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We study relaxation times, also called mixing times, of quantum many-body systems described by a Lindblad
master equation. We in particular study the scaling of the spectral gap with the system length, the so-called
dynamical exponent, identifying a number of transitions in the scaling. For systems with bulk dissipation we
generically observe different scaling for small and for strong dissipation strength, with a critical transition strength
going to zero in the thermodynamic limit. We also study a related phase transition in the largest decay mode. For
systems with only boundary dissipation we show a generic bound that the gap cannot be larger than ∼1/L. In
integrable systems with boundary dissipation one typically observes scaling of ∼1/L3, while in chaotic ones one
can have faster relaxation with the gap scaling as ∼1/L and thus saturating the generic bound. We also observe
transition from exponential to algebraic gap in systems with localized modes.
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I. INTRODUCTION

With advancing quantum technologies [1] it is becoming
increasingly important to understand interaction of quantum
systems with external degrees of freedom. Evolution of a
system coupled to environment can be described by a master
equation. A particularly appealing type of a master equation is
a Lindblad equation—a rather general setting that can describe
any Markovian evolution [2]. While Lindblad equations have
been used extensively in the past to describe few-particle
systems in NMR or quantum optics, recently increasing efforts
are devoted to understand many-body systems in the Lindblad
setting. Motivation comes from a wide range of fields where
Lindblad equations find their application, to name a few, as a
computational resource in quantum information, to study, e.g.,
transport properties of strongly correlated condensed-matter
systems, or to study nonequilibrium statistical physics of
many-body systems.

Usually the object of most interest for open systems is a
steady state, that is, a state to which any initial state converges
after a long time. Besides the steady state, dynamics is also
of interest with one of the most important quantities being
the relaxation time. In a finite system relaxation time is
simply equal to the inverse gap of the Liouvillian propagator
generating evolution. In statistical physics the scaling power
of the gap is called the dynamical exponent—a critical
exponent determining a universality class to which a model
belongs. Dynamical exponents have been extensively studied
in classical exclusion models, see, e.g., Refs. [3–5] for some
more recent results.

In a quantum domain much less is known about relaxation
times of many-body systems. Depending on a situation one
might want the gap to be large or small. For instance, if
dissipation is engineered in order to prepare a specific steady
state, then one might want relaxation to be as fast as possible.
On the other hand, if dissipation is unwanted, for instance,
in a quantum memory device, relaxation should be as slow
as possible. The value of the gap g is important not just for
the relaxation time itself [6,7] but can also carry information
about the steady-state properties. Namely if the gap is finite
(so-called rapidly mixing systems) one can show that this
implies a clustering of correlations in the steady state [8,9],
meaning that local observables are uncorrelated on a scale

larger than ∼1/g. Rapid mixing also implies the stability of
steady state to local perturbations [10–12]. If the gap, on the
other hand, closes in the thermodynamic limit, then this can
lead to a nonequilibrium phase transition [13–18] and can
result in a nonexponential relaxation [19,20] towards a steady
state. Understanding how the gap scales with the system size
is therefore of fundamental importance.

There have been few scattered results in the literature
calculating or bounding the gap either analytically or nu-
merically for specific Lindblad models. With our work we
plan to extend these results, studying in more detail how the
gap scales with the system size. One can distinguish grossly
two different situations depending on the number of sites at
which dissipation acts: In a lattice with L sites dissipation
acts on ∼L sites (i.e., on most sites), a setting we will call bulk
dissipation, or it can act only on a fixed number of sites (number
of sites does not grow with L), a setting we will call boundary
dissipation (even though sites at which it acts need not be
at a boundary). Not surprisingly, as we shall see the gap can
behave differently in the two cases. What is known so far is that
for so-called Davies generators, also called thermal reservoirs,
that are an example of bulk dissipation, one is in certain cases
able to rigorously prove that the gap is independent of the
system length [21,22], g ∼ L0. One can also show exponential
relaxation in weakly coupled systems [23]. Similarly, one can
show that the gap can be constant for some other systems
with bulk dissipation [17,19], while in other systems it can
also scale as ∼1/L2 [14,19,24]. On the other hand, for open
systems with boundary dissipation the observed gaps have so
far all been scaling as ∼1/L3 or smaller, examples being the
XY model [20,25,26] or the XXX [27,28] model. For scaling
of gaps in the Redfield equation see Ref. [13].

In the present work we are going to study the scaling of the
gap with system size in a number of spin chain models with
bulk as well as with boundary dissipation. The aim is to get
a better overview of possible gap scaling and changes in the
scaling power as one varies parameters. Such changes can be
associated with possible phase transitions in the steady state as
well as in decay modes. In the main part of the paper we
shall organize sections according to different models studied,
explaining for each different technique used (ranging from
analytical to numerical) to infer the scaling. We shall also
pay attention to the validity of a weak-dissipation perturbation
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theory that can be used to calculate the gap, demonstrating
its failure in a number of cases. If one is not interested in all
the details of gap calculation, or just wants an overview of
different gap scalings found, then see Tables I and II.

The paper is organized as follows. In Sec. II we briefly
explain the setting of Lindblad equations. In Sec. III we
then study systems with bulk dissipation, while in Sec. IV
we study systems with boundary dissipation. Each of these
two sections is split into subsections describing different
systems. In Sec. IV we also explain an argument that the gap
in systems with boundary dissipation cannot be larger than
∼1/L. Finally, in Sec. V we conclude as well as present a
summary of the results found.

II. LINDBLAD EQUATION

The Lindblad equation is [29,30]

dρ

dt
= L(ρ) := i[ρ,H ] + Ldis(ρ), (1)

where Ldis(ρ) = ∑
j 2LjρL

†
j − ρL

†
jLj − L

†
jLjρ is a linear

superoperator called a dissipator that can be expressed in terms
of traceless Lindblad operators Lj . Denoting eigenvalues of
the Liouvillian L by λj (L), and ordering them according to
their real parts, with λ0(L) = 0 assuming to be nondegenerate,
the gap is equal to a negative real part of the second largest
eigenvalue,

g := − Re[λ1(L)]. (2)

Eigenvectors of L corresponding to nonzero eigenvalues are
called decay modes.

The models that we are going to study will all be spin chains
composed of L lattice sites, each carrying a spin-1/2 particle.
Coupling in H will always be local between nearest-neighbor
sites only and with open boundary conditions. Dissipation
will also be local, i.e., each Lindblad operator Lj will act
nontrivially only on a single site (different Lj though can act
on different sites). Two types of dissipation will be employed,
both physically motivated. The first one is dephasing for
which Lj ∝ σ z

j and which tries to destroy off-diagonal matrix
elements (in the eigenbasis of σ z). The second one is magne-
tization driving in which Lindblad operators proportional to
raising and lowering operators try to impose an imbalance in
populations of spin-up and spin-down states.

We mention that the many-body spin chain models studied
here are within reach of present-day cold-atom technology,
e.g., Refs. [31,32], with individual components like controlled
few-qubit dissipation [33] or Heisenberg spin chains [34,35]
already demonstrated.

III. BULK DISSIPATION

A canonical model that we shall study in both bulk- and
boundary-driven cases is the anisotropic Heisenberg model
(XXZ model for short). For zero anisotropy the XXZ model
goes into the XX model, which is especially simple and even
allows for an exact asymptotic solution.

A. XX with dephasing

The Hamiltonian of the XX model is

H =
L−1∑
j=1

σx
j σ x

j+1 + σ
y

j σ
y

j+1. (3)

Dissipation Ldis is given by dephasing of strength γ acting
independently on each site, which is described by a set of L

Lindblad operators,

Lj =
√

γ

2
σ z

j . (4)

We note that the Liouvillian L conserves the total mag-
netization Z = ∑

j σ z
j , that is, if |ψ〉 is an eigenstate of Z

with eigenvalue Zψ and, similarly, |ϕ〉 is an eigenstate of
Z with an eigenvalue Zϕ , then L(|ψ〉〈ϕ|) = ∑

jk cjk|ψj 〉〈ϕk|
is a superposition of terms in which all ψj and all ϕk are
again eigenstates of Z with eigenvalues Zψ and Zϕ , respec-
tively. More formally, conservation means that UL(ρ)U † =
L(UρU †), with U being rotation around the z axis. L therefore
has a block structure and we shall label each block by a
magnetization difference z and by a number of flipped spins r ,

z := Zψ − Zϕ, r := (L − Zψ )/2. (5)

For an L-site chain the allowed values of z are from −2L to
+2L in steps of 2, while that of r are r = 0,1, . . . ,L. Of special
interest will be sectors with z = 0 because they carry a steady
state, i.e., an eigenstate ofLwith eigenvalue 0. A subspace with
z = 0 and some value of r will be simply called an r-particle

sector and has (operator) dimension (Lr )2. Two most important

ones are r = 1 (one-particle sector), being the smallest non-
trivial one, and the largest one with r = L/2 (or r = (L ± 1)/2
for odd L) being called a half-filling sector because half of the
spins are pointing up and half are pointing down.

An important property of dissipative systems where H is
quadratic in fermionic operators (via Jordan-Wigner trans-
formation) and Lindblad operators are Hermitian (but not
necessarily quadratic), and our XX model is an example of
such a system, is that equations for correlation functions split
into a hierarchy of equations according to their order, i.e., the
number of fermionic operators in the expectation value [36,37].
This enables one to exactly calculate few-point expectation
values in the steady state, for instance, in the presence of an
additional boundary driving [14,38,39], an incoherent bulk
hopping [36,40], or special engineered dissipation [37].

Here we are not interested in the steady state but instead
in the Liouvillian gap, and, in particular, in its scaling with
the system size L. Due to magnetization conservation there
are L + 1 steady states, one in each invariant subspace with
z = 0 and a particular r . One can also easily see that such

a steady state is a uniform mixture of projectors to all (Lr )

diagonal basis states in the corresponding r-particle subspace,
for instance, for L = 3 in a one-particle sector (r = 1, z =
0; subspace dimension 32) the steady state is ∼|001〉〈001| +
|010〉〈010| + |100〉〈100|. For more details about such states,
for instance, their Schmidt spectrum, see Appendix. Subspaces
with z �= 0 do not contain any zero eigenvalues (i.e., steady
states) because they are orthogonal to the identity operator
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which is, due to trace preservation, always a left eigenvector
of L with eigenvalue zero and is therefore nonorthogonal to
all steady states. Because we are interested in the gap we can
limit our discussion to subspaces with z = 0 as they are the
only ones that contain steady states. Subspaces with r = 0
and r = L are of dimension 1 and contain only the steady
state and are of no interest to us. All other L − 1 subspaces
contain a nontrivial gap. We shall be in particular interested in
the smallest gap out of those, i.e., the global one, giving the
slowest relaxation rate in the system.

Because of a hierarchy of correlations we know that the
eigenvalues, i.e., decay rates, of p-point correlation equations
are equal to (some) eigenvalues of the Liouvillian [37],
however, one in general does not know whether they also give
the gap. Regardless of that they can be used as an upper bound
on the global gap. For instance, for a model with an incoherent
hopping the relaxation rate of two-point correlations scales
as ∼1/L2 [36], meaning that the global gap cannot be larger.
Similarly, for a boundary-driven system numerical calculation
of the global gap also resulted in ∼1/L2 scaling [14].

By numerically diagonalizing our L in each r-particle
sector we observe that the gap is in fact the same in all
sectors. This in particular means that to calculate the global
gap it is enough to consider the one-particle sector which

is of dimension (L1)2 = L2 (or its symmetric (L − 1)-particle

partner that has exactly the same eigenvalues). This is due
to a free nature of H , causing that the spectrum of the
one-particle sector to be contained in higher-r sectors. One
could be tempted to conclude that the one-particle sector will
be rather trivial—this is certainly true for a one-particle sector
of dimension L in the Hilbert space of states—however, here
we are dealing with a one-particle sector of dimension L2 in
the Hilbert space of operators. As we shall see this allows
for a rich behavior, among other things for a discontinuous
transition in the scaling of the gap from a constant 1/L0 for
small dephasing strength γ to ∼1/L2 for nonsmall γ .

Before going to the actual calculation of the gap let
us pause for a moment and have a look at an alternative
formulation of the eigenvalue problem for the whole L. The
Liouvillian that acts on a (2L)2-dimensional operator space
is a non-Hermitian linear operator that can be written as a
“Hamiltonian” of a non-Hermitian spin-1/2 ladder composed
of L rungs. Each rung, spanned by four pure states, takes care
of one site of L which is also four-dimensional (e.g., three
Pauli matrices plus an identity). The resulting ladder is very
simple for the XX chain with dephasing: It is composed of two
XX-coupled chains along the ladder legs with an additional
imaginary coupling along rungs, see Fig. 1 and Appendix
of Ref. [41] for the mapping details. The steady state is an
eigenvector corresponding to the eigenvalue zero, in other
words a “ground state” of a non-Hermitian ladder. Because
of dissipative coupling along rungs this ground state is always,
regardless of the value of γ , a direct product of singlet states
at each rung. The steady state is therefore always dominated
by dephasing γ , forcing the steady state to be a singlet state.
This is due to a very special structure of L—no interaction in
H (which plays an inert role) and a dephasing that kills all
off-diagonal matrix elements. As we shall show, things differ
considerably for the first decay mode determining the gap.

−i(L + γL ) ≡

HXX

−HXX

iγ σzτ z

FIG. 1. The Liouvillian superoperator for the XX chain with
dephasing is equivalent to a non-Hermitian ladder Hamiltonian,
with XX interaction along upper and lower legs (thin lines) and an
imaginary z-z interaction due to dephasing along rungs (double lines).

There is a transition from a γ -dominated phase to a different
phase in which H becomes important.

In the ladder formulation of L we can also see why the
one-particle superoperator sector is nontrivial: It corresponds
(in an appropriate basis) to states with one particle in the upper
leg (bra) and one particle in the lower leg (ket). Therefore, a
one-particle superoperator problem is like a problem of two
interacting particles on a ladder. It constitutes the simplest case
of an interacting system.

1. One-particle sector

Let us now calculate the gap in the one-particle sector.
Essentially the same eigenvalue problem, apart from different
boundary conditions [42], has been rigorously solved in
Ref. [43]. Here we shall present a different and approximate
calculation of the gap, which is simpler but nevertheless
accurate in the thermodynamic limit L → ∞ in which we
are especially interested.

The basic idea is the following. We have seen that the
steady state is always dominated by the dephasing and one
can expect that, in some range of dephasing strengths, the first
decay mode will also be of the same nature—that is, dominated
by γ . If this is the case, then its eigenoperator will be close to
diagonal because dephasing kills all off-diagonal elements. In
the lowest approximation the unitary part LH couples diagonal
elements |j 〉〈j |, where |j 〉 denotes a state of L spins with the
j -th spin being flipped to |1〉 while all others are in state |0〉, to
two off-diagonal |j 〉〈j + 1| and |j + 1〉〈j |. Such a tridiagonal
approximation reduces the size of L in the one-particle sector
from L2 to 3L − 2. In addition, we can immediately see that
on this three-diagonal subspace all (L − 1) states of the form
|j 〉〈j + 1| + |j + 1〉〈j | are eigenstates with eigenvalue −4γ

(they are eigenstates of LH with eigenvalue 0 because of
different signs when H acts from the left and from the right,
while Ldis(|0〉〈1|j ) = −2γ |0〉〈1|j and similarly for |1〉〈0|j ).
Reduction of L to (2L − 1) dimensional subspace spanned
by |j 〉〈j | and |j 〉〈j + 1| − |j + 1〉〈j | has a block structure of
form

Lred =
(

0 CT

C −4γ 1

)
, Cj,k = −2i

√
2(δj,k − δk,j+1). (6)

Basis ordering is such that the first diagonal block corre-
sponds to L states |j 〉〈j | and the second to (L − 1) states
|j 〉〈j + 1| − |j + 1〉〈j |. Writing the eigenvector as (x,y) and
the eigenvalues as λ, and eliminating x, we get an eigenvalue
equation CCTy = (λ2 + 4γ λ)y, with C CT being a tridiagonal
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FIG. 2. The gap g of the XX model with dephasing γ = 0.5.
Shown is the exact gap (symbols), the full curve is the approximate
formula (8), while the dotted curve shows the asymptotic expression
2π 2/(γL2). The approximate result (8) is accurate for L larger than
the transition point Lc := π

√
2/γ .

matrix of size (L − 1) × (L − 1) with matrix elements

(CCT)j,k = 8(−2δj,k + δj+1,k + δj−1,k). (7)

CCT is nothing but a standard matrix appearing is a
solution of harmonic oscillators or a tight-binding model
and has eigenvalues −32 cos2 [πj/(2L)], j = 1, . . . L − 1,
leading to eigenvalues λj of Lred being λj = −2γ (1 ±√

1 − 8 cos2 [πj/(2L)]/γ 2. The gap is determined by the
largest eigenvalue λj=L−1 and is

g = 2γ

[
1 −

√
1 − 8

γ 2
sin2

(
π

2L

)]

 2π2

γL2
+ · · · . (8)

The gap g gives the distance of the largest decay mode
eigenvalue from the origin along a real axis, with the next
largest decay mode being asymptotically at a distance 4g.
For H with periodic boundary conditions the gap is 4 times
larger than the above g (8). We can see that for sufficiently
small γ the expression under the square root in Eq. (8) can
become negative. For large L this happens for γ < γc, where
the critical dephasing is

γc = π
√

2

L
. (9)

Our approximate expression for the gap (8) is accurate only
for γ � γc, where the decay mode is indeed governed by
dephasing, see Fig. 2. Note though that in the thermodynamic
limit γc → 0 and therefore Eq. (8) becomes exact for any
γ . One can see already in Fig. 2 that below γc (or Lc,
depending on which parameter is held fixed) the gap becomes
independent of L and in the thermodynamic limit equal to 4γ

(in this regime the largest decay mode eigenvalue is complex
and the gap g is equal to its real part). Therefore, for the
largest decay mode there are two phases: for γ � γc the
decay mode is governed by H with the gap being g = 4γ ,
while for γ � γc the decay mode is governed by dephasing
and the gap is g 
 2π2

γL2 . One can use perturbation theory to
show that the gap is indeed independent of system size for
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FIG. 3. (Color online) Phase diagram of the largest decay mode.
(a) Dependence of gap g/γ on dephasing and L. Full black line
is the critical γc (9) delimiting two phases. In (b) and (c) are
shown expansion coefficients |ck,j | of the largest decay mode x, x =∑L

k,j=1 ck,j |k〉〈j |, showing an almost-diagonal dephasing-dominated
phase with g ∼ 1/L2 in (b), and a delocalized phase with g ∼ 1/L0

in (c).

sufficiently small dephasing [17]. The convergence radius of
weak-coupling perturbation series for small γ is γc (9) and
algebraically shrinks to zero in the thermodynamic limit. Also,
the thermodynamic limit L → ∞ and the weak coupling limit
γ → 0 do no commute, which can be also seen in Fig. 3
showing the phase diagram.

Finally, let us briefly comment also on the overall spec-
trum of L. Numerically diagonalizing L on the one-particle
subspace the following picture emerges, see Fig. 4. Most
of the eigenvalues, ∼L2 in number, are within the bulk
laying in a complex plane. As one increases L eigenvalues
“evaporate” from the bulk and join a bunch of real eigenvalues
to the right of the bulk. The number of these separated real
eigenvalues is proportional to L. Decay modes corresponding
to the separated real eigenvalues are dictated by dephasing,
whereas decay modes in the bulk are instead dictated by the
Hamiltonian. Remember that in the absence of dephasing
the spectrum of L would be entirely on the imaginary axis.
Such a distinct nature of two decay mode types is in turn
reflected in two different phases of the largest decay mode,
Fig. 3. Indeed, if one decreases γ at fixed L, then real
eigenvalues get “absorbed” in the bulk, with the last one
disappearing at ≈γc, at which point a transition happens in
the scaling of the gap with L. Approximate values of real
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FIG. 4. (Color online) Complex eigenvalues of L for XX model
with bulk dephasing, γ = 1, L = 50, and one-particle sector. For
γ > γc there are of order ∼L eigenvalues that are on the real axis and
are separated from the bulk consisting of the remaining ∼L2 complex
eigenvalues. Real parts of the bulk eigenvalues are around −4γ with
the width being ∼γ /L.

eigenvalues can be obtained from the approximation with
Lred (8), resulting in a scaling of the j -th largest eigenvalue ofL
as λj ∼ (j/L)2. In the thermodynamic limit real eigenvalues
therefore cluster around the origin with their density there
having a square-root singularity. It has been observed [19]
that if the gap g closes in the thermodynamic limit there is a
possibility for an algebraic relaxation instead of an exponential
one occurring when g is finite. Such an algebraic decay can be
explained [20] by clustering of eigenvalues around 0. In our
XX chain with dephasing this clustering is of the same kind as
in boundary-driven free models studied in Ref. [20] and, as a
consequence, in the thermodynamic limit the relaxation will
have a power-law form.

B. XXZ with dephasing

In the XX model the bulk Hamiltonian describes noninter-
acting particles. Choosing the XXZ Hamiltonian instead, the
additional coupling in the z-direction represents the interaction
between fermions in the Jordan-Wigner picture. In this section
we shall therefore consider the XXZ spin chain with bulk
dephasing. The Hamiltonian of the XXZ chain is

H =
L−1∑
j=1

σx
j σ x

j+1 + σ
y

j σ
y

j+1 + 
σz
j σ z

j+1, (10)

with 
 being an anisotropy parameter. Dissipation is the same
dephasing at each site as used already for the XX model (4).
Magnetization is again conserved and there is one steady state
in each sector with magnetization difference z = 0 and r

particles, see discussion for the XX model with dephasing.
Using a Jordan-Wigner transformation the anisotropy part

σz

j σ z
j+1 has a form ∼
njnj+1 and therefore represents

interaction between nearest-neighbor fermions. Analytical
solution for eigenvalues of L is not possible anymore and

 0.001

 0.01

 0.1

 1

 10  100

g

L

Δ=0.5
Δ=2.0

FIG. 5. The gap g in the one-particle sector of the XXZ chain with
dephasing, γ = 1. Symbols show results of numerical diagonalization
for anisotropies 
 = 0.5 and 2.0, while the full line is 2π2/L2, giving
the asymptotic gap, which is equal to the one in the XX chain with
dephasing (8).

we will have to resort to various perturbation approaches and
numerical calculation.

Numerically calculating the gap, one sees that, as opposed
to the XX model, the gap this time differs in different sectors.
In particular, the global, i.e., the smallest, gap is from the
half-filling sector with r = L/2 (or r = (L ± 1)/2 for odd
L) and not from the one-particle sector, r = 1. We shall
nevertheless first discuss the one-particle sector, where in the
thermodynamic limit things are simple.

1. One-particle sector

Because the one-particle sector’s size is L2 one can
numerically calculate the gap for systems of reasonable size.
Results are in Fig. 5.

As we can see for large system sizes, the gap is equal to

g 
 2π2

γL2
, (11)

and is therefore equal to the one for the XX chain with
dephasing. In the one-particle sector the gap is in the
thermodynamic limit independent of interaction (anisotropy)

. This can be qualitatively understood if one looks at the
non-Hermitian ladder formulation of L (for the XXZ chain the
only difference compared to the XX chain in Fig. 1 is that
the Hamiltonian along the two legs is the XXZ Hamiltonian,
see Ref. [41]). Because there are only two particles present in
the ladder, interaction is infrequent; it is, in fact, only a ∼1/L

boundary effect [44] and is asymptotically irrelevant [for finite
L correction to the asymptotic gap (11) due to finite 
 scales
as ∼1/L4].

2. Global gap

As mentioned, for the XXZ chain with dephasing the
smallest gap is from the so-called half-filling sector with
r = L/2 particles, which is also the largest subspace of L.
Here we shall study the gap in this sector. We are going
to use perturbation theory for small γ as well as for large
γ , while in-between numerical calculations will be used to
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FIG. 6. The largest nonzero eigenvalue c1 of matrix R (12) in the
XXZ chain with dephasing, determining the gap Eq. (13). Full line is
1/L0.8, suggesting the asymptotic dependence for 
 > 1.

infer a general form of g. We are also going to show that the
perturbation theory for large 
 fails.

Let us start with small γ . For the unperturbed part of the
Liouvillian we take the whole unitary part, L0 := i[ρ,H ],
generated by the XXZ Hamiltonian (10), while perturbation
is the dephasing L1 := Ldis. Because the unperturbed L0 has a
degenerate steady-state subspace corresponding to eigenvalue
0, we have to use first-order degenerate perturbation theory.
The steady-state subspace is spanned by all projectors xk =
|ψk〉〈ψk| to eigenstates |ψk〉 of H (we assume a nondegenerate
spectrum of H ). Let us denote a projection of L1 to the
steady-state subspace of L0 by γR := PL1P , with Rj,k =
tr[xjL1(xk)] being of size (Lr ). Using the form of dephasing

Lindblad operators (4) we get

Rj,k = −Lδj,k +
L∑

p=1

∣∣〈ψj |σ z
p|ψk〉

∣∣2
. (12)

The largest eigenvalue of R is equal to 0 and the next-largest
one, denoted by −c1 (similarly as for L, all eigenvalues of R

have nonpositive real parts), determines the gap of L for small
γ ,

g = γ c1 + O(γ 2). (13)

We observe that, while on one hand dephasing can be derived
as being due to a classical fluctuating magnetic field in the z

direction [45], we also see that the gap ofL for small dephasing
is determined by eigenstate fluctuations of magnetization in
the z direction, as reflected in the form of R (12). In Fig. 6
we show results of exact numerical diagonalization of R

for different anisotropies and system sizes, all in the largest
half-filling sector with r = L/2. We can see that for 
 < 1
the eigenvalue c1 becomes asymptotically independent of L,
for instance, for 
 = 0 it converges towards 4 as already
calculated in section about the XX model. For 
 > 1 it, on
the other hand, decays; numerical data for available L � 18
is consistent with a ∼1/L0.8 decay. For small (
 − 1) this
asymptotic decay starts for sizes larger than L∗ ∝ 1/(
 − 1).
It would be interesting if one would be able to directly calculate
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FIG. 7. (Color online) The largest nonzero eigenvalue in the even
or odd sector for the XXZ chain with dephasing, all for L = 8.
Insets show dependence of the critical γc that determines validity
of perturbation series. Left: Gapless regime of 
 = 0.5 for which γc

depends on L algebraically (dashed curve in the inset is ∼1/L1.2).
Right: Gapped regime 
 = 2.0 for which γc 
 exp(−kL) (inset).

the largest nontrivial eigenvalue of R via the Bethe ansatz
eigenstates ψk .

So far we have calculated the global gap for small dephasing
γ without saying anything about the convergence radius, i.e.,
the validity of such an approximation. To find out critical γc

up to which perturbative gap (13) can be expected to hold,
we are going to numerically calculate the gap and compare
it to perturbative prediction. In addition to symmetries of L
already pointed out, there is also a spatial reflection symmetry
with respect to exchanging sites j → L − j , resulting in even
and odd decay modes and eigenvalues of L. The largest
nonzero eigenvalue in even and odd sector (both for z = 0
and half-filling r = L/2) is shown in Fig. 7 for system size
L = 8 and two values of 
. The steady state—a uniform
combination of all pure-state projectors—is always from the
even sector. We can see that the largest nonzero eigenvalues
cross at a critical γc. The decay mode that determines the
gap in the half-filling sector (red pluses in Fig. 7) is from the
even sector for γ < γc and from the odd one for γ > γc. For
γ < γc we see that the gap (red pluses) is proportional to γ

(horizontal line in Fig. 7) and therefore perturbation series (13)
holds. The convergence radius γc shrinks algebraically with L

in the gapless phase 
 < 1, and at 
 = 0.5 is appears as
γc 
 4.1/L1.2, although we cannot exclude asymptotic ∼1/L

scaling, while it is exponentially small in the gapped phase

 > 1. For the XXZ chain with bulk dephasing the convergence
radius of perturbation series in the dephasing therefore shrinks
to zero in the thermodynamic limit. We also note that the two
eigenvalues shown in Fig. 7 are both real, except the odd one
for γ < γc and 
 = 0.5 which forms a complex pair.

For nonsmall γ the XXZ chain with bulk dephasing is
diffusive [46] and therefore one in general expects the gap
to scale as ∼1/L2 in the thermodynamic limit. Namely, for
diffusive systems evolution of macroscopic observables does
not depend independently on time t and spatial coordinate x

but instead only on one scaling variable x2/t and therefore
time should scale with a size squared. We numerically
calculated [47] the gap for fixed nonsmall γ and indeed
confirmed the g ∼ 1/L2 scaling, see Fig. 8 as well as Ref. [19].
Exact dependence of g on γ and 
 is more complicated; a
crude approximation that seems to work for large L (at least
for γ = 1) is g ≈ 2π2

γL2
4γ 2

4γ 2+
2 ; the straight lines plotted in Fig. 8
is, in fact, this expression.
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FIG. 8. (Color online) Gap for the XXZ chain with dephasing in
the half-filling sector, γ = 1. Full lines denote asymptotic ∼1/L2

scaling for all 
.

When some parameters in the system are large one can
again use perturbation theory. One such possibility is the
case of large dephasing γ , where the unperturbed Liouvillian
L0 contains H0 = ∑

j 
σ z
j σ z

j+1 and dephasing dissipation
Ldis while the perturbation L1 consists of hopping given by
H1 = ∑

j σ x
j σ x

j+1 + σ
y

j σ
y

j+1. This has been done in Ref. [19],
obtaining that the gap for large γ scales as ∼1/(γL2).

We shall redo calculations of Ref. [19], deriving also
subleading terms, in order to be able to comment on the
validity of different limits. First, L0 has a degenerate steady-
state subspace and one has to use degenerate perturbation
theory. First-order perturbation on the steady-state subspace
of dimension 2L is always zero because all steady states are
diagonal, while the hoppingL1 transports one spin in the bra or
ket, and so at least two applications of L1 are needed to again
get a diagonal state and with it a nonzero matrix elements of
L1. Second-order perturbation of the steady-state manifold is
determined by

Leff = −PL1L−1
0 L1P, (14)

where P is a projection operator to the steady-state manifold.
The steady-state manifold ofL0 consists of all diagonal density
matrices, |ψj 〉〈ψj |, where |ψj 〉, j = 1, . . . ,2L are 2L (basis)
states in the standard σ z eigenbasis. One can write matrix
elements of Leff as [Heff]j,k := −tr[|ψj 〉〈ψj |Leff(|ψk〉〈ψk|)],
where matrix Heff can in turn be written in terms of Pauli spin
variables, obtaining

Heff = HXXX

γ
+ 
2/γ


2 + 4γ 2
[�σ1 · �σ2 + �σL−1 · �σL − 2 · 1]

+ 
2/γ

2(
2 + γ 2)

L−3∑
j=1

(
σ z

j σ z
j+3 − 1

)
(1 − �σj+1 · �σj+2),

(15)

where HXXX := ∑L−1
j=1 (1 − �σj · �σj+1). Such Heff is Hermitian

and has L + 1 zero eigenvalues (one for each invariant
magnetization sector), while all other eigenvalues are positive.
The smallest nonzero eigenvalue is equal to the gap g of L in
the limit when L1 � L0. In Ref. [19] the above result (15) has
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FIG. 9. (Color online) Relative error of the gap calculated from
perturbative Heff (15), γ = 1. For large 
 the error does not go to
zero, signifying that the second-order perturbation theory in large 


fails.

been derived in the leading order in 1/γ , i.e., Heff = HXXX/γ ,
from which, due to a quadratic low-energy dispersion of HXXX ,
one gets the asymptotic gap g 
 2π2

γL2 . This perturbative result
is also valid in the thermodynamic limit [19] because the
convergence radius does not shrink to zero. With the exact
expression for Heff we can also explore the case of large 
, for
which one would be tempted to think that perturbative series
will again work because L1 is again small compared to L0

that contains a large parameter 
. Such reasoning, though,
is in fact wrong and one cannot use perturbation in L1 if
only 
 is large. The reason for the failure is rather instructive
and we are going to explain why it happens. As opposed to
the limit γ → ∞, for 
 → ∞ the two terms that appear in
addition to HXXX in Eq. (15) cannot be neglected because
the two prefactors in front of them scale for large 
 as 1/γ

and are therefore of the same order as the HXXX term. There
is also an additional subtlety: it would be tempting to retain
only the leading-order expansion of the two prefactors, the
already-mentioned 1/γ and 1/(2γ ); however, in that case the
ground state of Heff is highly degenerate and the gap would
therefore remain zero (one of the reasons for the degeneracy
is that the boundary term in the first line of Eq. (15) with
a 1/γ prefactor exactly cancels the boundary terms from
HXXX, leaving the first and the last spin uncoupled). One
has to retain at least the first-order expansion of the prefactors,
resulting in terms that are proportional to γ


2 . This means
that the gap of Heff , and with it also the Liouvillian gap g,
will scale as g ∝ γ


2 for large 
 (this conclusion remains true
despite the failure of second-order perturbation expansion).
Calculating the gap of the full Heff (15) and comparing it
with the exact gap of L, one gets data in Fig. 9. As one
can see, the error does not decrease to zero as one increases

 (this residual error as well increases with L). The reason
is that for large 
 and fixed dissipation γ not all nonzero
eigenvalues of L0 are large—some are of order γ —and
therefore a pseudoinverse L−1

0 in perturbation series (14) is
not necessarily small. This occurs because the spectrum of H0

is highly degenerate with eigenstates being product states in
the eigenbasis of σ z, which is also the eigenbasis ofLdis. If |ψ〉
and |ϕ〉 are two such degenerate eigenstates, then we will have
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[|ψ〉〈ϕ|,H0] = 0 while for dephasing ||Ldis(|ψ〉〈ϕ|)|| ∼ γ . As
a consequence, consecutive orders in perturbation series do
not necessarily uniformly decrease. This can be compared
to perturbation series for fixed 
 and large γ , for which
all nonzero eigenvalues of L0 are large and of order γ and
therefore L−1

0 is small. One can in fact draw a general rule: If
a large perturbation parameter is in global dissipation (strong
coupling), then a perturbative series will be well behaved,
whereas if a large parameter is only in H0 one must be careful
if H0 has degeneracies. Similar complications can occur if
(strong) dissipation acts only on a few sites.

Let us summarize our findings for the XXZ chain with bulk
dephasing and the half-filling sector: For small dephasing γ <

γc the gap is ∼1/L0 for 
 < 1, while it scales as ∼1/L0.8

for 
 > 1. Critical dephasing γc decays algebraically with L

for 
 < 1 while it is exponentially small for 
 > 1, see also
Table I. Perturbation series in small dephasing therefore fails
in the thermodynamic limit. For nonsmall dephasing the gap
is ∼1/L2 regardless of 
, as one would expect for a diffusive
system. Perturbation series for large γ works, while it fails if

 is the only large parameter.

C. Constant gap

We have seen in the XX and XXZ models that the gap can be
constant for a sufficiently weak bulk dissipation. Problem with
these two cases is that the critical dissipation goes to zero in the
thermodynamic limit. A natural question is as follows: Can one
have a constant gap also for nonsmall dissipation? The answer
is yes and we are going to give a simple example. Known are
examples with only dissipation and no Hamiltonian [17,48].
An example we are going to present has a nonzero Hamiltonian
and nonzero dissipation. It is a XX chain with an incoherent
“hopping” given by Lindblad operator

Lj = σ+
j σ−

j+1, (16)

at each site j , σ±
j = (σx

j ± iσy

j )/2. The Liouvillian L again
conserves magnetization difference z and particle number r .
Numerically diagonalizing L in a r = 1 particle sector (z = 0)
one gets gaps shown in Fig. 10. We can see that asymptotically
the gap is independent of L. Because in the one-particle
sector interaction asymptotically does not matter, the same
asymptotic gap would be obtained also in the XXZ chain
with an incoherent hopping. Beware that if we would take
the XX chain with an incoherent hopping in both directions
(i.e., adding additional Lindblad operators σ−

j σ+
j+1) the gap

in the one-particle sector would asymptotically decay as
g 
 4π2/L2, see also Ref. [36].

Another way of having a constant gap is to use a so-called
thermal dissipators (also known as Davies generators [49])
that can be derived in the limit of weak coupling to thermal
reservoirs. The stationary state of such a master equation is
thermal but with Lindblad operators not being local. For such
models one can in certain cases rigorously prove that the gap
is constant [22].

IV. BOUNDARY DISSIPATION

In this section we are going to study the gap in open systems
with boundary dissipation, that is, with Ldis acting in the

 0

 0.5

 1

 1.5

 2

200 10  100

g

L

0.18

FIG. 10. (Color online) The gap g in the one-particle sector of
the XX chain with an incoherent one-way hopping (16). The kink at
L = 10 is because the eigenvalue responsible for g goes from being
complex to real.

thermodynamic limit nontrivially only on a finite number of
sites. In all our cases H will always be a spin-1/2 chain and
dissipation will act on the leftmost and rightmost lattice sites.
As mentioned, for boundary-driven open systems the gaps
observed in the literature are all ∼1/L3 or smaller. Examples
are ∼1/L3 in the XY chain with boundary magnetization driv-
ing [18,20,26] (or ∼1/L5 at nonequilibrium phase transition
points [25] or even ∼1/L7 on the so-called resonances [50]);
∼1/L3 is the scaling also for the magnetization-driven XXX
model [27] or for the XXZ model with an incoherent hopping
as a driving [28].

Considering these results one can ask whether the gap in
a boundary-driven open system is perhaps always ∼1/L3 or
smaller. As we will see the answer is no. But let us first present
an argument that the gap cannot be larger than ∼1/L.

A. Gap upper bound

Let us have a one-dimensional system described by a local
Liouvillian, L = ∑L

j=1 Lj , which is a sum of local term Lj ,
each of which acts nontrivially only on a fixed number of
consecutive sites around site j (Hilbert space dimension of
a single site is finite, implying that Lj are bounded, and the
steady state is assumed to be unique). In addition, let all but a
fixed number ofLj be purely unitary, i.e., dissipation is present
only in a fixed number of Lj . In the thermodynamic limit the
number of consecutive sites without any dissipation therefore
grows linearly with the system length L. The question we want
to ask is as follows: What is the fastest possible relaxation time,
i.e., the largest possible gap, in such an open system?

We will show that the gap cannot be larger than ∼1/L, or, in
other words, relaxation cannot happen in a time that grows with
L slower than linearly. The argument is actually very simple.
Because there are sites that are of distance ∼L away from the
nearest site with dissipation, a “disturbance” at that site cannot
dissipate in a time smaller than ∝L, i.e., the time a disturbance
needs to get to a site with dissipation. We can also use a
transport argument: For unitary evolution local conservation of
energy holds and, therefore, because the local energy current
is a bounded operator, it will take at least a time ∝L for
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FIG. 11. (Color online) Left: Eigenvalues ofL in the one-particle
sector for the XX chain with boundary dephasing of strength γ =
0.01. Three crosses are eigenvalues that have the largest real part
and give g (18). Right: Numerical g(γ ) (symbols) for L = 40 and
prediction by Eq. (19) (full curve).

the energy of the initial state to be dissipated if we choose
an initial state having total energy proportional to L. One
could also rigorously formulate the above argument by, e.g.,
using the Lieb-Robinson bound for open systems [8,9,51]. The
Lieb-Robinson bound essentially formalizes a statement that
there is a finite propagation speed in bounded locally coupled
systems. One consequence is that connected correlations of
local operators get exponentially suppressed outside of a light
cone or that the Heisenberg picture A(t) of the initial local
operator can be approximated by a part of L with support
inside the light cone (outside the light cone one has A(t) ≈ 1).
Taking a local A(0) ⊥ 1with support on sites that are a distance
∼L away from dissipation, one immediately sees that, because
one has A(t → ∞) = 0, relaxation time cannot be smaller than
∼L.

In next two subsections we are going to study by now
familiar XX and XXZ models, showing that the Lieb-Robinson
bound g ∼ 1/L is never reached, and then in the last subsection
show some examples for which one does get g ∼ 1/L.

B. XX with boundary dephasing

We take the XX chain (3) with dephasing on the first and
the last sites, that is, with only two Lindblad operators L1 and
LL from Eq. (4). Similarly, as in the XX chain with dephasing
on all sites, the gap is again the same in all r-particle sectors
and we can limit our discussion to the one-particle sector.

We are first going to use perturbation theory for small γ .
An example of a spectrum of L in the one-particle sector is in
Fig. 11. One observes that for small γ the largest eigenvalue,
determining the gap, is complex and has the largest absolute
value of the imaginary part (two crosses in left Fig. 11). This
pair of complex eigenvalues determines the gap all the way
up to the maximum of g(γ ) (which for L = 40 shown in right
frame of Fig. 11 happens around γ ≈ 1). For larger γ the
gap is given by a real eigenvalue (the cross on a real line in
Fig. 11) which though has in the leading order the same real
part as the complex pair. This means that one can use simple
nondegenerate perturbation theory to get the gap for small
γ . The eigenvalue with the largest (or smallest) imaginary
part of LH is ρ0 = |ψ1〉〈ψL|, where we denote eigenvalues
of H by Ek = 4 cos qk,k = 1, . . . ,L, where qk := πk

L+1 , and
eigenstates by |ψk〉 = ∑

j cjk|j 〉, cr = √
2/(L + 1) sin qr ,

where |j 〉 denotes a state with all spins down apart from the
j -th spin. The eigenvalue correction will then be given by

κ := tr(ρ0Ldis(ρ0)), where dephasingLdis is a sum of nontrivial
parts acting on the first and last sites.Ldis gives a nonzero value
(equal to −2γ ) only when acting on a nondiagonal operator
on the first or last site, and therefore Ldis(ρ0) is a sum of terms
that are either |j 〉〈1| or |j 〉〈L| (or their Hermitian adjoint), i.e.,
∝ − 2γ

∑
j �=1 c1c

∗
j |1〉〈j | + · · · , at the end resulting in

κ = − 8γ

(L + 1)2

[
−(2 − cos q2 − cos q2L2 ) sin2 qL

+
L∑

k=1

sk,L + sk,1 + s1,k + sL,k

]
, (17)

where sk,r := sin2 qk sin2 qrL. For large L the term in the first
line of Eq. (17) is subdominant, while the second line gives a
large-L expression for κ and therefore also the gap, resulting
in

g = γ
16π2

(L + 1)3
+ O(γ 2). (18)

It is instructive to qualitatively understand how the ∼1/L3

scaling comes about: We see that sk,r is just a product of
eigenstate expansion coefficients cj and that the sum scales
as

∑
k |c1|2|ckL|2 ∼ |c1|2, which in turn is the smallest overlap

probability at the first site, giving one 1/L due to normalization
and an additional q2

1 ∼ 1/L2 due to the longest-wavelength
eigenstate which is the slowest to relax. Such a scenario has
already been observed [20] in the XX chain with boundary
injection of particles, i.e., a model with Lindblad operators
∼σ± at the boundaries instead of our ∼σ z, making it
exactly solvable. One can in fact argue that such ∼1/L3

scaling is generic for boundary-driven models with integrable
Hamiltonian H0 having a plane wave like longest-wavelength
eigenstates.

For large γ one, on the other hand, expects the gap to
decay with dephasing strength as ∼1/γ because of an effective
decoupling of the system and as a consequence increasing
relaxation time. One can extend small-γ expression (18) to
also have the correct large-γ behavior by writing

g = γ

1 + γ 2

16π2

L3
. (19)

One can see in Fig. 11 (right) that this expression indeed fits
well numerical results [small discrepancy seen is due to a
subleading ∼1/L4 correction to Eq. (19)]. Observe that for
the boundary-driven XX system, as opposed to the XX with
bulk dephasing, there is no transition in the scaling of the gap
as one varies γ .

C. XXZ with boundary dephasing

For the XXZ model with boundary dephasing we take a
standard XXZ Hamiltonian (10) and the same two Lindblad
operators L1 and LL (4). We begin by discussing weak
dephasing.

For weak dephasing one observes that the gap comes from
real eigenvalue of L and one therefore has to use degenerate
perturbation theory in an appropriate r-particle subspace
(again, always limiting to z = 0). First order already gives
a nonzero contribution and so the procedure is very similar to
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FIG. 12. (Color online) One-particle sector of the XXZ chain with
boundary dephasing. (a) Numerically calculated gap g for small γ =
0.01 and the theory [full curves, Eq. (21)]. (b) g(γ ) always scales as
∼1/L3; symbols are numerical values for two different sizes and 
;
full curves are Eq. (22).

the one already used for the XXZ chain with bulk dephasing,
leading to Eq. (12). Repeating the same steps now for Ldis that
acts only on the boundary two sites, one gets

Rj,k = ∣∣〈ψj |σ z
1 |ψk〉

∣∣2 + ∣∣〈ψj |σ z
L|ψk〉

∣∣2 − 2δj,k, (20)

where |ψk〉 are eigenstates of the XXZ chain in an appropriate
r-particle sector. Eigenvalues of R are for small γ equal to
the largest real eigenvalues (divided by γ ) of L. Doing the
calculation in the one-particle sector one gets

g = 16π2

(1 + L)3

γ

(1 + 
)2
+ O(γ 2). (21)

For small γ and in the one-particle sector the gap therefore
scales as ∼1/L3 irrespective of the value of 
. For a nonsmall
γ expression that fits numerics well and has a correct weak-
dephasing limit (21) is

g ≈ 16π2

(L + 1)3

γ

γ 2 + (1 + 
)2
. (22)

We see in Fig. 12(b) that the perturbative result in Eq. (21),
i.e., horizontal dependence for small γ in the figure, holds up
to an L-independent γ .

We now move to the half-filling sector. In Fig. 13 we show
the results. For large L the gap scales as g ∼ 1/L3 in the
gapless phase 
 < 1, while it is exponentially small, g ∼
exp(−αL), in the gapped phase of 
 > 1 [52]. Comparing
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FIG. 13. (Color online) Half-filling sector of the XXZ chain with
boundary dephasing. (a) The largest nonzero eigenvalue of R,
Eq. (20), determining the gap for small γ (13). Asymptotic behavior
is denoted by dotted line (=139/L3) and full curve [∼exp(−1.32L)].
(b) The gap for nonsmall γ = 1. Asymptotically, the scaling is the
same as for small γ , namely the dotted line is 80/L3 (
 = 0.5) and
the full curve is ∼exp(−1.32L) (
 = 2.0).

gaps in the one-particle and the half-filling sector one also
observes (data not shown) that for 
 < 1 the gap in the
one-particle sector is the smallest of the two, while for 
 > 1
the smallest gap is from the half-filling sector. For arbitrary
γ the global gap therefore scales as ∼1/L3 for 
 < 1 and
∼exp(−αL) for 
 > 1, see also Table II.

An exponentially small gap can be most easily understood
for small γ via matrix R. Without loss of generality we limit
to even L and focus on the half-filling sector. For matrix
elements of R eigenstates of H and matrix elements of
Lindblad operators is what matters. In the spectrum of H

there are two almost-degenerate eigenstates ψ1,2 which are
the most important for the gap, i.e., for the largest nontrivial
eigenvalue of R. For large 
 they are a symmetric and
antisymmetric combination of a domain wall in the middle of
the chain, |ψ1〉 ∼ |R〉 + |L〉 and |ψ2〉 ∼ |R〉 − |L〉, where we
denoted |L〉 ≡ |11 . . . 100 . . . 0〉 and |R〉 ≡ |00 . . . 011 . . . 1〉
(|L〉 is a state with the left-half of spins down and |R〉 a
state with the right-most half of spins down). For finite-

domain-wall states |R,L〉 differ from a perfect wall only within
a localization length ∼1/ ln 
 of the middle spin, see, e.g.,
the Appendix in Ref. [53]. For 
 > 1 the two states ψ1,2 are
therefore “localized” around the site n/2, their energy is almost
degenerate, they are the highest energy states (in the half-filling
sector), and they are gapped by ≈2
 from the rest of the
spectrum. They have an important property that σ z

1 |ψ1〉 ≈ |ψ2〉
and σ z

1 |ψ2〉 ≈ |ψ1〉, i.e., a subspace spanned by ψ1,2 is invariant
under σ z

1 . As a consequence, overlaps 〈ψk �=1,2|σ z
1 |ψ1,2〉 are

exponentially small in L and in the matrix R a 2 × 2 block
corresponding to these two eigenmodes is decoupled from
the rest. This 2 × 2 block is of the form −21 + (2 − ε)σx

resulting in two eigenvalues −4 + ε and −ε, with the corre-
sponding Liouvillian decay eigenmodes |ψ1〉〈ψ1| + |ψ2〉〈ψ2|
for eigenvalue −ε and |ψ1〉〈ψ1| − |ψ2〉〈ψ2| for a symmetric
partner at −4 + ε (remember that the steady state is a uniform
mixture of all projectors,

∑
k |ψk〉〈ψk|). The gap is thus equal

to ε which is in turn determined by the localization length
of two localized eigenmodes. The rate α in g ∼ exp(−αL)
is therefore proportional to the inverse localization length,
resulting in α ∝ ln 
. Exponentially slow relaxation found
for 
 > 1 could be interesting, for instance, for quantum
memory. We see that the domain wall can support a one-qubit
quantum memory formed out of ψ1,2 which is exponentially
resilient to dephasing. Unfortunately, as we shall see in the
next magnetization-driven model, this resilience is lost for
boundary dissipation in a transverse direction. We note that one
can also get exponentially small gap because of localization
due to disorder, an example being a boundary-driven XY chain
with a disordered magnetic field [26].

D. Magnetization-driven XXZ

So far we have used dephasing as our canonical example of
dissipation because it eased up theoretical analysis. Steady
states are in those cases rather simple, namely uniform
mixtures of all projectors in a respective symmetry subspace
(Appendix). Much more interesting steady states arise if one
has boundary driving that breaks symmetries, for instance,
imposing a left-right asymmetry by having different driving at
chain ends. In such a case the steady state will be a genuinely
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FIG. 14. (Color online) The gap g for the XXZ model and
boundary driving (23) with μ = 0.1 and � = 1. Straight dashed line
suggests asymptotic scaling g ∝ 1/L3.

nonequilibrium state with nonzero currents flowing through
the system.

In this subsection we are going to study one such example,
on one hand to contrast the obtained scaling with that of a
boundary dephasing case and on the other hand to calculate
the gap for a physically much relevant open system. We shall
take the same XXZ model as in previous sections (10), without
dephasing, but instead with a boundary magnetization driving
described by two Lindblad operators at each end,

L1 =
√

�(1 + μ) σ+
1 , L2 =

√
�(1 − μ) σ−

1 ,
(23)

L3 =
√

�(1 − μ) σ+
L , L4 =

√
�(1 + μ) σ−

L .

Driving parameter μ parametrizes the asymmetry between
injection and absorption of particles at the boundary, trying
to impose expectation value of σ z equal to ±μ at chain ends,
while � is the coupling strength. Nonzero μ therefore causes
a nonzero magnetization gradient along the chain. We are
going to use μ = 0.1; however, the scalings observed (e.g.,
Table II) are independent of the precise value of μ as long
as μ is not too close to μ = 1 for which one gets a blockade
of transport due a steplike magnetization profile resulting also
in an exponentially small gap leading to exponentially slow
relaxation [54]. The Liouvillian of such magnetization-driven
XXZ model still conserves z but not r (5). Note that � plays
the role of dissipation strength, similarly to γ in the case of
dephasing dissipation—small � means weak dissipation, e.g.,
weak external coupling. Dissipation strength in the paper is
therefore determined either by γ for dephasing (4) or by � for
“magnetization” driving in Eq. (23).

Numerically calculated gaps are shown in Fig. 14. The gap g

looks to have a nice ∼1/L3 scaling regardless of the anisotropy

. We can compare the gap obtained here to the one obtained
in previous subsection for the XXZ model driven with boundary
dephasing (Fig. 13): In the gapless phase of 
 < 1 the scaling
is in both cases ∼1/L3, while in the gapped phase of 
 > 1
the gap is here ∼1/L3 while it was exponentially small for the
boundary dephasing case. We see that the scaling of the gap
can change already by changing boundary terms only.

Analyzing the gap for small coupling �, i.e., small dissi-
pation, again requires application of a degenerate perturbation

 0.1

 1

4 14 10

c1

L(a)

Δ=0.5
Δ=1.5
150/L3

0
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0.4
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g/Γ
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FIG. 15. (Color online) The XXZ chain with magnetization driv-
ing and small dissipation �. (a) The largest nonzero eigenvalue c1

of R [Eq. (24)] determining the gap for small �. Full line suggests
asymptotic scaling ∼1/L3. (b) Dependence of exact gap on � and
perturbative c1 from frame (a), all for 
 = 1.5 (for 
 = 0.5 behavior
is similar). Deviations from c1 begin at an L-independent �.

theory. Using Lindblad operators (23) the perturbation matrix
R is in this case

Rjk = 2(1 + μ)|〈ψj |σ+
1 |ψk〉|2 + 2(1 − μ)|〈ψj |σ−

1 |ψk〉|2

+ 2(1 − μ)|〈ψj |σ+
L |ψk〉|2 + 2(1 + μ)|〈ψj |σ−

L |ψk〉|2
− 2μδjk〈ψj |σ z

1 − σ z
L|ψj 〉 − 4δjk. (24)

The spectrum of such R for the XXZ chain is in fact independent
of μ. For μ = 0 the above R can be further simplified, taking
into account also that H is real, resulting in

Rjk = 2
∣∣〈ψj |σx

1 |ψk〉
∣∣2 + 2

∣∣〈ψj |σx
L |ψk〉

∣∣2 − 4δjk. (25)

Such R is real and symmetric with the eigenvector corre-
sponding to eigenvalue 0 being a uniform superposition of
all basis states (we note that perturbative R has always one
eigenvalue equal to 0 with the corresponding eigenvector
though being in general more complicated). The gap (i.e.,
c1) for small coupling � of magnetization driving therefore
depends on fluctuations of σx at the boundary two sites;
this can be contrasted with the dephasing case (20) where
fluctuations of σ z matter. In Fig. 15 we show results for c1

and verification of its validity. We can see that for small
� the gap also scales as ∼1/L3 irrespective of 
 and that
approximation g ≈ �c1 holds upto an L-independent �. What
is interesting is that, compared to the XXZ model with boundary
dephasing we changed only boundary driving, that is, we
modified only action of L on 2 out of L sites, and nevertheless
the scaling of gap for 
 > 1 changes from exponential to
algebraic. On the level of perturbative matrix R this can be
understood as being due to the breaking of the underlying
symmetry of two domain-wall states. Because the location of
a symmetry-breaking perturbation is important (25), having
σ± dissipation at sites other than the boundary ones could still
result in an exponentially small gap, see also recent Ref. [55]
for a study of stability of edge modes to Markovian dissipation.

We note that the scaling of the average magnetization
current in the nonequilibrium steady state looks diffusive [56]
for this model in the gapped regime while higher current cumu-
lants show anomalous nondiffusive scaling [57]. Nondiffusive
scaling g ∼ 1/L3 of the gap observed here (irrespective of 
)
is perhaps an additional indication speaking in favor of anoma-
lous transport properties of the gapped Heisenberg model.
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FIG. 16. (Color online) The gap g for the staggered XXZ chain
with boundary dephasing (γ = 1) in the one-particle sector. Dashed
black lines are Eq. (22), having asymptotic decay ∼1/L3.

E. Fast boundary-driven relaxation

So far in all models studied the gap was ∼1/L3 or smaller.
On the other hand, the Lieb-Robinson argument puts a larger
upper bound on the gap of ∼1/L. One can wonder whether
this upper bound can be saturated. We are going to demonstrate
that there are models with g ∼ 1/L. To achieve that we are
going to take chaotic models with boundary driving.

1. Staggered XXZ with boundary dephasing

We are first going to consider the XXZ chain in a staggered
magnetic field,

H =
L−1∑
j=1

σx
j σ x

j+1 + σ
y

j σ
y

j+1 + 
σz
j σ z

j+1 +
L∑

j=1

bjσ
z
j , (26)

with staggered field having a period of three sites, bj =
(−1,− 1

2 ,0,−1,− 1
2 ,0, . . .), for which the Hamiltonian is quan-

tum chaotic [58] and shows diffusive magnetization trans-
port [59]. Dissipation will be dephasing on the first and the
last site. Similarly, as in other models, z and r are conserved
and one can look at the gap in each r-particle sector with z = 0.

In the one-particle sector the staggered field has no
influence on the asymptotic gap and Eq. (22), with scaling
∼1/L3 describes asymptotic g well, see Fig. 16.

In the half-filling sector we are first going to evaluate
perturbation theory for small γ . The procedure is exactly the
same as for the XXZ model without the field—one has to
calculate the largest nonzero eigenvalue c1 of the matrix R

written in Eq. (20) using eigenstates of the staggered XXZ
chain—with the gap then being given by g ≈ γ c1. Results
are in Fig. 17. For 
 < 1 eigenvalue c1 scales as ∼ 1/L,
while for 
 > 1 (data not shown) it is exponentially small in
L. From Fig. 17(b) we also see that the validity of small-γ
approximation shrinks with growing L.

For nonsmall γ we numerically calculated gaps in the half-
filling sector, see Fig. 18. Besides exact diagonalization we
also used tDMRG to obtain the gap, observing relaxation of
tr(ρ(t)σx

L/2σ
x
L/2+1); however, the required matrix dimension

increases with L rapidly and one cannot go to large system
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FIG. 17. (Color online) Staggered XXZ chain with 
 = 0.5 and
weak boundary dephasing. (a) The largest nonzero eigenvalue of R,
Eq. (20), determining the gap for small γ . Asymptotic behavior (full
line) is ≈3.5/L. (b) With increasing size the convergence radius γc

up to which perturbation theory holds decreases.

sizes. We see that for 
 � 1 the gap scales as ∼1/L, which
is different than without the staggered field, when it is ∼1/L3

[Fig. 13(b)]. For 
 > 1 though the gap is exponentially small,
the same as without the staggered field. Explanation is again
in terms of localized modes. In the gapless phase the smallest
gap is from the one-particle sector, in the gapped phase it is
from the half-filling sector. The global gap therefore scales as
∼1/L3 for 
 � 1 and as ∼exp(−αL) in the gapped phase.

The fact that the gap remains ∼1/L3 in the one-particle
sector despite chaoticity is not surprising. What is interesting
and puzzling is that in the half-filling sector and for 
 � 1
the gap looks ∼1/L (at least for the sizes available, Fig. 18),
despite chaoticity and diffusive transport. We do not un-
derstand at present how such fast relaxation is compatible
with diffusion; we note, though, that relaxation towards the
steady state and transport properties of the steady state are, in
principle, two separate properties.

2. Magnetization-driven staggered XXZ

It could be that the above fast relaxation is due to
conservation of r . We therefore take the same XXZ chain
with staggered field as above, Eq. (26), but this time with
boundary magnetization driving of Eq. (23) instead of with

 0.01
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4 16 18 10

g

L
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 4  5  6  7  8  9  10

g
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FIG. 18. (Color online) The gap g for the staggered XXZ chain
with boundary dephasing (γ = 1) in the half-filled sector. The full
black line in the main plot is 1/L; in the inset it is ∝exp(−1.5L). Full
symbols are obtained by exact diagonalization, empty with tDMRG.
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FIG. 19. (Color online) Staggered XXZ chain with weak bound-
ary magnetization driving. (a) The largest nonzero eigenvalue of
R, Eq. (24), determining the gap for small �, scales as ∼1/L.
(b) Agreement between perturbative c1 from (a) with the exact gap
g(�), all for 
 = 0.5. Convergence radius �c decreases with L.

dephasing. The value of driving is chosen to be μ = 0.1. Now
the Liouvillian conserves only z, and the reported gaps are
for the z = 0 sector (eigenvalues in other sectors have larger
gaps; sectors z �= 0 also do not contain any steady state). The
steady state is nontrivial and represents a nonequilibrium state
with nonzero magnetization current. For small dissipation one
can again use perturbation analysis in dissipation strength �.
Everything is similar to the case of the XXZ model without
staggered field. The perturbation matrix R is given in Eq. (24).
For the XXZ model with a staggered field eigenvalues of R do
depend on μ; however, dependence of c1 is very weak, with
the correction at μ = 0.1 being less than 1%. Therefore one
could again use a simplified expression for R given in Eq. (25).
Data in Fig. 19 show that c1, and therefore also g for small
�, scales as ∼1/L, with the range of validity (convergence
radius �c) decreasing with system size L. Observe also that
the effect of staggered field is much more pronounced than in
the staggered XXZ with boundary dephasing (Fig. 17).

Going to nonsmall values of dissipation �, Fig. 20, the
asymptotic scaling of the gap seem to be ∼1/L for 
 < 1,
while for 
 > 1 it looks like g ∼ 1/L2; in both cases,
though, convergence is less clear than in other models. For

 < 1 the asymptotic gap certainly seems to be larger than
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FIG. 20. (Color online) The gap g for the chaotic XXZ model
with staggered field (26) and boundary magnetization driving (23),
μ = 0.1,� = 1. Full symbols are exact diagonalization while empty
are obtained from tDMRG. Straight lines suggest ∝1/L and ∝1/L2

asymptotic behavior.
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FIG. 21. (Color online) Gap g for the tilted Ising model (27)
with boundary dephasing of strength γ = 1. Points are numerical
calculations: full squares for exact diagonalization and empty squares
for tDMRG.

∼1/L2, showing that the Liouvillian gap for a boundary-only
dissipation does not necessarily reflect diffusivity of the
Hamiltonian.

3. Tilted Ising with boundary dephasing

The last model that we are going to study is again quantum
chaotic one but one that does no longer conserve z. We take
the Ising chain in a tilted magnetic field,

H =
L−1∑
j=1

−2σ z
j σ z

j+1 +
L∑

j=1

bxσ
x
j + bzσ

z
j , (27)

which is quantum chaotic [60] for generic field direction
(we use bx = 3.375 and bz = 2) and with diffusive energy
transport [59,60]. For small dephasing strength γ the gap will
again be equal to g ≈ γ c1, where c1 is the largest nonzero
eigenvalue of matrix R (20). Numerically computed c1 for
sizes L � 15 show scaling c1 ∝ 1/Lα with α ≈ 0.85–1.0 (data
not shown).

We have also numerically calculated g (Fig. 21) for a system
with boundary dephasing (4) of strength γ = 1. For smaller
L we used exact full diagonalization or the ARPACK package,
while for L > 10 we used tDMRG [61], inferring g from the
observed relaxation rate of total energy, the initial state being a
pure Néel state |0101 . . .〉〈0101 . . . |. For this model we could
get g with tDMRG for significantly larger systems than for the
other two chaotic models. We can see from Fig. 21 that the
decay seems to be algebraic 1/Lα with α being between 1 and
2. While smaller L seem to be described by 1/L1.25, for larger
we get nicer fit with 1/L1.5. We in principle cannot exclude
the scaling becoming ∼1/L2 for still larger L; however, for
the available data the scaling seems to differ distinctively from
∼1/L2.

V. SUMMARY AND CONCLUSION

Let us briefly summarize our results and point to some
interesting findings and open issues. We have studied open
quantum spin chains with two types of sites at which

042143-13
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TABLE I. Asymptotic scaling of the gap g with system size
L for studied spin chains with bulk dissipation. Gap scaling for
perturbatively weak dissipation, γ < γc, as well as for nonsmall
dissipation is listed. Behavior of γc with increasing L is listed in
two rows with heading “γc.” Approximate sign ≈ means that the
scaling was inferred from small L and that the observed scaling is
perhaps not yet the asymptotic one.

Bulk dissipation
Sector XX + deph. XXZ + deph. XX + hopp.


 < 1 
 > 1

One-particle:
g(γ > γc) 1/L2 1/L2 1/L2 1/L0

g(γ < γc) 1/L0 1/L0 1/L0

γc 1/L 1/L 1/L

Half-filling:
g(γ > γc) 1/L2 1/L2 1/L2

g(γ < γc) 1/L0 1/L0 ≈1/L0.8

γc 1/L 1/L1.2 e−kL

dissipation acts. The first case was chains with bulk dissipation
in which dissipation acts on all (or most) sites, while the second
case was chains with boundary dissipation. Scaling of the gap
for models with bulk dissipation is summarized in Table I.

Not surprisingly, because there are no fundamental limita-
tions on the gap, one also finds all different scalings. Quite
universally, the gap scales differently for small dissipation
strength than for nonsmall dissipation (dissipation strength is
in our cases mostly dephasing γ ). Systems with bulk dissi-
pation therefore typically undergo a (nonequilibrium) phase
transition from a phase dominated by H to a phase where dis-
sipation is dominating. Such transition in the decay mode has
been analyzed in detail for the XX chain with dephasing. In our
models the critical dissipation strength γc at which this transi-
tion happens always goes to zero in the thermodynamic limit.

For boundary-driven models the gap scaling is summarized
in Table II. They all comply with a general bound prohibiting
faster than g ∼ 1/L relaxation. Compared to bulk-dissipated
cases, here the scaling seems the same for small and for non-
small dissipation (except perhaps for the tilted Ising case and
the staggered XXZ model with magnetization driving; in both
cases, though, finite-size effects could still be at play). In the

one-particle sector the gap is always ∼1/L3 due to essentially
the solvability of the smallest nontrivial subspace (even though
a model might be chaotic in larger invariant subspaces) and
the longest eigenmodes having wavelength ∝L.

A number of transitions in the scaling of g can be identified.
At each such transition there is a possible (nonequilibrium)
phase transition that would be interesting to explore in more
detail. Changing a bulk parameter, like the anisotropy 
 or the
staggered field, can change the scaling (e.g., from algebraic to
exponential or from ∼1/L3 to ∼1/L). More interestingly, the
scaling can also change by changing a boundary dissipation
only, that is, changing only terms that have a relative weight
O(1/L) in the Liouvillian L. An example is the gapped XXZ
chain for which the gap is exponentially small if dephasing
is at the boundary, while it is algebraic for magnetization
driving at the boundary. Such a transition is due to a symmetry
breaking of otherwise protected subspace.

One finding that needs further exploration is a fast g ∼ 1/L

relaxation in chaotic models. In the present work we studied
only the spectral gap, without detailed discussion of the
associated eigenvector properties. Of particular interest is
locality of decay modes and with it connected relaxation of
local observables. Namely it has been observed in Lindblad
equations as well as in classical systems [3] that (certain)
local observables can relax in a time that is smaller and
scales differently than the global gap. For instance, in the
XXX chain with Lindblad magnetization driving the gap scales
as g ∼ 1/L3, whereas local magnetization and current relax
as ∼1/L3/2 [27].

APPENDIX: UNIFORM-MIXTURE STEADY STATE

In all systems studied that conserve magnetization as well
as the number of particles in the bra and ket, that is, z and
r (5), the Liouvillian eigenproblem has a block structure. In
the z = 0 sector one has a steady state in each r-particle sector,
and that steady state is an equal mixture of projectors to all
basis states (an ergodic diagonal state),

ρ = 1(
L

r

) ∑
j

|ψj 〉〈ψj |, (A1)

TABLE II. Asymptotic scaling of the gap g with system size L for studied spin chains with boundary dissipation. For systems that do not
conserve particle number r the global gap is listed under the “half-filling” heading. When known, we also list behavior with increasing system
size of the convergence radius γc (or �c for “magnetization” driving) of perturbation series in dissipation. “Deph” in the model description
denotes dephasing dissipation, Eq. (4), “μ” magnetization driving, Eq. (23).

Boundary dissipation
Sector XX + deph. XXZ + deph. XXZ + μ. Stagg. XXZ + deph. Stagg. XXZ + μ Tilted Ising + deph.


 < 1 
 > 1 
 < 1 
 > 1 
 < 1 
 > 1 
 < 1 
 > 1

One-particle:
g(γ > γc) 1/L3 1/L3 1/L3 1/L3 1/L3

Not conserved Not conserved Not conserved
g(γ < γc) 1/L3 1/L3 1/L3 1/L3 1/L3

Half-filling:
g(γ > γc) 1/L3 1/L3 e−αL 1/L3 1/L3 1/L e−αL ≈1/L ≈1/L2 ≈1/L1.5

g(γ < γc) 1/L3 1/L3 e−αL 1/L3 1/L3 1/L e−αL 1/L ≈1/L ≈1/L0.9

γc or �c L0 L0 �c ∼ L0 γc → 0 ≈L0 �c → 0 �c → 0
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with |ψj 〉 having r spins in state |0〉 and L − r in state |1〉.
The two most interesting subspaces are the one-particle and
the L/2 particle (half-filling).

1. One-particle sector

The simplest case is L = 2, for which the steady state is

ρ2 = 1
2 (|10〉〈10| + |01〉〈01|). (A2)

Taking a local operator basis composed of
{|0〉〈0|,|1〉〈1|,|0〉〈1|,|1〉〈0|} one can “vectorize” the operator
ρ, writing it as a vector in a Hilbert space of operators. Doing
that on ρ2, it can be written as

|ρ2〉〉 = 1√
2

(|10〉〉 + |01〉〉), (A3)

where we use the notation |•〉〉 to denote vectors in the space of
operators, written in the operator basis {|0〉〉,|1〉〉,|2〉〉,|3〉〉} ≡
{|0〉〈0|,|1〉〈1|,|0〉〈1|,|1〉〈0|}. The steady state in the one-
particle sector on L spins, ρL, is simply

|ρL〉〉 = 1√
L

(|10 . . . 0〉〉 + |010 . . . 0〉〉 + · · · + |0 . . . 01〉〉),

(A4)

which is the so-called W state. One can immediately see that
for a bipartite cut after p spins the Schmidt decomposition
is of rank 2 with the two eigenvalues (squares of Schmidt
coefficients) being 1 − 1

L
and 1

L
, irrespective of p. In the

operator space such a steady state is therefore of finite rank 2
(it is weakly entangled) regardless of the system size L.

2. Half-filling sector

The half-filling sector is composed of states with half of the
spins pointing up and half pointing down. Total magnetization
is therefore zero. Starting again with a simple example for

L = 4, we have the steady state

ρ4 = 1
6 (|0011〉〈0011| + |0101〉〈0101| + |1001〉〈1001|
+ |0110〉〈0110| + |1010〉〈1010| + |1100〉〈1100|),

(A5)

or, written as a vector,

|ρ4〉〉 = 1√
6

(|0011〉〉 + |0101〉〉 + |1001〉〉 + |0110〉〉

+ |1010〉〉 + |1100〉〉), (A6)

where |ρL〉〉 is a uniform superposition of all ( L
L/2) basis states

with zero magnetization [for simplicity, we assume even L;
for odd L and the largest sector one has to replace L/2 with
(L + 1)/2]. Regarding (operator) Schmidt decomposition, for
a cut after p = 1 sites we see that the Schmidt rank is 2 with
both eigenvalues being 1

2 . For p = 2, i.e., a cut of maximal
size for ρ4, we have decomposition

|ρ4〉〉 ∼ |00〉〉|11〉〉 + |11〉〉|00〉〉 +
√

4
1√
2

(|01〉〉

+ |10〉〉) 1√
2

(|01〉〉 + |10〉〉), (A7)

and therefore the state is of rank 3 with eigenvalues being
1
6 , 1

6 , 4
6 . We can see that the eigenvalue prefactors (1,1,4) are

actually of a combinatorial nature, resulting from the number
of combinations of distributing k ones on p sites, e.g., 1 =
(2
0)(

2
2), 1 = (2

2)(
2
0), and 4 = (2

1)(
2
1). Generalizing to a bipartite

cut of |ρL〉〉 after p sites, one has p + 1 nonzero Schmidt

coefficients with the eigenvalues being (p
k
)( L−p

L/2−k)/( L
L/2), k =

0, . . . ,p. We can see that the largest Schmidt rank is for a
half-cut and is equal to L/2 + 1. Operator Schmidt rank of the
steady state in the half-filling sector grows linearly with the
system size L. We remind that a constant [62] or a linear [63]
Schmidt rank is a sign of an exact solvability of a steady state.
However, our results show that the exact solvability of the
Lindblad steady state in general does not tell us anything about
solvability of (closest) decay modes or the behavior of the gap.
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[13] T. Prosen and B. Žunkovič, Exact solution of Markovian master
equations for quadratic Fermi systems: Thermal baths, open XY
spin chains and non-equilibrium phase transition, New J. Phys.
12, 025016 (2010).
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