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The relaxation dynamics of a system described by a Langevin equation with pulse multiplicative noise sources
with different correlation properties is considered. The solution of the corresponding Fokker-Planck equation
is derived for Gaussian white noise. Moreover, two pulse processes with regulated periodicity are considered
as a noise source: the dead-time-distorted Poisson process and the process with fixed time intervals, which is
characterized by an infinite correlation time. We find that the steady state of the system is dependent on the
correlation properties of the pulse noise. An increase of the noise correlation causes the decrease of the mean
value of the solution at the steady state. The analytical results are in good agreement with the numerical ones.
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I. INTRODUCTION

In recent decades there has been a growing interest in the
theoretical study of relaxation dynamics for systems subject
to multiplicative noise [1–4]. These systems are widespread in
nature and technology, and they are widely used to describe
stochastic dynamics not only in physics, but also in biology
and in econophysics [5–10]. Their evolution is affected by the
influence of the environment, by exchanging some physical
quantity as mass or energy. The dynamical behavior of these
systems is described by the Langevin equation

dx

dt
= −bx + xγ η(t), (1)

where 0 � γ < 1, x ∈ R+, η(t) is a random process with non-
negative mean, and b is a positive constant. This equation,
which describes the relaxation of the system to the steady
state, can be applied in numerous fields of science. First, this
equation describes the particle motion that is affected by the
linear friction and random force, that can depend on the particle
velocity. For example, the case of γ = 0 corresponds to the
well-known equation of reflecting Brownian motion [11].

The case of the pulse random process is of particular interest
for numerous applications. In fact, Eq. (1) with γ = 1/2
describes a velocity of a particle in mathematical billiard with
boundaries of scatterers, with fixed mass, moving randomly
or periodically. Each particle collision with the scatterer
corresponds to the pulse in the noise term. In traditional
models of billiard systems scatterers have infinite mass,
and the particle has constant acceleration known as Fermi
acceleration [12]. The saturation of the particle velocity in
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a more realistic model corresponds to the fact that particle
reaches such a velocity that momenta of the particle and
scatterer are of the same order [13]. The loss of particle energy
is characterized by the first term of Eq. (1), and the velocity
approaches a steady value.

Another possible application of Eq. (1) with γ = 1/2 is
the particle motion in a flow. In this case x corresponds to
the kinetic energy of the probe particle moving with fixed
average velocity that is much higher than thermal velocity of
the particle. The first term of Eq. (1) describes the effect of
friction. The flow consists of particles moving independently
or with some correlations. Each pulse in the second term
of Eq. (1) corresponds to the probe particle collision with
a particle in flow.

Equation (1) can also describe the formation of islands com-
posed of metal particles (atoms or clusters) on a substrate [14].
The process of island growth can be divided into three steps:
deposition, when preformed clusters or atoms are deposited
on a substrate, diffusion, when they diffuse chaotically, and
aggregation, when the particle can join the existing island,
or stick together with a neighboring particle and form a new
island [15]. In this case, x represents the number of particles
in an individual island. The noise denotes a non-negative
random pulse process, determined by the particle flux to the
boundary of island. This process is considered in the regime
when a cluster can escape from an island. The probability of
this escape is characterized by the first term of the equation.
The technology of island production allows us to change the
deposition regime [16], making the deposition process more
random or more periodical. An island’s growth rate depends
hypothetically on its shape and is taken into account by γ .

From the point of view of population dynamics, Eq. (1)
describes the time evolution of a population of predators,
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whose diet is based on species with quasiperiodic change
of population. The prey density can be described, from
the mathematical point of view, as a pulse sequence and
corresponds to the second term in equation. Pulses occur only
at years of anomalous increases of the prey population density.
The first term of the equation represents predator extinction
due to intraspecific competition; the higher the number of
individuals, the faster this extinction occurs [17].

In the field of stochastic dynamical models for financial
markets, the model defined by Eq. (1) is the constant elasticity
of variance process introduced by Cox and Ross and then
generalized as the Cox, Ingersoll, and Ross (CIR) process
to describe the evolution of interest rates [18]. The CIR
process is also used in the Heston model to model stochastic
volatility [8,19].

Stochastic pulse trains have been modeled by Poissonian
white noise and used in thermal ratchet [20], noise-induced
phase transitions [21], and population dynamics [22]. Re-
cently, the stability of a dynamical system subject to correlated
pulse multiplicative noise and quasistable processes was
investigated [23–25].

In this work we study the dependence of transient dynamics
and the steady state solution of the model described by Eq. (1)
on the correlation properties of different noise sources. Specif-
ically, we analyze Eq. (1) in the Stratonovich sense [26] and the
influence of the noise properties on the moments of x(t). We
consider that the system dynamics occurs at so low temperature
values that the effects of thermal fluctuations can be neglected.

The organization of the paper is as follows. In Sec. II, we
consider the white noise and obtain the solution of the Fokker-
Planck equation for the Gaussian noise source, and analyze the
master equation for the Poisson pulse process. These results
can be assumed to hold also in the presence of correlated
noise by suitably changing the equation parameters [25]. In
Sec. III, we show that the steady mean of x can be obtained for
an arbitrary noise, whose characteristics are given through its
spectral density, using reduction to the Markov process. As an
example, we use two pulse processes: the dead-time-distorted
Poisson (DTDP) pulse process and the pulse process with fixed
time intervals (FTI). Section IV is devoted to the numerical
simulation of Eq. (1) and discussion of the obtained results. A
summary of our results is presented in Sec. V.

II. THE EQUATION WITH WHITE NOISE

A. Gaussian white noise

Let us rewrite the Langevin equation (1) as

dx

dt
= axγ − bx + xγ ζ (t), (2)

where ζ (t) = η(t) − 〈η(t)〉 and 〈η(t)〉 = a � 0.
In this subsection we consider ζ (t) as the Gaussian white

noise with 〈ζ (t)〉 = 0 and 〈ζ (t)ζ (t ′)〉 = 2Dδ(t − t ′).
The corresponding Fokker-Planck equation is

∂w(x,t)

∂t
= − ∂

∂x
[(axγ − bx + Dγx2γ−1)w(x,t)]

+ ∂2

∂x2
[Dx2γ w(x,t)]. (3)

The probability density function (PDF) w(x,t) and
probability flux �(x,t) satisfy the following initial and
boundary conditions

w(x,0) = φ(x), �(0,t) = 0, w(∞,t) = 0. (4)

Here, φ(x) is a non-negative function that satisfies the
normalization condition and provides consistency of the
initial and boundary conditions.

Introducing new variables ξ = β(x1−γ − a
b
),

β =
√

b
D(1−γ ) , and τ = (1 − γ )bt , we reduce Eq. (2) to

dξ

dτ
= −ξ + β

b
ζ (τ ), (2′)

where ξ (τ ) � ξ− = − βa

b
. The corresponding Fokker-Planck

equation for the new PDF w(ξ,τ ) is

∂w(ξ,τ )

∂τ
= ∂2w(ξ,τ )

∂ξ 2
+ ∂

∂ξ
[ξw(ξ,τ )] (3′)

with initial and boundary conditions

w(ξ,0) = χ (ξ ) ≡ φ(x(ξ ))
1 − γ

β
1

γ−1 (ξ − ξ−)
γ

1−γ ,

(4′)
�(ξ−,τ ) = 0, w(∞,τ ) = 0.

The solution to problem (3′)–(4′) can be expressed in the
form

w(ξ,τ ) =
∫ ∞

ξ−
G(ξ,τ,ξ ′,0)χ (ξ ′)dξ ′. (5)

Here, G(ξ,τ,ξ ′,τ ′) is the Green’s function for our problem. The
function G(ξ,ξ ′,τ ) ≡ G(ξ,τ,ξ ′,0) can be found as a solution
to the equation

∂G

∂τ
= ∂2G

∂ξ 2
+ ∂

∂ξ
(ξG), (6)

with initial and boundary conditions

G(ξ,ξ ′,0) = δ(ξ − ξ ′),
∂G

∂ξ
+ ξG|ξ=ξ− = 0,

|G| < ∞, τ > 0. (7)

We solve the problem (6)–(7) using the Laplace transform

pḠ − δ(ξ − ξ ′) = ∂2Ḡ

∂ξ 2
+ ∂

∂ξ
(ξḠ), (8)

∂Ḡ

∂ξ
+ ξḠ|ξ=ξ− = 0, |Ḡ| < ∞. (9)

Here, the bar denotes the transform

Ḡ(ξ,ξ ′,p) =
∫ ∞

0
e−pτG(ξ,ξ ′,τ )dτ. (10)

For each subdomain ξ < ξ ′ and ξ ′ > ξ , the substitution
Ḡ = u(ξ )e−ξ 2/4 reduces Eq. (8) to the Weber equation,
and therefore the solution to Eq. (8) is a superposition
of the linearly independent combinations e−ξ 2/4D−p(ξ ) and
e−ξ 2/4D−p(−ξ ), with p > 0. Here, D−p(ξ ) is the parabolic
cylinder function. Using the boundary conditions (9), we
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have

Ḡ(ξ,ξ ′,p) =
{
A(p)e−ξ 2/4(D−p(ξ )D−p−1(−ξ−) + D−p(−ξ )D−p−1(ξ−)), ξ < ξ ′,
B(p)e−ξ 2/4D−p(ξ ), ξ > ξ ′.

(11)

One of the unknown functions A(p) and B(p) can be obtained using the continuity of the Green’s function at ξ = ξ ′. To get
the second one, we integrate Eq. (8) across the discontinuity at ξ ′ to obtain the joining condition

∂Ḡ

∂ξ

∣∣∣∣
ξ=ξ ′+0

−∂Ḡ

∂ξ

∣∣∣∣
ξ=ξ ′−0

= −1.

Using [27], after some algebraic manipulations, we obtain the Green’s function transform

Ḡ(ξ,ξ ′,p) = e−(ξ 2−ξ ′2)/4 
(p)√
2π

⎧⎪⎨
⎪⎩
(
D−p(ξ )D−p(ξ ′)D−p−1(−ξ−)

D−p−1(ξ−) + D−p(−ξ )D−p(ξ ′)
)
, ξ < ξ ′,

(
D−p(ξ )D−p(ξ ′)D−p−1(−ξ−)

D−p−1(ξ−) + D−p(ξ )D−p(−ξ ′)
)
, ξ > ξ ′,

(12)

or in more compact form

Ḡ(ξ,ξ ′,p) = e−(ξ 2−ξ ′2)/4 
(p)√
2π

(
D−p(ξ )D−p(ξ ′)

D−p−1(−ξ−)

D−p−1(ξ−)
+ H (ξ ′ − ξ )D−p(−ξ )D−p(ξ ′) + H (ξ − ξ ′)D−p(−ξ ′)D−p(ξ )

)
,

(13)

where H (x) is the Heaviside step function. Finally, applying the inverse Laplace transform, we obtain the desired distribution

w(ξ,τ ) =
∫ ∞

ξ−
dξ ′χ (ξ ′)

1

2πi

∫ c+i∞

c−i∞
epτ Ḡ(ξ,ξ ′,p)dp, (14)

where c > 0. This is the Bromwich integral, which can be evaluated by means of the residue theorem.

1. Case of ξ− < 0

The Green’s function transform (13) has two sets of simple poles:
(1) poles of 
(p), p ∈ Z−;
(2) roots pk of the equation

D−pk−1(ξ−) = 0. (15)

The real roots of Eq. (15) are negative. Dean [28] has demonstrated that the maximum root is p1 < −1 and limξ−→−∞ pk = −k.
Then, we get

w(ξ,τ ) =
√

2

π

e−ξ 2/2

erfc
(

ξ−√
2

) + e−ξ 2/4

√
2π

∞∑
k=1


(pk)D−pk
(ξ )

D−pk−1(−ξ−)
∂
∂p

[D−p−1(ξ−)]p=pk

epkτ

∫ ∞

ξ−
eξ ′2/4D−pk

(ξ ′)χ (ξ ′)dξ ′, (16)

where erfc(z) is the complementary error function. The expression for the derivative of the parabolic cylinder function is given
in Appendix A.

Going back to the variable x, we obtain

w(x,t) =
√

2

π
(1 − γ )βx−γ

{
e−(βx1−γ +ξ−)2/2

erfc
(

ξ−√
2

) + e−(βx1−γ +ξ−)2/4

2

∞∑
k=1


(pk)D−pk
(βx1−γ + ξ−)

D−pk−1(−ξ−)
∂
∂p

[D−p−1(ξ−)]p=pk

× epkb(1−γ )t
∫ ∞

0
e(βx ′1−γ +ξ−)2/4D−pk

(βx ′1−γ + ξ−)φ(x ′)dx ′
}

. (17)

Let us derive an analytical expression for the moments of x. Using [29] and the integral from Appendix B, we get

μn(t) =
√

2

π
e−ξ 2

−/4β
− n

1−γ 


(
n

1 − γ
+ 1

){
D− n

1−γ
−1(ξ−)

erfc
(

ξ−√
2

) + 1

2

∞∑
k=1


(pk)D− n
1−γ

−1−pk
(ξ−)

D−pk−1(−ξ−)
∂
∂p

[D−p−1(ξ−)]p=pk

× epkb(1−γ )t
∫ ∞

0
e(βx ′1−γ +ξ−)2/4D−pk

(βx ′1−γ + ξ−)φ(x ′)dx ′
}

. (18)
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For sufficiently large times (t 
 1/[b(1 − γ )]) the PDF, given in Eq. (17) tends to the stationary distribution

wst(x) =
√

2

π
(1 − γ )βx−γ e−(βx1−γ +ξ−)2/2

erfc
(

ξ−√
2

) , (19)

which is independent of the initial distribution. Then, the stationary moments of x are

μn =
√

2

π

e−ξ 2
−/4

erfc
(

ξ−√
2

)(D

2b

)n


(2n + 1)D−2n−1(ξ−). (20)

For γ = 1/2, we get

〈x〉 = a2

b2
+ D

2b
+ a

b

√
D

πb

e− a2

bD

erfc
(− a√

bD

) . (21)

2. Case of ξ− = 0

In this case, we can simplify Eq. (13), obtaining

Ḡ(ξ,ξ ′,p) = e−(ξ 2−ξ ′2)/4 
(p)√
2π

(D−p(ξ )D−p(ξ ′) + H (ξ ′ − ξ )D−p(−ξ )D−p(ξ ′) + H (ξ − ξ ′)D−p(−ξ ′)D−p(ξ )). (22)

The Green’s function transform (22) has simple poles p ∈ Z−. Then, we obtain

G(ξ,ξ ′,τ ) = e−(ξ 2−ξ ′2)/4

√
2

π

∞∑
n=0

D2n(ξ )D2n(ξ ′)
(2n)!

e−2nτ . (23)

Using the relationship between the parabolic cylinder functions and the Hermite polynomials [27], the series can be summed [30]:

G(ξ,ξ ′,τ ) =
√

2

π
e−ξ 2/2 eτ/2

√
2 sinh τ

exp

(
− e−τ ξ 2 + ξ ′2

4 sinh τ

)
cosh

(
ξξ ′

2 sinh τ

)
, τ > 0. (24)

Going back to the variable x, we get

w(x,t) =
√

2

π
(1 − γ )βx−γ e−β2x2−2γ /2 eb(1−γ )t/2

√
2 sinh[b(1 − γ )t]

∫ ∞

0
exp

(
−e−b(1−γ )t β2 x2−2γ + x ′2−2γ

4 sinh[b(1 − γ )t]

)

× cosh

(
β2(xx ′)1−γ

2 sinh[b(1 − γ )t]

)
φ(x ′)dx ′. (25)

Using [29], we obtain expression for the moments of x

μn(t) = 1√
2π

(
eb(1−γ )t

2 sinh[b(1 − γ )t]

)− n
2−2γ

β
− n

1−γ 


(
n

1 − γ
+ 1

)∫ ∞

0
exp

(
− e−b(1−γ )t β2x ′2−2γ

8 sinh[b(1 − γ )t]

)

×
[
D− n

1−γ
−1

(
βx ′1−γ e−b(1−γ )t/2

√
2 sinh[b(1 − γ )t]

)
+ D− n

1−γ
−1

(
− βx ′1−γ e−b(1−γ )t/2

√
2 sinh[b(1 − γ )t]

)]
φ(x ′)dx ′. (26)

For sufficiently large times (t 
 1/[b(1 − γ )]) the PDF (25)
becomes the stationary distribution

wst(x) =
√

2

π
(1 − γ )βx−γ e−β2x2−2γ /2. (27)

Then, the stationary moments of x are

μn = 1√
π

(√
2

β

) n
1−γ




(
n

2 − 2γ
+ 1

2

)
. (28)

It is easy to see that formulas (27) and (28) coincide with
Eqs. (19) and (20) in the considered case. Moreover, Eq. (27)
at γ = 0 is a semi-Gaussian distribution [1].

B. Poisson white pulse noise

In the previous section we examined the case of the white
Gaussian noise. But for numerous applications it is more
convenient to use pulse noise. Let us consider a stochastic
process η(t) consisting of delta pulses with constant magnitude
f0, which is suitable to be treated both analytically and
numerically:

η(t) = f0

∑
j

δ(t − tj ). (29)

This noise source is characterized by a time interval
between two successive pulses. We denote this interval as
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ϑj = tj − tj−1. This random quantity has a mean value which
coincides with the quasiperiod of the process, i.e., 〈ϑ〉 = T .

The following question arises: are the results (17) and (18)
still valid in the case of pulse noises? Let us consider the
Langevin equation (1) with Poisson white noise source (i.e., ϑ
has exponential distribution)

dx

dt
= −bx + xγ f0

∑
j

δ(t − tj ). (30)

Using the variables ξ =
√

2
(1−γ )bT

( bT
f0

x1−γ − 1) and τ =
(1 − γ )bt , which coincide with the notations in Eq. (2′) with
D = f 2

0 /2T and a = f0/T , we can rewrite Eq. (30) as

dξ

dτ
= −ξ −

√
2

(1 − γ )bT
+
√

2(1 − γ )bT
∑

j

δ(τ − τj ).

(30′)

The PDF w(ξ,τ ) then obeys the equation [31]

∂w(ξ,τ )

∂τ
= ∂

∂ξ

[(
ξ +

√
2

(1 − γ )bT

)
w(ξ,τ )

]

+ w(ξ − √
2(1−γ )bT ,τ )−w(ξ,τ )

(1 − γ )bT
. (31)

A Taylor series expansion of w(ξ − √
2(1 − γ )bT ,τ ) with

respect to the first argument around ξ gives

∂w(ξ,τ )

∂τ
= ∂

∂ξ
[ξw(ξ,τ )] + ∂2w(ξ,τ )

∂ξ 2

+ 2
∑
n=3

(−1)n

n!
[2(1 − γ )bT ]

n
2 −1 ∂nw(ξ,τ )

∂ξn
. (31′)

It is easy to see that Eq. (31′) reduces to the Fokker-Planck
equation (3′) when (1 − γ )bT � 1. Keeping in Eq. (31′) the
third derivative term and returning to variable x, we can obtain
the stationary solution

wst (x) = Nx−γ e
3
2

x1−γ

(1−γ )f0 Ai

[
6bT x1−γ

f0
− 15

4

(6b(1 − γ )T )
2
3

]
, (32)

where Ai(z) is the Airy function.
For the Laplace transform with respect to ξ of the stationary

solution to Eq. (31), we obtain

w̄st (p) =
∫ ∞

0
e−pξwst (ξ )dξ = e− 2

bT
Ein(f0p), (33)

where Ein(z) is the modified exponential integral [32]. Then,
the stationary moments of ξ are

μn = (−1)n
dnw̄st (p)

dpn

∣∣∣∣
p=0

. (34)

For γ = 1/2, we get

〈x〉 = f 2
0

b2T 2
+ f 2

0

4bT
. (35)

Comparing Eq. (35) with Eq. (21), we can see that in the
case of the Gaussian white noise source we have an additional
term, which is proportional to wst (ξ−), due to the reflecting

boundary condition at ξ = ξ− (or x = 0). Evidently, Eqs. (21)
and (35) coincide (for appropriate choice of a and D), when
ξ− → −∞ or, equivalently, bT � 1.

III. THE EQUATION WITH CORRELATED PULSE NOISE

We characterize the properties of a noise source by its
spectral density. In the general case, the spectral density for
the process of Eq. (29) can be written as (see Appendix C)

Sη(ω) = 2f 2
0

T

[
1 +

∞∑
m=1

�m(ω) + �m(−ω)

]
, (36)

where �m(ω) is a characteristic function of distribution of
intervals between the nth and j th pulses with m = n − j .

Equation (2′) differs from well-known equation of a
Ornstein-Uhlenbeck process only by the fact that ξ � ξ−. We
can analyze the possibility of neglecting this condition directly
for white noise using the inequality σ 2

ξW � ξ 2
−, in asymptotics.

Here σ 2
ξW is the variance of the white Gaussian noise. If the

approximation of a linear filter can be applied for white noise, it
can be applied for correlated noise, because usually its variance
σ 2

ξ is σ 2
ξ � σ 2

ξW .
Let us consider the case of γ = 1/2. We derive the

following expression for the first moment of x:

〈x〉 = a2

b2
+ 〈ξ 2〉

β2
, (37)

where D = ∫∞
0 Kζ (t)dt in β, ζ (t) = η(t) − 〈η(t)〉, and a =

〈η(t)〉.
Using the definition for the spectral density, we obtain for

dimensionless time τ and frequency �

〈ξ 2〉 = Kξ (0) = β2

4πb2

∫ ∞

−∞

S ′
ζ (�)d�

1 + �2

= β2

b2

∫ ∞

0
e−τK ′

ζ (τ )dτ. (38)

Here, we use the following notations: τ = b
2 t , K ′

ζ (τ ) = Kζ (t),
� = 2

b
ω, and S ′

ζ (�) = b
2Sζ (ω). Returning to time t instead of

τ , we get the final expression for the mean value of x

〈x〉 = a2

b2
+ 1

2b

∫ ∞

0
e− b

2 tKζ (t)dt = a2

b2
+ K̄ζ

(
b
2

)
2b

, (39)

where the bar denotes the Laplace transform.
For relatively small correlation time of noise τcor � 2/b,

we can simplify Eq. (39):

〈x〉 = a2

b2
+ 1

2b

∫ ∞

0
Kζ (t)dt = a2

b2
+ Sζ (0)

8b
. (40)

Such an expression corresponds to the well-known approxi-
mation of a correlated process by using a Markov process [26].
For time intervals that are considerably greater than the
correlation time, the process ζ (t) can be regarded as a Markov
process. This means that the process ζ (t) with correlation
functions ks(t1, . . . ,ts) can be replaced by a delta-correlated
process, whose correlation functions are

Ksδ(t2 − t1) · · · δ(ts − t1),

042140-5



A. V. KARGOVSKY et al. PHYSICAL REVIEW E 92, 042140 (2015)

with the same intensity coefficients Ks as the actual
process ζ (t).

Thus, the obtained Eq. (40) shows strong dependence of
the mean solution to Eq. (1) on the correlation properties of
the noise source considered.

Equation (40) is in full agreement with Eq. (35) in the case
of Poisson white pulse noise, but it differs from Eq. (21) for
a Gaussian white noise source by an additional term, which is
proportional to wst (ξ−). This difference can be eliminated if
we take into account the reflection condition at the boundary
in an additional term −2

∑
0<s�t ξ̇ (s − 0)1|ξ (s)=ξ− [33]. For

pulse noise with positive magnitudes such a correction is not
needed, since ξ̇ (t) is non-negative at ξ = ξ−.

We consider two different types of noise source in Eq. (1).
The first is the dead-time-distorted Poisson pulse (DTDP)
process [34], and the second is the pulse process with fixed
time intervals (FTI) [35].

A. Dead-time-distorted Poisson pulse noise

The DTDP process is a renewal pulse process with a delay
ϑ0 after each pulse. During this dead-time period it is forbidden
for a new pulse to occur. After this period, the probability per
unit time p to have the next pulse is constant. The delay
ϑ0 becomes therefore the minimum time interval between
two adjacent pulses, that is ϑj � ϑ0. This process is suitable
to obtain noise sources with varying degree of randomness,
ranging from white noise (ϑ0 = 0) to quasiperiodical process
(ϑ0 � T ) [23].

The PDF of random time distances ϑ between adjacent
pulses is

w(ϑ) = pep(ϑ0−ϑ), (41)

where ϑ is distributed in the interval [ϑ0,∞). The first moment
and variance of ϑ are correspondingly

〈ϑ〉 = ϑ0 + 1

p
, σ 2

ϑ = (T − ϑ0)2. (42)

We define the parameter of periodicity as a ratio ϑ0/T .
Panels (a), (b), and (c) of Fig. 1 show three realizations of the
DTDP process obtained with different values of periodicity
parameter.

As this process is renewed, the characteristic function
of intervals ϑ has the property �m(ω) = �m(ω), because
different time intervals are independent. It is easy to see
that �(ω) = peiωϑ0/(p − iω). Using Eq. (36), we obtain the
spectral density for the DTDP pulse process (see Fig. 2)

Sη(ω) = 2f 2
0

T

1 − |�(ω)|2
|1 − �(ω)|2 + 4πf 2

0 δ(ω)

T 2
. (43)

Using the expansion of the characteristic function in terms
of moments, we obtain the expression for the spectral density
of ζ (t) at ω = 0

Sζ (0) = 2σ 2
ϑf 2

0

T 3
, (44)

which decreases with the increase in ϑ0/T . Therefore from
Eq. (40), the more the process is correlated the less the steady
value of the moment of x is.

0
0

1

t

0

1

t
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1

t
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(b)

t

0

1

t

0

1

t

1 2 3 4 5

0 1 2 3 4 51 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 50 1 2 3 4 5

FIG. 1. DTDP process (left column) with ϑ0/T = 0.9 (a), 0.4 (b),
0 (c); and pulse process with FTI (right column) with ϑT /T = 0.05
(d), 0.3 (e), 4.9 (f); T = 0.2, f0 = 1. The mean value 〈ϑ〉 is the same
for all processes. Distribution of intervals between adjacent pulses
has the same variance for the processes in the same row.

The correlation function can written as [23]

Kζ (t) = f 2
0

T

[
δ(t) +

∞∑
n=1

pn(|t | − nϑ0)n−1

(n − 1)!

×e−p(|t |−nϑ0)H (|t | − nϑ0) − 1

T

]
, (45)

where H (x) is the Heaviside step function. Figure 3 shows
that the correlation time of DTDP noise decreases with the
decrease in ϑ0/T .

-20 -10 0 10 20
0

1

2

3

4

ω

S
η

ϑ0/T=0.5

ϑ0/T=0

ϑ0/T=0.8

FIG. 2. (Color online) Spectral density of the DTDP process
for different values of the periodicity parameter (T = 2, f0 = 1):
ϑ0/T = 0.8 (solid green line and diamonds), ϑ0/T = 0.5 (dotted red
line and circles), ϑ0/T = 0 (dashed black line and squares). Vertical
bars with top symbols represent the discrete parts of spectral density,
whose values correspond to the delta function magnitudes.
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FIG. 3. (Color online) Correlation function of the DTDP process
for different values of the periodicity parameter (T = 2, f0 = 1):
ϑ0/T = 0.8 (solid green line and diamonds), ϑ0/T = 0.5 (dotted
red line and circles), ϑ0/T = 0 (dashed black line and squares).
Vertical bars with top symbols represent the discrete parts of the
correlation functions, whose values correspond to the delta function
magnitudes. Note that the discrete parts overlap for ϑ0/T = 0.8 and
ϑ0/T = 0.5.

B. Pulse process with fixed time intervals

The FTI pulse process can be shown starting from peri-
odically located points on the time axis with equal distance
T between adjacent points. Each pulse of the sequence
corresponds to one of these points and appears in the
neighborhood of one of these points and at distance νn

from it, where νn is a random value with zero mean and
characteristic function �ν(ω). Therefore the nth pulse occurrs
at time tn = nT + νn. The pulse process (29) is characterized
by the probability distribution of ν, and the characteristic
function of time distance between nth and j th pulses is
�m(ω) = e−iωmT |�ν(ω)|2, m = n − j .

We consider the uniform PDF of the pulse position inside
some interval with length ϑT � T ,

w(ν) = 1

ϑT

, |ν| � ϑT

2
, (46)

and �ν(ω) = sinc(ωϑT /2).
Probability distribution of intervals ϑ between two adjacent

pulses is described by the expression

w(ϑ) = ϑT − |ϑ − T |
ϑ2

T

, |ϑ − T | � ϑT . (47)

We can derive the expressions for the mean and variance of
the intervals between adjacent pulses:

〈ϑ〉 = T , σ 2
ϑ = ϑ2

T

6
. (48)

This process can be used to obtain noise sources with
varying degree of randomness. Panels (d), (e), (f) of Fig. 1
present the process at different values of ϑT /T . We can
see that this process looks like the DTDP process with the

-30 -20 -10 10 20 30
0

1

2

3   
  
  

0
ω

S
η

ϑT /T=0.5

ϑT /T=0.2

ϑT /T=1

FIG. 4. (Color online) Spectral density of the FTI process for
different values of interval ϑT (T = 2, f0 = 1): ϑT /T = 0.2 (solid
green line and diamonds), ϑT /T = 0.5 (dotted red line and circles),
ϑT /T = 1 (dashed black line and squares). Vertical bars with top
symbols represent the discrete parts of spectral density, whose values
correspond to the delta function magnitudes.

same characteristics of intervals. However, we will show that
the correlation properties and the influence on the Langevin
equation solution are different for these processes.

From Eq. (36) we obtain the spectral density of the noise
under consideration:

Sη(ω) = 2f 2
0

T

[
1 − |�ν(ω)|2

+ 2π

T
|�ν(ω)|2

∞∑
n=−∞

δ

(
ω − 2πn

T

)]
. (49)

The spectral density consists of the Dirac comb or the
Shah function III (ωT

2π
) (discrete part) and continuous part

(see Fig. 4). It is worth mentioning that Sζ (0) = 0 for any
correlations of this noise.

The correlation function is obtained as

Kζ (t) = f 2
0

T

⎡
⎢⎢⎢⎣δ(t) + 1

ϑT

∞∑
n = −∞
n 
= 0

�

(
t − nT

ϑT

)
− 1

T

⎤
⎥⎥⎥⎦,

(50)

where �(x) is the triangle function. Figure 5 shows that the
correlation time is infinite for all cases except ϑT /T = 1.

IV. RESULTS AND DISCUSSION

As mentioned above, for sufficiently large times (t 

1/[b(1 − γ )]) the PDF (17) becomes the stationary distribu-
tion (19). Figure 6 shows the relaxation of the different initial
distributions w(x,0), namely a delta function wd (x,0), uniform
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FIG. 5. (Color online) Correlation function of the FTI process for
different values of interval ϑT (T = 2, f0 = 1): ϑT /T = 0.2 (solid
green line and diamonds), ϑT /T = 0.5 (dotted red line and circles),
ϑT /T = 1 (dashed black line and squares). Vertical bars with top
symbols represent discrete parts of the correlation functions, whose
values correspond to the delta function magnitudes. Note that discrete
parts overlap for all three cases.

wu(x,0), and truncated binormal wb(x,0),

wd (x,0) = δ(x − x0), wu(x,0) = 1

h
, x ∈ [0,h],

wb(x,0) =
κ1 exp

(− (x−μ1)2

2σ 2
1

)
√

2πσ1
[
1 − 1

2 erfc
(

μ1√
2σ1

)]

+
κ2 exp

(− (x−μ2)2

2σ 2
2

)
√

2πσ2
[
1 − 1

2 erfc
(

μ2√
2σ2

)] , x � 0, (51)
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t=0.5

FIG. 6. (Color online) Time evolution of various initial distribu-
tions from Eq. (51): truncated binormal (green [light gray] area),
uniform (red [gray] area), and delta function (blue [dark gray] area).
The parameter values are γ = 1/2, b = 2, a = 1, D = 10.
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FIG. 7. (Color online) Plot of mean x vs time for different values
of γ and fixed values of other parameters: a = 1, b = 2, D = 10.
Analytical (solid lines) and numerical (dots) results, obtained using
a Gaussian white noise source, are compared.

to the stationary distribution (19). Here x0 = 20, h = 10, κ1 =
1/7, μ1 = 10, σ1 = 1, κ2 = 6/7, μ2 = 15, and σ2 = 3.

Here, we present results obtained by numerical integration
of Eq. (1). Three kinds of noise were used in our calculations:
Gaussian white noise with nonzero mean; DTDP pulse noise
with delay ϑ0 and mean interval between adjacent pulses T ;
FTI pulse noise described by fixed time interval T and interval
ϑT inside which the pulse can appear.

We use the order 1.5 strong Taylor scheme [36] with a
timestep of 10−6 for simulation of Eq. (1) with Gaussian
white noise and direct simulation for DTDP and FTI noise.
The Mersenne twister [37] is used as pseudorandom number
generator. The numerical results are averaged over 1 000 000
realizations.

Figures 7 and 8 show the mean and the variance as the
results of numerical integration and the analytical solution to
Eq. (18) in the presence of a source of Gaussian white noise for
different values of γ . Here, for the other parameter values we
set a = 1, b = 2, D = 10 and delta-function initial distribution
with x0 = 1. Clearly, the analytical and numerical results are
in agreement.

Figures 9 and 10 also present the results of numerical and
analytical solutions in the presence of a source of Gaussian
white noise for γ = 1/2 and the Rayleigh initial distribution
with σ = 2. Here, we use the following sets of parameter
values: a = 1, b = 2, D = 10; a = 4, b = 2, D = 3; a = 2,
b = 3, D = 5.

Let us compare the analytical expressions (20), (32),
and (35), when the condition (1 − γ )bT � 1 is not satisfied.
We use f0 = 1, T = 0.7, b = 1, and γ = 1/2. Figure 11
clearly shows that the analytical result (35) is in good
agreement with the numerical simulation of Eq. (30), whereas
formula (20) overestimates quantity 〈x〉 and Eq. (32) underes-
timates it.

Figure 12 shows the results of numerical simulations with
DTDP and FTI noises and analytical stationary solution using
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FIG. 8. (Color online) Plot of the variance of x vs time for
different values of γ and fixed values of other parameters: a = 1,
b = 2, D = 10. Analytical (solid lines) and numerical (dots) results,
obtained using a Gaussian white noise source, are compared.

Eq. (20). Here, we use the parameters γ = 1/2, f0 = 1,
b = 0.1, T = 0.1, and the Rayleigh initial distribution with
σ = 1. We choose ϑ0 and ϑT , so that the variances of delay
between adjacent pulses are equal for both kinds of noise:
high periodicity limit σ 2

ϑ = 10−6 (ϑ0/T = 0.99 and ϑT /T =
0.024) and low periodicity limit σ 2

ϑ = 0.00167 (ϑ0/T = 0.59
and ϑT /T = 1). Certainly, the mean distance between adjacent
pulses is the same, 〈ϑ〉 = T . For the analytical solution we use
a = f0/T and D = Sζ (0)/4 for corresponding noises. Clearly,
the analytical and numerical results are in good agreement.
We note that in Figs. 11 and 12 the scale of the y axis is
chosen so that the differences in mean values, obtained using

0 4 8 10
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1

2

3

4

5

t

62

x

a=1 b=2 D=10 

a=4 b=2 D=3 

a=2 b=3 D=5 

FIG. 9. (Color online) Plot of mean x vss time for different values
of the a, b, D, and a fixed value of the exponent γ = 1/2. Analytical
(solid lines) and numerical (dots) results, obtained using a Gaussian
white noise source, are compared.
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t
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a=2 b=3 D=5 

FIG. 10. (Color online) Plot of the variance of x vs time for
different values of a, b, D, and a fixed value of the exponent γ = 1/2.
Analytical (solid lines) and numerical (dots) results, obtained using
a Gaussian white noise source, are compared.

Eqs. (20), (32), and (35) for Fig. 11 and Eq. (20) for Fig. 12,
are noticeable. This allows to highlight the differences in mean
values due to different statistical properties of the noise source.
However, the deviations from analytical results are not as large
as it might seem at a first glance. In Fig. 11 indeed the standard
deviation of mean value, defined as σ〈x〉 = σx/

√
N , is about

0.002 (0.08%). In Fig. 12 the standard deviation of mean
value is 0.4 (0.004%) for DTDP noise with ϑ0/T = 0.59.
For DTDP noise with ϑ0/T = 0.99 and FTI noises this value
is much smaller: 0.01 and 0 [from Eq. (49)], respectively.
As a conclusion, these deviations are comparable with results
presented in other figures, such as Fig. 9 where the standard

200 250 300 350 400 450 500
2.37

2.38

2.39

2.40

2.41

2.42

 Eq. (20)
 Eq. (35)
 Eq. (32)

t

x

FIG. 11. (Color online) Plot of mean x vs time for Poisson white
pulse noise (circles) and derived from stationary solutions: (solid line)
Eq. (35), (dashed line) Eq. (32), and (dotted line) Eq. (20). The values
of the parameters are γ = 1/2, b = 1, T = 0.7, f0 = 1.
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FIG. 12. (Color online) Plot of mean x vs time: DTDP noise
for different values of ϑ0, namely ϑ0/T = 0.59 (violet diamonds)
and ϑ0/T = 0.99 (red circles); FTI noise for different values of
ϑT , namely ϑT /T = 1 (black squares) and ϑT /T = 0.024 (green
triangles). The values of the other parameters are γ = 1/2, b =
0.1, T = 0.1, f0 = 1. Stationary analytical solution, obtained from
Eq. (20) with D = Sζ (0)/4 for ϑ0/T = 0.59 (violet [gray] line),
ϑ0/T = 0.99 and both FTI noises (red [dark gray] line).

deviation is about 0.07% for parameter values a = 4, b = 2,
and D = 3. The results shown in Fig. 12 indicate that in the
case of DTDP noise the growth of the periodicity parameter,
which corresponds to the increase of the delay, reduces the
intensity of the fluctuations in the mean solution to Eq. (1).
Conversely, less regular noise causes higher saturation level
and larger fluctuations in the solutions. In contrast, in the case
of the FTI noise the change of periodicity does not influence
the saturation level of the solution.

The difference between the numerical solutions to Eq. (1)
with FTI noise having different σ 2

ϑ is not necessarily negligible.
Figure 13 illustrates this fact for the parameters γ = 1/2, f0 =
1, b = 1, T = 1, and the Rayleigh initial distribution with
σ = 1. Comparison of the results of numerical simulation and
stationary analytical solutions, obtained from Eq. (20) with
different approximations of value D from Eqs. (39) and (40)
[D = K̄ζ (b/2) and D = Sζ (0)/4, respectively], shows that the
statement D = Sζ (0)/4 became invalid for (1 − γ )bT ∼ 1.
Now it is clear that the condition (1 − γ )bT � 1 holds for
parameters of Fig. 12, but it becomes invalid for parameters of
Fig. 13.

Finally, we present the results of numerical simulations with
DTDP and FTI noises and the analytical stationary solution
using Eq. (20) for the case when γ is different from 1/2 (see
Figs. 14 and 15). Here, we use the parameters f0 = 1, b = 0.5,
T = 0.5, and the delta-function initial distribution with x0 =
5. Again, for the analytical solution we use a = f0/T and
D = Sζ (0)/4. Note that the analytical and numerical results are
in satisfactory agreement even in the case of (1 − γ )bT � 1.
The comparison of Figs. 14 and 15 demonstrates that the
time of relaxation to the steady state increases with the
increase of γ .
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ϑT/T=0.024

FIG. 13. (Color online) Plot of mean x vs time: DTDP noise
for different values of ϑ0, namely ϑ0/T = 0.59 (violet diamonds)
and ϑ0/T = 0.99 (red circles); FTI noise for different values of
ϑT , namely ϑT /T = 1 (black squares) and ϑT /T = 0.024 (green
triangles). The values of the other parameters are γ = 1/2, b =
1, T = 1, f0 = 1. Stationary analytical solution, obtained from
Eq. (20) with D = K̄ζ (b/2) for ϑ0/T = 0.59 (solid violet [gray]
line), ϑT /T = 1 (solid black line), ϑ0/T = 0.99, and ϑT /T = 0.024
(solid red [dark gray] line); and with D = Sζ (0)/4 for ϑ0/T = 0.59
(dashed violet [gray] line), ϑ0/T = 0.99 and both FTI noises (dashed
red [dark gray] line).

The Fokker-Planck equation allows us to follow the
dynamics of the mean solution to Eq. (1); however, it can be

0 10 20 30 40 50 60
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t
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ϑT/T=1
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FIG. 14. (Color online) Plot of mean x vs time: DTDP noise
for different values of ϑ0, namely ϑ0/T = 0 (cyan down trian-
gles), ϑ0/T = 0.59 (violet diamonds), ϑ0/T = 0.99 (red circles);
FTI noise for different values of ϑT , namely ϑT /T = 1 (black
squares) and ϑT /T = 0.024 (green up triangles). The values of the
other parameters are γ = 0.4, b = 0.5, T = 0.5, f0 = 1. Stationary
analytical solution, obtained from Eq. (20) with D = Sζ (0)/4 for
ϑ0/T = 0 (cyan [light gray] line), ϑ0/T = 0.59 (violet [gray] line),
ϑ0/T = 0.99 and both FTI noises (red [dark gray] line).
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FIG. 15. (Color online) Plot of mean x vs time: DTDP noise
for different values of ϑ0, namely ϑ0/T = 0 (cyan down trian-
gles), ϑ0/T = 0.59 (violet diamonds), ϑ0/T = 0.99 (red circles);
FTI noise for different values of ϑT , namely ϑT /T = 1 (black
squares) and ϑT /T = 0.024 (green up triangles). The values of the
other parameters are γ = 0.6, b = 0.5, T = 0.5, f0 = 1. Stationary
analytical solution, obtained from Eq. (20) with D = Sζ (0)/4 for
ϑ0/T = 0 (cyan [light gray] line), ϑ0/T = 0.59 (violet [gray] line),
ϑ0/T = 0.99 and both FTI noises (red [dark gray] line).

applied only in the case when the stochastic term is represented
with the white noise. For the colored noises we can consider
only the steady state.

V. SUMMARY

The problem of the relaxation dynamics to the steady
state of a system under the influence of different kinds of
multiplicative noise is well understood for two limit cases: the
predominance of noise (thermal equilibrium) or, in contrast,
the predominance of the deterministic term (small noise
approximation). The correlation properties of noise are not
significant for these limit cases. However, when noise and
deterministic terms are equally important, the noise correlation
properties affect not only the transient dynamics to the steady
state, but also the values of the steady state moments of the
system investigated.

We have considered a relatively simple Langevin equation,
in which the random process x relaxes to a steady value. All
characteristics of this process x, such as PDF and all moments,
can be obtained only for white noise by solving Fokker-Planck
equation. Under some conditions and at the steady state,

the solution to the Fokker-Planck equation can be used also
for correlated noise, provided that some transformation of the
parameters is carried out. The spectrum density of the noise
determines this transformation.

The main result of this investigation is that the higher the
noise correlation is, the smaller the mean value of x is. We have
considered noises with equal intensities and mean values but
with different correlation properties. We have demonstrated
that their contributions to the mean value of x vary for different
noises. The observed dependence of the mean value of x on
the spectrum density of the noise is in good agreement with
the numerical calculations.

For the applications mentioned in Sec. I, we can say the
following. From the point of view of the billiard theory, for
scatterers of finite mass the final particle velocity is less for
periodical motion than for random motion. The kinetic energy
of a particle in a flow of independently moving particles is
larger than for correlated ones. Periodical deposition of clusters
on a surface is more appropriate for the case when the size of
formed islands needs to be smaller. A population of predators
is higher for random change of the prey population.
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APPENDIX A: DERIVATIVE OF THE PARABOLIC
CYLINDER FUNCTION WITH RESPECT TO PARAMETER

We derive an expression for the derivative ∂D−p−1(z)/∂p
in a similar way as in Ref. [39]. The parabolic cylinder
function can be represented in terms of the Kummer functions
[27]:

D−p−1(ξ−) = 2−(p+1)/2e−ξ 2
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Differentiating expression (A1) with respect to p and taking
into account that the derivative of the confluent hypergeometric
function with respect to the parameter can be expressed in
terms of two-argument Kampé de Fériet–like hypergeometric
functions �(1) [40], we find with allowance for expression (15)
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Here, G(z) is the Erdélyi G function [27].
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APPENDIX B: COMPUTATION OF AN INTEGRAL
CONTAINING THE PARABOLIC CYLINDER FUNCTION

We consider the integral∫ ∞

0
zμ−1e−(z+z0)2/4Dν(z + z0)dz, Re μ > 0. (B1)

Let us use the following integral representation for the
parabolic cylinder function [32]:

Dν(z) = ez2/4

√
2πi

∫ c+i∞

c−i∞
e−zt+ 1

2 t2
tνdt, | arg t | < π/2, c > 0.

(B2)

Changing the order of integration and using [29], we get∫ ∞

0
zμ−1e−(z+z0)2/4Dν(z + z0)dz

= 1√
2πi

∫ c+i∞

c−i∞
e−z0t+ 1

2 t2

[∫ ∞

0
zμ−1e−zt dz

]
tνdt

= 
(μ)√
2πi

∫ c+i∞

c−i∞
e−z0t+ 1

2 t2
tν−μdt = 
(μ)e−z2

0/4Dν−μ(z0).

(B3)

APPENDIX C: CALCULATION OF SPECTRAL DENSITY
OF DELTA PULSES SEQUENCE

The derivation of the equations mentioned in this section
was carried out in accordance with the algorithm suggested

in [35]. Let us consider a pulsed stochastic process η(t)
consisting of 2N + 1 delta pulses, which can be represented by
Eq. (29), where j = [−N ; N ]. HN (ω) is a Fourier transform
of η(t):

HN (ω) = f0

N∑
j=−N

e−iωtj , (C1)

〈|HN (ω)|2〉 = f 2
0

〈
N∑

n=−N

N∑
j=−N

e−iω(tn−tj )

〉

= f 2
0

N∑
n=−N

N∑
j=−N

�nj (ω)

= f 2
0

{
(2N + 1) +

2N∑
m=1

(2N + 1 − m)

× [�m(ω) + �m(−ω)]}, m = n − j, (C2)

where �nj (ω) is a characteristic function for the interval
between nth and j th pulses.

Then, spectrum of pulsed process can be described as

Sη(ω) = lim
N→∞

2

(2N + 1)T
〈|HN (ω)|2〉

= 2f 2
0

T

[
1 +

∞∑
m=1

�m(ω) + �m(−ω)

]
, (C3)

when the series
∑∞

m=1 �m(ω) converges [strictly speaking, the
limit in Eq. (C3) may exists in some cases even if the series
diverges].
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