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Stability and anomalous entropic elasticity of subisostatic random-bond networks
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We study the elasticity of thermalized spring networks under an applied bulk strain. The networks considered are
subisostatic random-bond networks that, in the athermal limit, are known to have vanishing bulk and linear shear
moduli at zero bulk strain. Above a bulk strain threshold, however, these networks become rigid, although sur-
prisingly the shear modulus remains zero until a second, higher, strain threshold. We find that thermal fluctuations
stabilize all networks below the rigidity transition, resulting in systems with both finite bulk and shear moduli. Our
results show a T 0.66 temperature dependence of the moduli in the region below the bulk strain threshold, resulting
in networks with anomalously high rigidity as compared to ordinary entropic elasticity. Furthermore, we find a sec-
ond regime of anomalous temperature scaling for the shear modulus at its zero-temperature rigidity point, where
it scales as T 0.5, behavior that is absent for the bulk modulus since its athermal rigidity transition is discontinuous.
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I. INTRODUCTION

Materials such as plastics and rubbers as well as tissues and
living cells contain polymer networks, which, among other
roles, provide structural support to these materials. Tissues
and cellular networks are especially sensitive to external
stresses [1–7] and a number of theoretical and simulation stud-
ies have attempted to gain an understanding of what controls
the response of such systems to deformations [8,9]. Maxwell
showed that there is a connectivity threshold zc, determined
by the average coordination number of the network nodes, at
which athermal networks of springs become rigid [10]. This
threshold, referred to as the isostatic point, occurs when the
number of degrees of freedom of the network nodes is just
balanced by the number of constraints arising from the springs.
This purely mechanical argument has been used to describe
the stability systems ranging from emulsions and jammed
particle packings [11,12] to amorphous solids [13] and folded
proteins [14]. Beyond this, theoretical work has shown that
there are numerous ways of stabilizing a network, and therefore
tuning its rigidity, below the isostatic point [15]. Examples
include the addition of a bending stiffness to the model
filaments [16–18] by applying stress [19] either internally via
molecular motors [20,21] or externally by placing the network
under tension by applying a bulk strain to the system [22–24].
It has been shown that a network’s rigidity point can be shifted
from the Maxwell point by adding these interactions and forces
to the system. In the case of applying a bulk strain [22–24] the
system can be stabilized by stretching the network until all the
floppy modes have been pulled out, resulting in a critical strain
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at which the network is just rigid. Here the network will only
become mechanically floppy at the percolation point, where
there is no longer a connected path through the system [23].

In addition to these athermal models, recent work has
shown how temperature can stabilize a mechanically floppy
network [25–30]. In Ref. [29] it was found that at and
below the isostatic point the network response to deformation,
defined by the shear modulus, not only becomes finite when
thermal fluctuations are present, but also shows an anomalous
temperature scaling of T α , where α < 1. This sublinear
temperature dependence indicates that a network would exhibit
a larger resistance to deformation than would be expected
from entropic elasticity, where one would expect a linear
temperature dependence [31]. The origin of this anomalous
temperature dependence remains unclear and in addition there
have been few studies into the effects of thermal fluctuations
on subisostatic networks [25,32–34]. Furthermore, in Ref. [29]
a triangular-lattice-based network was used and an open
question is how general the anomalous regimes found are,
since network architecture can have vast effects on a system’s
response to deformation [35,36]. Indeed, in Ref. [30] a square
lattice (which is at the isostatic point) with next-nearest-
neighbor interactions was found to stiffen with a different
critical exponent than a randomly diluted triangular lattice
also at the isostatic point [29].

In this paper we study the effects of thermal fluctuations on
an underconstrained and mechanically floppy random-bond
network. The architecture of a random-bond network is as
different as possible from a triangular-lattice network, as the
nodes are arranged isotropically and there is a distribution
of filament lengths. The random-bond model proposed by
Jacobs and Thorpe [37] has been used previously to study
the effects of applying a bulk strain on the rigidity of
athermal networks [24]. The connectivity threshold for rigidity
percolation of this model will be somewhat lower than that of
a lattice network [38,39].

In addition, we study the dependence of the internal
pressure, bulk modulus, and shear modulus of a random-
bond network with average coordination number z = 3 on
the bulk strain and temperature. This coordination number
lies between the connectivity percolation threshold (below
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FIG. 1. (Color online) Schematic phase diagram showing behav-
ior of the internal pressure P , bulk modulus KA, and shear modulus
G with bulk strain ε and temperature T for subisostatic random-bond
networks with connectivity z = 3.

which the networks would be floppy regardless of strain
or thermal fluctuations [19,24]) and the isostatic threshold
for central-force interactions (above which athermal spring
networks become rigid [10]).

We show that, as reported previously in Ref. [24], there
exists a bulk strain threshold at which the system will begin to
resist bulk deformations at zero temperature. However, the net-
work does not begin to resist shear deformation until a second,
higher, strain threshold is reached and it is these two thresholds
that control the network response to the applied deformations.
We find anomalous scaling regimes for the shear modulus
at and below its threshold, similar to the results of Ref. [29],
where the bulk strain applied to the networks in this study takes
on a similar role to the connectivity in Ref. [29]. Interestingly,
we find that, while the bulk modulus exhibits a similar
anomalous scaling regime below its threshold, we find no
temperature dependence at its strain threshold, at which there is
a first-order zero-temperature rigidity transition. The network
behavior is summarized in the phase diagrams shown in Fig. 1.

II. PHYSICAL PICTURE

Since Maxwell [10] it has been known that an athermal
network of central-force springs will be floppy below a critical,
isostatic connectivity threshold. This means that there is no
energy cost for small bulk or shear deformations. When
applying an increasingly large uniform bulk strain, such
networks will begin to resist additional bulk deformations at a
strain threshold corresponding to a rigidity transition [24],
at which the network will be just rigid. Applying small
deformations on a rigid network will cost energy, since the
springs will be stretched, which results in a stable network
exhibiting a nonzero bulk modulus at zero temperature.

A mechanically floppy network will also be stabilized by
thermal fluctuations [25,29]. The resulting network is rigid
both above and below the rigidity point. A deformation of a
mechanically floppy network results in a reduction of the num-
ber of microstates that the system can assume, even though the
system energy remains unchanged. This results in a change in
entropy as the system is deformed, which gives rise to a change
in the free energy, resulting in nonzero elastic moduli at finite
temperatures. Thus, below the rigidity point the network is
stabilized by thermal fluctuations, as the entropic contribution
to the moduli dominates the mechanical contribution. When
the network is sufficiently stretched, i.e., above the bulk strain

rigidity threshold, all springs are under tension that causes
the mechanical stretching energy (controlled by the spring
constant) to dominate the thermal fluctuations in stabilizing the
network and the network rigidity then becomes independent
of temperature. As thermal networks are always rigid, there is
no bulk strain threshold at which the network becomes stable.
However, if a network is taken to the rigidity point, we find
that there can be an anomalous intermediate regime in which
the network is stabilized by both temperature and the spring
constant.

These three different regimes of network stability are
defined by the bulk strain at the zero-temperature rigidity
transition. This strain depends on how constrained the system
is, controlled, for example, by varying the connectivity of
the network by changing the number of springs. Lowering
the connectivity will lower the number of constraints in the
network and it has been shown that subisostatic networks
with increasingly lower connectivities need to be increasingly
stretched to become rigid [24].

III. MODEL

In this paper we study the effects of thermal fluctuations
and bulk strain on the stability of subisostatic random-bond
networks. The random-bond network is constructed by placing
N nodes randomly in a two-dimensional box of area A, which
are then connected by Nsp springs until the network reaches an
average connectivity z = 2Nsp/N [24,37]. Since unconnected
nodes will not contribute to the networks response, each node
is first connected to at least one randomly chosen other node.
Thus, our networks are random, in that both the positions of
the nodes and the length of the connecting springs are random.
Periodic boundary conditions are used throughout and the
springs may cross the system boundaries. Furthermore, we
do not allow two nodes to be connected by more than one
spring or both ends of the spring to connect to the same node.
This method would still allow for disconnected clusters to
form. While this method does not generate a truly random
network, we find that in practice this does not effect the results
we present in this paper, as will be shown. A schematic of a
random-bond network is shown in Fig. 2. The springs have
a rest length l0, which will vary for each spring and, by
construction, the average rest length will be half the system
size. We use the average spring length 〈l0〉 as the unit of
length and we note that for systems with the same density

FIG. 2. (Color online) Schematic representation of a random-
bond network. The network is constructed by placing N nodes
randomly in a box. The nodes are randomly connected by zN/2
springs to reach an average connectivity z.
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of nodes 〈l0〉 grows as
√

N and as such there is no well defined
thermodynamic limit. In this simple model the only two energy
scales are the stretching energy and the thermal energy. The
total energy of the network is given by the sum of the energy
of all Nsp springs

U = ksp

2

Nsp∑
i

〈li − l0,i〉2, (1)

where ksp is the spring constant and l0,i the rest length of spring
i, which has length

li =
√

(x2 − x1)2 + (y2 − y1)2, (2)

where xj and yj are the coordinates of nodes j = 1,2 that are
connected by spring i. To study fiber networks, it is common to
set the spring constant to ksp,i = μ/l0,i [16–18,35,36,40,41],
where μ is the one-dimensional Young (stretch) modulus. This
means that long springs will become progressively weaker
and contribute less to the network response. For polymers,
flexible or semiflexible, yet a different length dependence is
possible [2,42–44]. We choose to keep the spring constant
identical for each spring, as we find that this has no qualitative
effect on our results (see Fig. 3) and speeds up our computer
simulations.

This network architecture is isotropic and differs
qualitatively from a lattice-based network, for which the
springs have either the same length or a narrow discontinuous
distribution of lengths. In the random-bond network, there are
springs with lengths of the order of the system size, which
would prevent network collapse at finite temperature due
to entropic forces [29,45]. Thus, the random-bond model is
stable to thermal fluctuations without an imposed tension at
the boundaries. We have chosen this minimalist off-lattice
network in order to study the anomalous low-temperature
behavior found in lattice networks [29]. However, whereas
this network is most different from a lattice network, it shows
some similar behavior to temperature. It is deliberately highly
theoretical and does not represent a real system, but does let
us examine the anomalous temperature dependence in detail.

In order to study the entropic stabilization, we apply varying
bulk strains to the system by uniformly scaling the system area
such that

A = A0(1 + ε)2, (3)

where A0 is the rest area of a fully relaxed network at
temperature T = 0 and ε is the applied strain. The x and
y coordinate of each node are also scaled, defining new
coordinates x ′ and y ′ for node j as

x ′
j = xj (1 + ε). (4)
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FIG. 3. (Color online) Pressure P of the random-bond spring network with N = 1000 nodes against (a) bulk strain ε and (b) reduced
temperature T ∗ = kBT /ksp〈l0〉2. (a) The solid line shows the zero-temperature behavior, points are for thermal systems, and the dashed line
shows results for the same system but with the spring constant of individual springs given by ksp,i = μ/l0,i , where μ is a stretch modulus.
(b) The solid line shows linear T dependence. (c) Fraction of stretched springs φ in the network as a function of ε for five different network
configurations. (d) Behavior of m and c for the function −P = m(A − A0) + c with reduced temperature T ∗, where A is the area and A0 is the
rest area at ε = 0. The solid black line shows the linear T dependence, dashed green lines show T 0.66 dependence. [1] indicates ε = 0.03 and
[2] indicates ε = 0.001.
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That is, the network is stretched uniformly and after this affine
deformation the system is allowed to relax nonaffinely. We
introduce the temperature T using Monte Carlo simulations
to study the equilibrium behavior of thermal systems.

Elastic moduli and internal pressure

We determine the internal pressure and bulk modulus of the
system under bulk strain. The internal pressure is defined as

P = −∂F

∂A
, (5)

where F is the Helmholtz free energy, and can be calculated
in our simulations as [46]

P = N

A
kBT + 1

2A

N∑
i

N∑
j

〈fi,j li,j 〉

= N

A
kBT − 1

2A

Nsp∑
k

〈ksplk(lk − l0)〉, (6)

where the first line contains a sum over all pairs of nodes and
the second line contains a sum over all springs, since the force
fi,j between node i and node j is only nonzero if there is a
spring connecting i and j . The first term represents the ideal
gas behavior and the second term corrects for spring interac-
tions. By calculating the internal pressure at various areas we
can then calculate the bulk modulus, which is defined by

KA = −A
∂P

∂A
. (7)

In addition, we calculate the shear modulus G of the
networks at each bulk strain; G is defined by

G = 1

A

∂2F

∂γ 2
, (8)

where γ is the shear strain. In order to shear the network we
use Lees-Edwards boundary conditions [47], where the energy
of the springs crossing the top boundary of the simulation box
is modified to become

Esp(l) = ksp

2
[
√

(xij + γLy)2 + (yij )2 − l0]2, (9)

where Ly is the height of the simulation box. As for the bulk
strain, we first affinely deform the network and let the system
relax, allowing nonaffine deformations. We initially shear
the networks at zero temperature, obtaining a configuration
under shear, and then increase the temperature from zero. For
these thermal systems, we calculate the shear stress σ as in
Refs. [29,48]. The shear modulus can then be calculated by
taking the derivative of the stress on the network with respect
to γ at γ = 0.

IV. RESULTS

We calculate the pressure, bulk modulus, and shear modulus
for two-dimensional random-bond networks with a connec-
tivity of z = 3 over a range of reduced temperatures T ∗ =
kBT /ksp〈l0〉2 and bulk strains ε. For these systems, the critical
connectivity is zc ∼ 4. Thus, our networks are subisostatic and
will be floppy at T = 0 and ε = 0. Results for the pressure are
presented in Fig. 3, for the bulk modulus in Fig. 4, and for the
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FIG. 4. (Color online) Bulk modulus KA of the random-bond
spring network with N = 1000 nodes against (a) bulk strain ε and
(b) reduced temperature T ∗ = kBT /ksp〈l0〉2. (a) The solid line shows
the zero-temperature behavior and points are for thermal systems. (b)
The solid line shows the T 0.66 dependence.

shear modulus in Fig. 5. We first examine in detail the behavior
of the properties related to bulk deformation, i.e., the pressure
and bulk modulus, before examining the behavior of the shear
modulus.

At zero temperature we find a strain ε1 (with corresponding
area A1) at which the network just becomes rigid, indicated
by the solid black line in Figs. 3(a) and 4(a). Here the
network exhibits a finite pressure and bulk modulus above
ε1, and zero pressure and bulk modulus below, and we hence
define this strain threshold as the rigidity point. The pressure
shows a linear dependence on area, increasing continuously as
−P = c1(A − A1) for A � A1, where c1 is a constant. Based
on the definition of the bulk modulus given in Eq. (7) this
means that KA = c1A for A � A1 and KA = 0 for A < A1,
i.e., a discontinuous increase in KA, corresponding to a
first-order transition from a floppy to a rigid network at ε1.
We note that the value of ε1 will differ for different network
configurations, as there is no well defined thermodynamic limit
for random-bond networks due to the average spring length
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FIG. 5. (Color online) Shear modulus G of the random-bond
spring network with N = 1000 nodes against (a) bulk strain ε and (b)
reduced temperature T ∗ = kBT /ksp〈l0〉2. (a) The solid line shows the
zero-temperature behavior, while points are for thermal systems. The
dashed line shows the bulk modulus KA for the same system at zero
temperature. (b) The solid red line shows the T 0.66 dependence while
dotted blue and green lines show the T 0.5 dependence. Red squares
and green circles show data for a network with z = 3 at a bulk strain ε

indicated in the legend, while blue triangles show data for a network
at z = zc and ε = 0.

growing with the system size. The response of the networks
to bulk strain or thermal fluctuation does not differ between
different configurations with the same average conductivity.
For the results presented in Figs. 3(a) and 4(a) a network with
ε1 = 0.0356 was used. The first-order nature of the transition
was present in all configurations studied.

When thermal fluctuations are present the network is rigid
for all bulk strains, as can be seen in Figs. 3(a) and 4(a) where
different temperatures are represented by the colored points.
For small bulk strains (ε < ε1) the network is stabilized by the
thermal fluctuations and exhibits an increasingly large pressure
and bulk modulus as the temperature is increased. As ε1 is
approached we observe a regime where the pressure and bulk
modulus for all temperatures start to join the zero-temperature
line, with the low-temperature results starting to join the

zero-temperature result sooner than the results for higher
temperatures. For bulk strains greater than ε1 there is a
mechanical regime, where tension is dominant over thermal
fluctuations and the resistance to deformation depends only
on the spring constant. However, we find that the pressure no
longer increases linearly with area as ε1 is approached, even
at low temperatures [see the inset of Fig. 3(a)], resulting in a
continuous transition between the thermal-dominated regime
and the mechanical regime.

In Figs. 3(b) and 4(b) we show the temperature dependence
of the internal pressure and bulk modulus in the thermal, inter-
mediate, and mechanical regimes. Above ε1 we find that they
are both independent of temperature; in this mechanical regime
the network is completely stabilized by the spring constant and
its response to deformation is invariant to temperature. At and
below the rigidity point the temperature dependence becomes
more complex. Below ε1 the pressure in the network scales
as P ∝ T α . When the network is at zero strain ε = 0 we find
that α = 1, as expected in analogy to entropic elasticity [31].
However, as the strain is increased we find α � 1, with an
exponent that decreases as the strain is increased, reaching
α ∼ 0.66 as the critical strain is approached. We observe this
dependence only at low temperatures T ∗ < 10−5, with the
pressure scaling linearly at higher temperatures. This varying
temperature dependence of the pressure can be understood
when we consider the behavior of pressure in the initial linear
response regime. That is, at low bulk strains we find that the
pressure scales linearly with area and at low temperatures can
be expressed as −P = m(T )(A − A0) + c(T ), where m(T )
and c(T ) are constants for a given temperature T . It then
follows that the bulk modulus will scale as KA = m(T )A. By
fitting this expression for the pressure to our simulation data
we find that m(T ) ∝ T 0.66 (for T ∗ < 10−5) and c(T ) ∝ T ,
as shown in Fig. 3(d). Hence, at low bulk strains (A ∼ A0)
c(T ) dominates and we find a linear temperature dependence,
while at higher bulk strains the system approaches a regime
where m(T )(A − A0) dominates c(T ) and we hence observe
a T 0.66 dependence, with a mixed regime between the two.
The bulk modulus then scales with T 0.66 for all ε < ε1 at
low T ∗ and linearly at higher temperatures. On dimensional
grounds it follows that the pressure and bulk modulus must
also have a dependence on the spring constant and scale as
P,KA ∝ T αk1−α

sp .
For bulk strains close to ε1, we find that P scales with

the square root of temperature P ∝ T 0.5 for T ∗ < 10−5 and
linearly with temperature for T ∗ > 10−5, as shown in Fig. 3(b).
In the T 0.5 regime the network is again stabilized by both
temperature and the spring constant and we find that P scales
as T 0.5k0.5

sp . We also observe that networks below the rigidity
point can enter this regime as the temperature is increased. For
these systems the pressure initially shows a T 0.66 dependence
before they then show a T 0.5 dependence, indicating a regime
that fans out from the zero-temperature rigidity point. The
bulk modulus, however, exhibits a different behavior in this
region, as for networks at ε1 we find that KA is independent of
temperature. For networks just below this point we observe a
rapid increase in the modulus with T , before KA reaches the
zero-temperature value.

As the area is increased for ε > ε1, there is a clear inflection
point in the zero-temperature (and low-temperature) pressure,
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as can be seen in Fig. 3(a). At this point the pressure again
increases linearly with area as −P = c2(A − A2), where c2

and A2 are larger than c1 and A1, respectively. This corresponds
to a reorganization of the network, as the nodes change
positions to minimize the system energy. This is illustrated in
Fig. 3(c), where we plot the fraction of springs in the network
that are activated (i.e., stretched or compressed such that l 	=
l0). At ε1 we see the first springs become activated, followed
by a significant jump at a higher value of ε. Furthermore, as
the area is increased beyond this point, we find several more
reorganizations, as can be seen by the kinks in Fig. 3(c) [there
are also further kinks in the pressure in Fig. 3(a), although these
are not visible on the logarithmic scale used]. This is present
for all configurations and system sizes studied and in Fig. 3(c)
we present data from additional configurations to illustrate this.
This effect is also present when we take the spring constant
of individual springs to be given by ksp,i = μ/l0,i , where μ is
a stretch modulus [see Fig. 3(a)], such that very long springs
will become progressively weaker and contribute less to the
network response. This is likely due to the fact that it is neither
the very long nor very short springs that dominate the system’s
response as the network is stretched beyond its rigidity point,
which we confirm by examining the rest lengths of the activated
springs in Fig. 3(c). The effect that the reorganization of the
network has on the bulk modulus can be seen in Fig. 4(a), where
we see that there is a second distinct jump in KA, corresponding
to a first-order transition as the system rearranges, with further
jumps present at higher areas, although again these are not
visible on the logarithmic scale used.

We now examine the behavior of the linear shear modulus
G, which we obtained by shearing the networks at each bulk
strain. For athermal networks G is zero at low bulk strains,
as one would expect for a floppy network before any of
the springs become stretched. However, the shear modulus
remains zero beyond ε1, with the network not resisting shear
deformation until it reaches a bulk strain ε = ε2 [see Fig. 5(a)].
This strain corresponds to that at which we observed the
second jump in the bulk modulus as shown in Fig. 5(a).
Beyond this point the shear modulus increases linearly with
the area and the network becomes rigid to shear deformation,
indicating a continuous transition in G. As for the pressure
and bulk modulus, when thermal fluctuations are present
we find a nonzero shear modulus throughout, with thermal,
intermediate, and mechanical regimes present, although here
the intermediate regime is found at ε2. The different regimes
can be seen in Fig. 5, where we see G remaining constant with
temperature above ε2 and G scaling with T α at and below ε2,
with α ∼ 0.66 below and α ∼ 0.5 in the intermediate regime.

The temperature dependence of the different regimes of
behavior for the pressure and shear modulus can be captured
by a crossover scaling technique similar to that used for the
conductivity of a random resistor network [49]. This technique
has been used previously to describe the shear modulus for both
athermal [15,18] and thermal systems [29]. The scaling forms
are given by

G = |ε − ε2|aG(T |ε − ε2|−b) (10)

and

P = |ε − ε1|kP(T |ε − ε1|−l), (11)
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FIG. 6. (Color online) Scaling of the pressure P using the form
P = |ε − ε1|kP(T |ε − ε1|−l), where k = 1 and l = 2 are constants
that give the best collapse of data. The two branches on the left-hand
side correspond to ε > ε1 (upper branch) and ε < ε1 (lower branch).

where a/b and k/l are the exponents in the intermediate regime
for, respectively, the shear modulus and pressure. The best
collapses of the data are shown in Figs. 6 and 7, where we use
the critical exponents a,k = 1 and b,l = 2. The two collapses
summarize the three regimes of network stability. The upper
left branches show the mechanical regimes, the lower left
branch shows the temperature dominated regime, where we
find a T 0.66 dependence for the shear modulus and the varying
T dependences for the pressure, and the right branch shows the
intermediate regime, where we find a temperature dependence
of T 0.5 for both G and P .

V. DISCUSSION AND IMPLICATION

The behavior of the subisostatic random-bond networks
considered in this paper is similar to the behavior found in
Ref. [29] for lattice-based networks. The observed sublinear
scaling of the shear modulus G ∝ T α for networks below the
critical bulk strain was also found for lattice-based networks,
albeit with different exponents, with α ∼ 0.66 for the random-
bond networks studied here and α ∼ 0.8 for the triangular-
lattice networks studied in Ref. [29]. This indicates that, while
sublinear scaling is not confined to lattice models, the exponent
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G
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FIG. 7. (Color online) Scaling of the shear modulus G using
the form G = |ε − ε2|aG(T |ε − ε2|−b), where a = 1 and b = 2 are
constants that give the best collapse of data. The two branches on the
left-hand side correspond to ε > ε2 (upper branch) and ε < ε2 (lower
branch).
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does depend on the topology of the network. Indeed, in a recent
paper [30] it was found that a square-lattice network with next-
nearest-neighbor interactions, which is at the isostatic point
when the next-nearest-neighbor interactions are zero, showed
a critical regime where G ∝ T α with α ∼ 0.66, different from
the α ∼ 0.5 observed both in Ref. [29] for a diluted-triangular-
lattice network at the isostatic point and in the random-bond
networks presented here (see Fig. 5). We do, however, find
the same temperature dependence of a random-bond network
at the isostatic point as the diluted-triangular-lattice network,
with α ∼ 0.5 at z = zc.

In Ref. [29] it was proposed that the scaling may be due
to the internal pressure P , which at ε = 0 scales linearly with
temperature, leading to G ∝ k0.2

sp P 0.8. This was in analogy
to a study on athermal networks with an internal stress σm

induced by molecular motors, where G ∼ k0.2
sp σ 0.8

m below the
isostatic point [21]. However, as we find that the pressure
begins to scale sublinearly with temperature as the bulk strain
is increased from ε = 0 while the G ∝ T α scaling remains,
this proposed scaling would not be valid as one moves
away from the rest area of the network at ε 	= 0. Indeed,
the shear modulus shows the same temperature dependence
as the bulk modulus, which scales as KA = m(T )A, where
m(T ) ∼ T 0.66 was obtained from the relation for the pressure
−P = m(T )(A − A0) + c(T ).

In addition to the similarities between the behavior found
here for subisostatic, subcritical random-bond networks and
subisostatic lattice-based networks, we also note the simi-
larities between the behavior of networks at the bulk strain
threshold corresponding to the rigidity point and networks
at the critical connectivity zc. In Ref. [29] it was found that
the shear modulus behaved as G ∝ T 0.5 at zc (at the critical
connectivity the critical strain is zero εc = 0 [24]), indicating
that the stabilization of the network at the critical strain is
similar to that at zc. We note that this is only true of the
shear modulus, as we find a constant bulk modulus for low
temperatures at ε1. A possible reason for the differences
in the observed temperature dependence between the two
moduli would be the nature of the zero-temperature transition
from zero to finite modulus, as the bulk modulus exhibits a
first-order transition at ε1 while the shear modulus exhibits a
continuous transition at ε2. We also note that the exponents
found for the crossover scaling ansatz in Eq. (10), a = 1
and b = 2, are more mean-field-like than those found for the
critical connectivity case [18,29].

Finally, the zero-temperature behavior of the random-bond
networks considered here differs greatly from that of lattice-
based networks, exhibiting a noncontinuous transition from a
floppy to a rigid network as the bulk strain is increased [24] and

exhibiting a regime where the system has a finite bulk strain but
zero shear modulus. However, despite these differences in the
athermal behavior, as previously mentioned the temperature
dependence of the thermal stiffening of the network does not
change qualitatively [29].

VI. CONCLUSION

In this paper we have studied the effects of thermal
fluctuations on the elastic response of random-bond networks
at various bulk strains. Our results show that, in agreement
with previous studies, there is a bulk strain threshold at zero
temperature for which the bulk modulus and pressure of a
floppy network will become finite. We find that the transition
for the pressure is continuous while it is discontinuous for the
bulk modulus, jumping to a finite value at the rigidity point.
We have also found that random-bond networks can exhibit
further discontinuous transitions, as the networks rearrange to
minimize their energy. Unusually, the random-bond networks
studied here exhibit a regime where there is a finite bulk
modulus but zero shear modulus at zero temperature. In these
systems, the bulk strain threshold for a nonzero shear modulus
is larger than that for a nonzero bulk modulus and the shear
modulus transitions continuously at its rigidity point.

When thermal fluctuations are present the network becomes
stable for all strains and the pressure and bulk modulus
transition continuously between a thermally dominated regime
and a mechanical regime at the zero-temperature rigidity,
while the shear modulus transitions continuously at its own
bulk strain threshold. In between these two regimes, there
exists a third, intermediate, regime where the pressure and
shear modulus depend on the square root of temperature (at
their respective strain thresholds) while the bulk modulus
remains constant, as the intermediate scaling occurs only at
a continuous rigidity transition. Perhaps most interestingly,
we find that the shear and bulk moduli exhibit an anomalous
temperature scaling of T α with α ∼ 0.66 below the critical
strain, where we would expect to find normal entropic elasticity
(linear temperature scaling ≈ T ). This behavior is similar to
that reported in Ref. [29], where the shear modulus was found
to scale as T 0.8, indicating that floppy networks of various
topologies can exhibit anomalous temperature scaling.
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