = e−i�tĤ k

. Within each time interval �t , the Hamiltonian
is constant. At the beginning and at the end of each interval,
we instantaneously couple our detector to Ĥ k

S . In analogy with
Eq. (5), the evolution operator for each interval reads

Uk
λ/2 = e−i λ

2 Ĥ k
S e−i�tĤ k

ei λ
2 Ĥ k

S . (7)

Each Uk
λ is defined so that we keep track of the heat Qk

dissipated in the time interval (k − 1)�t � t � k�t . As
a result, the information on the dissipated heat along the
evolution is stored in the phase of the detector. Notice the
opposite sign in the exponents with respect to Eq. (3) takes
into account the fact that an emission (absorption) by the
environment, i.e., decreasing (increasing) of the environment
energy, corresponds to an absorption (emission) process
of the system, i.e., increasing (decreasing) of the system
energy.

In order to account for the variation of the internal energy as
well, we must add a measurement of HS at the beginning and
end of the evolution (Appendix C). Putting things together, the
total evolution operator reads

Uλ/2 = ei λ
2 ĤN

S �N
k=0U

k
λ/2e

−i λ
2 Ĥ 0

S . (8)

H 1

H 0 H

H 2

t

HH

FIG. 2. (Color online) Measuring work and dissipation in open
quantum systems. Schematic representation of the sequence of driven
evolutions and interactions with the detector with the open-system
protocol in Eq. (8). The evolution steps exp (−i�tĤ k) are represented
by the flat line and characterized by the Hamiltonian Hk . Each
coupling with the detector is represented by a circle or square.
The coupling is either of the form exp (−iλĤ k

S ) (red circle), or
exp (iλĤ k

S ) (blue square). In the blue-dashed region, the evolution
is frozen (�ρ = 0) and the Hamiltonian changes by �H . In the
red-shadowed region, the Hamiltonian is constant (�H = 0) while
the density operator changes by �ρ.

A pictorial representation of the scheme described by Eq. (8)
is presented in Fig. 2. In the case of unitary evolution, Ĥ k =
Ĥ k

S and we immediately recover the closed-system result for
the variation of the internal energy. The moment generating
function is the same as in Eq. (4) with Uλ given by Eq. (8).

Let us calculate its first moment, which gives the average
work W = −idGλ/dλ|λ=0. We find (Appendix C)

W = TrS
[
ĤN

S ρS,N − Ĥ 0
S ρS,0 − �kĤ

k
S �ρS,k

]
, (9)

where �ρS,k = ρS,k − ρS,k−1. In the first two terms we
recognize the variation of the internal energy of the
system: �U = TrS[ĤN

S ρS,N − Ĥ 0
S ρS,0]. Accordingly, we

identify the remaining term with the dissipated heat:
Q = �kQk = �kTrS[Ĥ k

S �ρS,k]. Notice that while �U

depends only on the initial and final state of the system, Q is
determined by the full dissipative evolution as in the classical
counterpart (Appendix C).

In the fast-decoherence limit, the dissipated heat takes
an illuminating form. When energy-relaxation processes are
much faster than the dynamics induced by the drive, we
always find the system in its instantaneous thermal equilibrium
state ρS(t) = exp [−ĤS(t)/kBT ]/ZS(t), where ZS(t) is the
partition function of the system and T is the temperature
of the environment. In other words, the system evolves
through states of quasiequilibrium. Defining the Von Neumann
entropy as S = −Tr[ρS log ρS], we can show (see Appendix D)
that the variation of the density operator is related to it
by TrS[Ĥ k

S �ρk] = kBT �Sk , where �Sk is the variation of
entropy at time tk . Then we can link the variation of entropy to
the dissipated heat by the relation Qk = kBT �Sk , confirming
the above interpretation of Q as the dissipated heat.

There is an alternative way to interpret Eq. (9). Taking
the time derivative of the average internal energy, we have
d〈ĤS(t)〉/dt = 〈 ˙̂HS(t)ρ(t)〉 + 〈ĤS(t)ρ̇(t)〉 [15]. If the evolu-
tion is unitary, the second contribution vanishes and we can
relate the variation of the system Hamiltonian to the instanta-
neous work done on the system. By expanding the product
in Eq. (8), we identify pairs of sequential system-detector
interactions of the form exp (iλĤ k+1

S /2) exp (−iλĤ k
S /2). Each

such pair effectively keeps track of a variation in the
Hamiltonian. As the variation is instantaneous, the system
has no dynamics. We can interpret the action of the pairs
as a “measurement” of the work done on the system by
an external force. This interpretation is strengthened by the
analysis of Eq. (9). By regrouping the terms, we can write it
as W = TrS[�k�Ĥ k

S ρS,k], where �Ĥk
S = Ĥ k+1

S − Ĥ k
S .

One may wonder whether the repeated coupling to the
detector can “freeze” the dynamics of the system (dynamic
Zeno effect). This turns out not to be the case: a dynamic
Zeno effect would require λ → ∞, while we derive our
physical quantities, i.e., the moments of the work done, in the
opposite limit λ → 0. Our protocol can instead be regarded as
a noninvasive measurement [28,39] of the work distribution.
In fact, the moments generated by Gλ depend on evolution
operators that describe the dynamics of the open system
without a detector.
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V. CONCLUSIONS AND OUTLOOK

In summary, we have shown that the statistics of work per-
formed on a quantum system exhibits nonclassical correlations
in a deeper and more fundamental way than it had so far been
appreciated for. Such correlations become apparent once one
replaces the customary double projective measurement with a
less-invasive coupling to a quantum detector. The resulting
protocol is immediately applicable to the case of unitary
evolution and can be suitably extended to treat open quantum
systems. Our approach puts the problem of work under a
perspective that leads the way toward further investigations.
In particular, the links between quantum-mechanical work,
Leggett-Garg-type inequalities [27,34], weak measurements
[39], and stochastic quantum trajectories [40–42] await to be
fully elucidated. An experimental test of our predictions is in
reach of state-of-the art quantum technology. Among different
architectures, superconducting quantum circuits in combina-
tion with nearly-quantum-limited parametric amplifiers are a
first choice, given the high degree on control achieved in recent
experiments [41,43–45].
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APPENDIX A: PROBABILITY AMPLITUDE IN THE PATH
INTEGRAL REPRESENTATION

We consider a closed quantum system whose dynamics is
generated by a time-dependent Hamiltonian ĤS(t). The drive
starts at t = 0 and ends at t = T. The corresponding unitary
evolution operator is

U (T) = −→
T e−i

∫ T
0 dtĤS (t) ≈ �N

k=0e
−i�tĤ k

S , (A1)

where
−→
T denotes the time-ordering product, and in the second

writing we have discretized the time in N + 1 steps of length
�t and used the notation ĤS(k�t) = Ĥ k

S . Our goal is to write
the probability amplitude to go from |ψ0〉 to |ψT〉 in terms
of Feynman paths [14]. Equation (A1) is approximated to the
order �t2 and it is a convenient way to describe the evolution
in terms of path integral. As a final step, we will take the limit
�t → 0 to recover the usual continuous description of the
evolution.

At any time tk we can find a basis {|ai(tk)〉} ≡ {|ak
ik
〉} such

that the completeness relation
∑

ik
|ak

ik
〉〈ak

ik
| = 1 holds. In this

notation, k is a time index and ik denotes the eigenstate basis
index at time tk . By inserting the completeness relation for |ak

ik
〉

into the expression for the probability amplitude we obtain

〈ψT|U (T)|ψ0〉

=
N∑

k=0

∑
ik

〈ψT|e−i�tĤN
S

∣∣aN
iN

〉〈
aN

iN

∣∣e−i�tĤN−1
S

∣∣aN−1
iN−1

〉
. . .

×〈
a2

i2

∣∣e−i�tĤ 1
S

∣∣a1
i1

〉〈
a1

i1

∣∣e−i�tĤ 0
S

∣∣a0
i0

〉 〈
a0

i0

∣∣ψ0
〉
. (A2)

The term 〈ak
ik
|e−i�tĤN

S |ak−1
ik−1

〉 is the probability amplitude to go

from |ak−1
ik−1

〉 to |ak
ik
〉. Then,

AP = 〈ψT|e−i�tĤN
S

∣∣aN
iN

〉〈
aN

iN

∣∣e−i�tĤN−1
S

∣∣aN−1
iN−1

〉
. . .

× 〈
a2

i

∣∣e−i�tĤ 1
S

∣∣a1
i1

〉〈
a1

i1

∣∣e−i�tĤ 0
S

∣∣a0
i0

〉 〈
a0

i0

∣∣ψ0
〉

(A3)

is the probability amplitude to go from |ψ0〉 to |ψT〉 passing
through the sequence of states: |a0

i0
〉 , |a1

i1
〉 , . . . , |aN

iN
〉. This

sequence defines a path P in the basis space {|ak
ik
〉}. We

interpret Eq. (A2) as the sum over all the possible paths of
the probability amplitudes:

〈ψT|U (T)|ψ0〉 =
∑
allP

AP. (A4)

In the limit �t → 0, we obtain a continuous path a(t). In this
way, we can associate to the path P a physical quantity F [P]
depending on it. Mathematically, F is then a functional of P.

We now add a constraint and select only the paths that
satisfy some properties. We are asking which is the probability
amplitude A[f ] to go from |ψ0〉 to |ψT〉 through a path P
determined by a(t) for which the functional F [P] assumes the
values f . The constrained probability amplitude reads

A[f ] =
∑
P

δ(F [P] − f )AP, (A5)

where the δ function restricts the admissible paths to those for
which F [P] = f . F [P] could be a generic functional of P.
However, as in Ref. [19], we assume that the functional de-
pends on the integral of the path a(t) (or |a1

i1
〉 , |a2

i2
〉 , . . . , |aN

iN
〉

in the discretized expression),

F [P] =
∫ T

0
dtβ(t)a(t) = �t

N∑
k=0

βka
k
ik
, (A6)

where β(t) is an arbitrary function.
By writing the Dirac δ in terms of Fourier Transform

δ(F [P] − f ) = ∫
dλ exp [−iλ(f − F [P])] inserting it in the

path integral representation, and splitting the term F [P] with
respect to the corresponding time interval, we obtain

A[f ] =
∫

dλe−iλf
∑
P

〈ψT|e−i�tĤN
S e

i�tλβN aN
iN

∣∣aN
iN

〉
. . .

× 〈
a1

i1

∣∣e−i�tĤ 0
S e

i�tλβ0a
0
i0

∣∣a0
i0

〉 〈
a0

i0

∣∣ψ0
〉
. (A7)

We must choose the time-dependent basis set {|ak
ik
〉} consider-

ing the observable Â(t) we are interested in. In particular, we
must take them in order that Âk |ak

ik
〉 = ak

ik
|ak

ik
〉. For small �t

[46], we can write

A[f ] ≈
∫

dλe−iλf
∑
P

〈ψT|e−i�t(ĤN
S −λβN ÂN )

∣∣aN
iN

〉
. . .

× 〈
a1

i1

∣∣e−i�t(Ĥ 0
S −λβ0Â0)

∣∣a0
i0

〉 〈
a0

i0

∣∣ψ0
〉

=
∫

dλe−iλf
∑
P

Aλ
P. (A8)

Therefore, the constrained amplitude probability A[f ] can
be written as the sum of the path amplitudes Aλ

P, which are
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generated by the effective Hamiltonian ĤS(t) − λβ(t)Â(t). By
defining the corresponding unitary operator as

Uλ(t) = −→
T e−i

∫ t

0 dt ′[ĤS (t)−λβ(t)Â(t)], (A9)

we have∑
P

eiλF [P]AP =
∑
P

Aλ
P = 〈ψT|Uλ(t)|ψ0〉. (A10)

We can go further with the interpretation of the constraint.
The parameter λ and f can be thought of as eigenvalues of con-
jugate operators λ̂ and f̂ satisfying the relation 〈λ|f 〉 = e−iλf .
Using the relation e−i�t(Ĥ k−λβkÂk) 〈λ| = 〈λ| e−i�t(Ĥ k−λ̂βkÂk),
we can write

A[f ] =
∫

dλ
∑
P

〈ψT,λ|e−i�t(ĤN −λ̂βN ÂN )
∣∣aN

iN

〉
. . .

× 〈
a1

i1

∣∣e−i�t(Ĥ 0−λ̂β0Â0)
∣∣a0

i0

〉 〈
a0

i0

∣∣ψ0,f
〉
. (A11)

Based on Eq. (A11), we can interpret A[f ] is the probability
amplitude to go from the state |ψ0,f 〉 to the state |ψT,λ〉,
where λ̂ and f̂ are conjugate operator acting on an additional
Hilbert space. The latter is interpreted as the Hilbert space
of the detector needed to measure the special observable
[17–19]. The effective Hamiltonian describing the system and
a quantum detector dynamics is

Ĥ (t) = ĤS(t) − λ̂β(t)Â(t). (A12)

The approach outlined above applies to any time-dependent
observable Â(t). In this work we take Â(t) to be the time-
dependent Hamiltonian. The power operator considered in
Ref. [15] would be another meaningful choice.

To determine the variation of the internal energy, we
take Â(t) = ĤS(t) and β(t) = δ(T − t) − δ(t). When using a
discretized evolution, we assume that δ(tk − t) = 1/�t for
tk � t � tk+1 = tk + �t and 0 elsewhere. From Eqs. (B1) we
have, in the limit of �t → 0 [18,19],

Uλ(T) ≈ e−i�t(ĤN −λβN ÂN )e−i�t(ĤN−1−λβN−1ÂN−1) . . .

× e−i�t(Ĥ 0−λβ0Â0)

→ eiλĤ (T)U (T)e−iλĤ (0). (A13)

Therefore, the total unitary evolution corresponds to two fast
couplings with the detector with an central driven evolution of
the system. From this we immediately arrive to the moment
generating function Gλ discussed in the main text.

APPENDIX B: SYSTEM VERSUS ENVIRONMENT
MEASUREMENT

In the main text we have discussed how to measure
the dissipated heat statistics through the system degrees of
freedom. Here we show that these statistics are the same as we
would obtain by measuring the environment directly [3,35].

We make the standard assumption that the system and
the environment are weakly coupled. This allows us to
neglect the energy related to system-environment coupling
Hamiltonian. We consider ĤS to be time-independent as
in the fundamental interaction block discussed in the main
text. The total Hamiltonian reads Ĥ = ĤS + ĤE + ĤSE . If

we measure the degrees of freedom of the environment,
we obtain a Ḡλ that has the form of Gλ with Ūλ(T) =
exp (iλĤE/2) exp (−iĤT ) exp (−iλĤE/2) [35].

In the weak coupling limit, exp (iλĤE/2) =
exp [iλ(Ĥ − ĤS − ĤSE)/2] ≈ exp [iλ(Ĥ − ĤS)/2] and
[Ĥ ,ĤS] ≈ 0. Therefore,

Ūλ(T) ≈ e−iλĤS/2eiλĤ/2e−iĤT e−iλĤ/2eiλĤS/2

= e−iλĤS/2e−iĤT eiλĤS/2 = U−λ(T). (B1)

From Eq. (B1) it follows that Ḡλ = G−λ and the statistics
generated by measuring ĤE is equal to the one obtained by
measuring ĤS with the opposite sign. The opposite sign in the
exponents with respect to Eq. (B1) takes into account the fact
that an emission (absorption) by the environment, i.e., decreas-
ing (increasing) of the environment energy, corresponds to an
absorption (emission) process of the system, i.e., increasing
(decreasing) of the system energy.

APPENDIX C: FIRST MOMENT OF THE WORK DONE
ON A QUANTUM SYSTEM

We first restrict our attention to the dissipated heat and
calculate the first moment of the moment generating function
Gλ,

−Q = −i
dGλ

dλ

∣∣∣∣
λ=0

=TrS+E

[
dUλ

dλ
ρ0U

†
−λ+Uλρ0

dU
†
−λ

dλ

]∣∣∣∣
λ=0

,

(C1)
where Uλ = �N

k=0U
k
λ, Uk

λ = e−iλĤ k
S /2e−i�tĤ k

eiλĤ k
S /2, and we

follow the convention that the heat flowing into the system is
given a positive sign [3].

The first term in Eq. (C1) reads

− i
dUλ

dλ

∣∣∣∣
λ=0

= −1

2

[
ĤN

S U − UN

(
ĤN

S − ĤN−1
S

)
UN−1 . . . U0

+ · · · − UN . . . U1
(
Ĥ 1

S − Ĥ 0
S

)
U0 − UĤ 0

S

]
,

(C2)

where we used the compact notation Uk = e−i�tĤ k

. In an
analogous way, the second term reads

− i
dU

†
−λ

dλ

∣∣∣∣
λ=0

= 1

2

[
Ĥ 0

S U † + U
†
0

(
ĤN

S − ĤN−1
S

)
U

†
1 . . . U

†
N−1

+ · · · + U
†
0 . . . U

†
N−1

(
Ĥ 1

S − Ĥ 0
S

)
U

†
N

−U †ĤN
S

]
. (C3)

Putting everything together in Eq. (C1) and using the cyclic
property of the trace, it is possible to simplify some of the evo-
lution operators Uk . After defining ρk = Uk . . . U0ρ0U

†
0 . . . U

†
k

and ρ̃0 = U0ρ0U
†
0 , we have

−Q = TrS+E

[−ĤN
S (ρN−1 − ρN−2) . . . − Ĥ 0

S (ρ̃0 − ρ0)
]
.

(C4)
The trace over the system and environment can be separated by
observing that TrS+E[ĤN

S (ρN − ρN−1)] = TrS[ĤN
S TrE(ρN −

ρN−1)] = TrS[ĤN
S (ρS,N − ρS,N−1)]. Therefore, the dissipated

heat written in terms of the system degrees of freedom
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reads

Q =TrS
[
�kH

k
S (ρS,k − ρS,k−1)

]
=�kTrS

[
Hk

S �ρS,k

] = �kQk, (C5)

where Qk is the dissipated heat in the time interval tk−1 � t �
tk .

Let us now introduce a coupling between the system and
the detector at the beginning and at the end of the evolution.
The unitary operator then reads

Uλ = eiλ̂ĤN
S /2�N

k=0U
k
λe

−iλ̂Ĥ 0
S /2. (C6)

Accordingly, the calculation in Eq. (C2) is modified as

−i
dUλ(t)

dλ

∣∣∣∣
λ=0

= ĤN
S U − UĤ 0

S − i
d

dλ

(
�N

k=0U
k
λ

)∣∣∣∣
λ=0

,

(C7)
which differs from Eq. (C2) by the addition of the term ĤN

S U −
UĤ 0

S .
We find that the average work W is

W = TrS
[
HN

S ρS,N − H 0
S ρS,0 − �kH

k
S (ρS,k − ρS,k−1)

]
,

(C8)
which differs from Eq. (C5) by the variation of the internal
energy �H = TrS[HN

S ρS,N − H 0
S ρS,0]. Therefore, we have

obtained the usual result W = �H − Q [3].
The heat contributions Qk in Eq. (C5) are related to

the variation of the system density operator �ρk during
infinitesimal evolutions generated by constant Hamiltonians.
We can check that if the evolution is unitary, i.e., Hk = Hk

S ,
then the Qk vanish and no heat is dissipated. In fact, we have
ρS,k = UkρS,k−1U

†
k , [HS,k,Uk] = 0, and

Qk = TrS
[
Hk

S ρS,k − Hk
S ρS,k−1

]
= TrS

[
UkH

k
S ρS,k−1U

†
k − Hk

S ρS,k−1
] = 0. (C9)

The interpretation of the Qk as the dissipative contribution
to the dynamics is strengthened by the following observation.
The dissipated heat depends on the variation of the density
operator �ρS,k , which, in turn, can be due to both unitary and
nonunitary dynamics. However, the unitary contribution to the
change of ρ, i.e., the one given by [HS,ρS], vanishes identically
when we calculate Hk

S (ρS,k − ρS,k−1). Thus, the Qk are related
solely to the dissipative dynamics. This result is analogous to
the one obtained in Ref. [15].

The expressions for Q and W can be written in another
meaningful way as follows. Instead of grouping �ρk , we can
keep the terms �Hk

S = Ĥ k
S − Ĥ k−1

S as written in Eq. (C2).

Then the dissipated heat in Eq. (C4) reads

Q = TrS
[−HN

S ρS,N + H 0
S ρS,0 + �k�Hk

S ρS,k

]
. (C10)

As the contributions of the initial and final measurements are
the same, we have that

W = TrS
[
�k�Hk

S ρS,k

]
. (C11)

This confirms the interpretation discussed in the main text that
the work can be seen as the instantaneous energy injected into
the system due to the variation of the Hamiltonian in time.

APPENDIX D: WORK, HEAT, AND ENTROPY IN
QUANTUM SYSTEM AND DYNAMICS

The Von Neumann entropy in a quantum system is defined
as S = −Tr[ρS log ρS]. Writing it in the basis {|i〉} in which
ρS is diagonal, we obtain S = −∑

i ρS,ii log ρ
S,ii . If we take

the time derivative of the entropy, we have

dS

dt
= −

∑
i

(ρ̇S,ii log ρS,ii + ρ̇S,ii) = −
∑

i

ρ̇S,ii log ρii,

(D1)
where the last equation comes from the fact that

∑
i ρ̇S,ii = 0

due to trace conservation.
If the decoherence time is smaller than all the system time

scale, the system is always in the (time-dependent) thermal-
ized state. Under this hypothesis the above equation should
be rewritten explicitly with the time-dependence ρS(t) =
exp [−βĤS(t)]/ZS(t), where β = 1/(kBT ) is the inverse
temperature of the environment and ZS(t) is the partition func-
tion. In addition, we have log[ρS(t)] = −ĤS(t) − log[ZS(t)].
Again, this must be intended in terms of component in the
basis in which ρS and ĤS are diagonal. If εi is the energy of the
state |i〉, we have ρS = ∑

i ρS,ii |i〉〈i| = ∑
i e

−βεi /ZS |i〉〈i| and
log ρS,ii = −βεi − log[ZS(t)]. With Eq. (D1), we can write

dS

dt
=

∑
i

[βρ̇iiεi + log ZS(t)ρ̇S,ii] = 1

kBT

∑
i

ρ̇S,iiεi .

(D2)
Keeping in mind that HS = ∑

k εk|k〉〈k|, we have that∑
i[ρ̇S,iiεi] = Tr[ dρS

dt
HS] and we can rewrite the above equa-

tion as

Tr

[
dρS

dt
HS

]
= T

dS

dt
. (D3)

The variation of the entropy can be related, as in the classical
case, to the dissipated heat. With this identification we find
Qk = TrS[Ĥ k

S �ρk] = kBT �Sk .
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