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Unlike macroscopic engines, the molecular machinery of living cells is strongly affected by fluctuations.
Stochastic thermodynamics uses Markovian jump processes to model the random transitions between the chemical
and configurational states of these biological macromolecules. A recently developed theoretical framework
[A. Wachtel, J. Vollmer, and B. Altaner, Phys. Rev. E 92, 042132 (2015)] provides a simple algorithm for
the determination of macroscopic currents and correlation integrals of arbitrary fluctuating currents. Here we
use it to discuss energy conversion and nonequilibrium response in different models for the molecular motor
kinesin. Methodologically, our results demonstrate the effectiveness of the algorithm in dealing with parameter-
dependent stochastic models. For the concrete biophysical problem our results reveal two interesting features in
experimentally accessible parameter regions: the validity of a nonequilibrium Green-Kubo relation at mechanical
stalling as well as a negative differential mobility for superstalling forces.
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I. INTRODUCTION

Understanding the complex biochemical processes which
are responsible for cellular metabolism is one of the key
questions in modern biophysics. The quantitative analysis of
so-called molecular motors, which are the small machines
transforming different forms of energy into one another, is at
the center of these efforts [1–3]. In recent years scientists have
developed techniques that allow the systematic observation
and manipulation of these biological macromolecules [4].
Under in vivo conditions, (electro-)chemical gradients in
the cell maintain these systems out of equilibrium. From a
thermodynamic perspective, one is interested in the currents
of heat, matter, and energy that flow through a molecular motor,
because they allow, for instance, the definition of its efficiency.

In analogy to macroscopic engines, molecular motors are
described by thermodynamic cycles in a space of biochemical
and configurational states. In contrast, the energy scales
involved in biochemical energy conversion are only a couple
of times larger than the thermal energy. Consequently, thermal
fluctuations cannot be neglected, and their dynamics must be
modeled as a stochastic process that reproduces the stochastic
time series observed in experiments. Stochastic thermodynam-
ics refers to a general framework for a consistent definition of
fluctuating work and heat currents on the level of these fluctuat-
ing time series [5,6]. The common model for molecular motors
are dynamically reversible Markov jump processes, which can
be thought of as (memoryless) random walks on a biochemical
network of states [3,7–9]. In an accompanying publication [10]
we investigated the asymptotic statistics of such systems from
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the perspective of the cycle topology of the network of states.
In particular, we developed an efficient method to calculate all
cumulants of arbitrary fluctuating currents analytically.

Here we are interested in the first- and second-order
fluctuation statistics, i.e., the expressions for macroscopic
average currents (like the motor’s velocity) and Green-Kubo
time-correlation integrals (like its diffusion constant). To be
concrete, we use the analytic nature of our method to analyze
the parameter space of different stochastic models for the
motor protein kinesin [11–13], which were designed to reflect
typical force-spectroscopy experiments [14–17]. Besides
illustrating the insights that thermodynamic cycles provide
into the motor dynamics, our results uncover interesting
model predictions and thus indicate directions for future
experimental research: The validity of a nonequilibrium
fluctuation dissipation relation at mechanical stalling as well
as negative differential mobility, commonly referred to as
“getting more from pushing less” [18].

This work is structured as follows. In Sec. II we briefly
review the results of Ref. [10]. In contrast to the formal
exposition there, here we focus on the implementation of a
universally applicable algorithm for the efficient calculation
of averages and correlation integrals of fluctuating currents in
stochastic thermodynamics. Section III thoroughly discusses
how to apply our universal method in the concrete biophysical
context of a kinesin model. In Sec. IV we give a detailed
account of kinesin’s chemical (ATP hydrolysis) and mechan-
ical (displacement) currents as functions of their conjugate
chemical and mechanical drivings. We conclude in Sec. V with
a discussion of the main conceptional and biophysical insights.

II. FLUCTUATING CURRENTS AND THEIR STATISTICS

In this section we introduce our mathematical notation
and—based on the general results presented in Ref. [10]—
provide a concise recipe for calculating the averages and
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FIG. 1. (Color online) Two different graphs representing Markov
models with (a) four states (N = 4, M = 5) and (c) six (N = 6,
M = 7) states. The unoriented edges marked in green (gray) serve as
a spanning tree T . They connect all vertices of the respective graph.
The remaining edges, marked as dark blue arrows, are the respective
chords H. Here we already indicate an orientation for the chords to
provide a reference for the sign of the currents. Each chord η� gives
rise to a fundamental cycle ζ�. They are shown in panels (b) and (d) for
the four- and six-state models, respectively. Regarding the topological
cycle structure, both graphs are equivalent. In particular, they have
the same number B = M − N + 1 = 2 of fundamental cycles.

asymptotic (co-)variances of two fluctuating currents in a
dynamically reversible Markov process on a finite state
space. Such averages and covariances play a major role in
stochastic thermodynamics [8,19,20]: They correspond to
physical steady-state currents and time-correlation (Green-
Kubo) integrals [21]. To be concrete, we exemplify topological
concepts for both a four-state and a six-state Markov process,
Fig. 1. In Sec. III we interpret these examples as models for
the molecular motor kinesin.

A. Currents for Markovian processes

Memoryless stochastic processes on a finite state space
V = {v1,v2, . . . ,vN } are called Markovian jump processes.
Henceforth, we consider the time-continuous, homogeneous
case. A realization, or trajectory (γk,tk), of the process starting
at time t0 = 0 in a state γ0 ∈ V is a collection of jump times
tk > 0 and visited states γk ∈ V with k ∈ N. We interpret it as a
time series that contains the outcomes of subsequent measure-
ments performed on a small system like a molecular motor.

Transitions from a state vi ∈ V to a different state vj ∈
V occur at a given constant rate wi

j . For thermodynamic
consistency [6–8,20,21], we require dynamical reversibility,
i.e., wi

j > 0 ⇔ w
j

i > 0. With this constraint we draw the state
space as a undirected graph G with the N states as vertices
and M admissible transitions as edges, cf. Fig. 1. In addition
to dynamic reversibility we assume that the state space is
connected, which ensures ergodicity of the process.

An ensemble of trajectories with initial probability distri-
bution p(0) = (p1(0), . . . ,pN (0)) on V evolves according to
the master equation [22]: d

dt
p(t) = p(t)W or, in components,

d

dt
pi(t) =

∑
j �=i

(
pjw

j

i − piw
i
j

)
,

where we use the convention wi
i = −∑

j �=i w
i
j . Ergodicity

of the process implies that there is a unique steady-state
probability distribution π satisfying 0 = πW to which all
initial conditions will converge eventually. The quantities J i

j =
πiw

i
j − πjw

j

i represent the steady-state probability currents
between two states vi and vj . The special condition where
all the steady-state currents vanish, J i

j = 0, is called detailed
balance or equilibrium. Since we are interested in the currents
of nonequilibrium systems, we will not assume detailed
balance in the following.

In order to account for general currents, e.g., changes in
energy, entropy, particle numbers, or physical position, we
introduce jump observables. A jump observable ϕ assigns a
weight ϕi

j to the transition from vi to vj , where we require

antisymmetry: ϕi
j = −ϕ

j

i . The macroscopic average current
c(ϕ) associated to a jump observable ϕ is

c(ϕ) := 1

2

∑
i,j

J i
j ϕi

j . (1)

In order to illustrate the concept we provide two examples.
For a pair of states (vi,vj ) we define a simple but important
case of jump observable: The counting observable ϕ(i,j ) counts
+1 for a transition from state vi to vj and −1 for a reverse
transition from vj to vi . To every other transition it associates a
weight of 0. In this case the macroscopic counting rate from vi

to vj equals the steady-state probability current between these
states: c(ϕ(i,j )) = J i

j . This expression obviously vanishes if
transitions between vi and vj are impossible. In Ref. [10] we
emphasized that counting observables form a basis of the space
of jump observables: Every jump observable can be expressed
as an appropriate linear combination of counting observables.

Another important example is the dissipation in stochastic
thermodynamics. It is derived from the jump observable σ

that takes the values σ i
j = ln

wi
j

w
j

i

. The macroscopic average

dissipation

c(σ ) = 1

2

∑
i,j

J i
j ln

wi
j

w
j

i

is non-negative and vanishes only at equilibrium, i.e., if and
only if we have detailed balance.

Kirchhoff’s current law states that the currents in an
electrical network balance at each vertex vi . The same is
true for the steady-state probability currents J i

j , and the
stationary Master equation formalizes Kirchhoff’s current law
as

∑
i J

i
j = 0. In Ref. [8], Schnakenberg discussed an extended

analogy between Markov jump processes and Kirchhoff’s
laws. The fundamental object of Schnakenberg’s theory is
a set of B = M − N + 1 fundamental cycles {ζ�}, which
describe the topology of a Markov jump process. They are
obtained from a spanning tree of the graph representing the
network of states, cf. Fig. 1 as well as Sec. II B. For now,
think of a fundamental cycle ζ� as a tuple of consecutive
states (γ0,γ1, . . . ,γm(�) = γ0) that form a self-avoiding and
closed trajectory. Cycles are defined up to cyclic permutations.
Adding the contributions of a jump observable ϕ along the
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transitions in a fundamental cycle ζ� gives its circulation,

ϕ̊� :=
m(�)∑
k=0

ϕγk

γk+1
. (2)

Kirchhoff’s voltage law states that the voltage drops V = Uj −
Ui between vertices of an electric network vanish if integrated
along any circuit. Using the notion of circulations, the voltage
law reads V̊l = 0. Another result obtained in this context is the
Schnakenberg decomposition of the macroscopic dissipation
rate [8]:

c(σ ) =
B∑

�=1

c� σ̊�, (3)

where c� is the steady-state probability current associated
to the cycle ζ� [10]. The circulations σ̊� of the dissipation
are called the cycle affinities. In the context of irreversible
thermodynamics [23], the Schnakenberg decomposition (3)
identifies the cycle affinities as the generalized forces which
are conjugate to the cycle currents c�.

In an earlier publication [13] the authors pointed out that
Schnakenberg’s decomposition is equally applicable to other
observables ϕ. As a corollary, one may express the average
current c(ϕ) = ∑

� c� ϕ̊� using only the cyclic structure of the
graph. Figure 1 shows two graphs with four and six states,
respectively, but having the same cyclic structure. Collecting
all B circulations of an observable ϕ in a B-tuple gives its
chord representation ϕH := (ϕ̊1, . . . ,ϕ̊B) ∈ RB . The detailed
mathematical background of this representation is discussed
in Ref. [10].

Here we are interested not only in the macroscopic
expectations of currents but also in their higher-order statistics.
Consequently, the object of study in this work are fluctuating
currents. The instantaneous current jϕ(t) derived from a jump
observable ϕ along a trajectory (γk,tk) is defined as

jϕ(t) =
∞∑

k=0

δ(t − tk) ϕγk−1
γk

.

The time-integrated current

ϕ(T ) :=
∫ T

t=0
jϕ(t)dt =

n(T )∑
k=0

ϕγk−1
γk

(4)

thus accounts for the total change of the observable ϕ along a
random trajectory with a random number n(T ) of jumps up to
time T . Hence, this time integral is a random variable with its
own statistics. A typical realization of the time-integrated cur-
rent, and thus its expectation value, grow linearly in time. Due
to ergodicity, the time-averaged current ϕT := 1

T
ϕ(T ) con-

verges to the macroscopic current c(ϕ) in the long-time limit:

ϕT

T →∞−−−→ c(ϕ). (5)

Equivalently, one can average the fluctuating current over
trajectories in the steady-state ensemble: 〈jϕ(t)〉 = 〈jϕ(0)〉 =
c(ϕ), where one exploits the fact that the steady state is time
independent. This ensures that the macroscopic current c(ϕ) is
the expectation value, or mean, of the fluctuating current jϕ(t).

Another important statistical measure are the correlations
of two currents jϕ and jψ . A measure for this correlation is the

Green-Kubo integral:

c(ϕ,ψ) :=
∫ ∞

t=0
〈[jϕ(0) − c(ϕ)][jψ (t) − c(ψ)]〉dt . (6)

Similarly to the case of the average currents, ergodicity allows
us to replace the steady-state ensemble average by a time
average over the argument of the first current jϕ . As a
consequence [21], the correlation integral corresponds to a
properly scaled covariance of the time-averaged currents:

c(ϕ,ψ) = lim
T →∞

T Cov[ϕT ,ψT ]. (7)

As such, the macroscopic current and the Green-Kubo integral
are the first two scaled cumulants of the pair (ϕT ,ψT )
of time-averaged currents. Scaled cumulants are defined as
derivatives of the scaled cumulant-generating function, which
can be obtained using methods from large deviation theory
[10,21,24,25]. Higher-order derivatives represent higher or-
ders of the statistics, such as skewness and kurtosis.

In our accompanying paper [10] we prove a gauge in-
variance of the fluctuation statistics and show in detail how
Schnakenberg’s decomposition is extended to all cumulants
of arbitrary observables. In the next section we give a brief
review in form of a concise and efficient recipe for the first
two orders.

B. Determining averages and (co-)variances of currents

The only ingredients needed for the calculation of the
scaled cumulants are the transition matrix W and the jump
observables representing the currents of interest. The elements
wi

j of the transition matrix as well as the jump observables may
depend on the (physical) control parameters of the Markov
processes in an arbitrary way. In the following, we present a
simple yet efficient algorithm for the calculation of the first two
scaled cumulants of two jump observables ϕ and ψ . It consists
of three substeps: (1) topological, (2) algebraic, and (3) physi-
cal. The first two steps are universal. Only the last step involves
the jump observables in question. Note that the algorithm
requires neither the steady-state distribution π nor the scaled-
cumulant generating function. We emphasize this fact because,
in general, these quantities are difficult or even impossible
to obtain analytically, i.e., in the form of a fully parameter-
dependent, symbolic expression. An implementation of this
algorithm in Python is available as a git repository [26].

1. Topology: Defining fundamental cycles

The first step in the analysis addresses the topology of the
graph G representing a network of states, cf. Fig. 1.

(a) Choose a spanning tree T for the undirected graph, i.e.,
an undirected subgraph spanning all vertices but not containing
any circuit [green edges in Figs. 1(a) and 1(c)].

(b) Provide an orientation to the B = N − M + 1 undi-
rected edges η� ∈ H left out by the tree T . They are the called
chords [blue edges in Figs. 1(a) and 1(c)].

(c) Identify the fundamental cycles: For every chord η� ∈
H, its terminus and origin are connected by a unique directed
path through the spanning tree. Adding the chord itself as
a closure of this path results in the fundamental cycle ζ�

[Figs. 1(b) and 1(d)].
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2. Algebra: Determining the fundamental current cumulants

The second step of our algorithm involves the determination
of the first two (joint) scaled cumulants of the fluctuating
currents associated to the chords η� ∈ H.

(a) Write down the characteristic polynomial
χH(λ; q1,q2, . . . ,qB ) = det(WH − λI) of the matrix WH
with entries

(WH)ij =
{
wi

j exp (±q�) if (i → j ) = ±η�,

wi
j else.

(8)

(b) Identify the coefficients a0(q), a1(q), and a2(q) of
χH(λ; q) = ∑N

k=0 ak(q) λk , i.e., the coefficients of the con-
stant, the linear, and the quadratic terms.

(c) Calculate the vector c ∈ RB with entries c� = c(η�) and
the scaled covariance matrix C ∈ RB×B with entries C�m =
c(η�,ηm) as follows:

c� = −∂�a0

a1
, (9a)

C�m = −∂2
�ma0

a1
− 2(∂�a0)(∂ma0)a2

a3
1

+ (∂ma1)(∂�a0) + (∂�a1)(∂ma0)

a2
1

= −∂2
�ma0 + (∂�a1)cm + (∂ma1)c� + 2a2cmc�

a1
, (9b)

where the partial derivatives ∂�ak := ∂ak (q)
∂q�

|
q=0

and the coeffi-

cients ak are evaluated at q = 0.
Remark: Higher-order scaled cumulants are similarly ac-

cessible. The characteristic equation 0 = χH(λ; q) uniquely
defines the entire scaled cumulant-generating function λH(q)
with λH(0) = 0. Taking derivatives of the characteristic equa-
tion yields linear equations for the cumulants, i.e., the inner
derivatives ∂qi ,...,qj

λH(0). Note that higher-order cumulants
depend on the coefficients ak(q) with k > 2, and the symbolic
expressions become more complex. The first two orders are
explicitly given by Eqs. (9). The symbolic manipulations
that are necessary to obtain the higher orders are efficiently
implemented in modern computer algebra systems. For more
details on the procedure and a derivation of Eqs. (9), the reader
is referred to our accompanying publication [10].

3. Physics: Cumulants of jump observables

The third and final step of the algorithm yields the first two
scaled cumulants of the fluctuating currents associated to the
jump observables ϕ and ψ .

(a) Sum the jump observables ϕ and ψ along the edges
of the fundamental cycle ζ� to obtain the circulations ϕ̊� and
ψ̊�. They are the coordinates of the chord representations
ϕH,ψH ∈ RB .

(b) The steady-state average of ϕ, and of the scaled
covariance of ϕ and ψ , then read

c(ϕ) = c · ϕH ≡
∑B

�=1
ϕ̊� c�, (10a)

c(ϕ,ψ) = ϕH · C ψH ≡
∑B

m,�=1
ϕ̊� C�m ψ̊m. (10b)

We conclude the section with final remarks on the choice
of the spanning tree in step 1, which is a priori arbitrary.
Different choices yield different chords—and thus different
expressions for the fundamental current vector c and the
fundamental covariance matrix C . Expressions (9) and (10)
are universal. In order to calculate the cumulants of any jump
observable, no equations need to be solved. Via Eq. (9), any
combinatorial complexity is hidden in (the derivatives of) the
coefficients ak of the characteristic polynomial. The latter are
calculated in a straightforward way either manually or by using
a computer-algebra system. However, the final expressions
(10) have fewer terms if some of the circulations ϕ̊� or ψ̊�

along fundamental cycles vanish. It is thus worthwhile to take
a careful look at the particular set of jump observables ϕ and ψ

under consideration and choose a spanning tree that is optimal
in that regard.

III. KINESIN

A. Kinesin as a molecular motor

Kinesin is a molecular motor which facilitates transport
in eukaryotic cells. It moves along intracellular filaments
called microtubules and plays a major role in many biological
processes, including mitosis, meiosis, and transport of cellular
cargo. The most well-studied variety of kinesin—both experi-
mentally (see, e.g., Refs. [4,15–17] and references therein) and
theoretically [11,12,27–30]—is a protein dimer consisting of
two identical subunits. Figure 2(a) shows a sketch of kinesin
binding its intracellular cargo at its tail end. Kinesin’s head
end consists of two active sites which bind and unbind to
the microtubule in alternating succession, thereby allowing
the motor to perform mechanical steps of length L = 8 nm
[31,32]. Due to the polarity of the microtubule, this motion
has a preferred “forward” direction.

cargo
(a) (b)

tail end
body

active sites
microtubule

P
hydrolysis

forward step

FIG. 2. (Color online) (a) Kinesin is a motor protein consisting
of two identical entangled subunits. Cargo is bound at the tail end.
The active sites on kinesin’s head end bind to the microtubule and act
as kinesin’s “feet,” enabling the molecule to perform directed steps.
Kinesin’s stepping mechanism is the result of subsequent changes
in how strong the active sites bind to the microtubule. The trailing
(left) and leading (right) sites are represented by colored ellipses.
ATP-laden [red (dark gray)] and empty (light gray) sites bind strongly,
whereas an ADP-laden [blue (gray)] site binds only weakly. The
succession of chemical compositions shown in panel (b) is called the
forward cycle F . Starting from the upper left state, the forward cycle
involves (in the counterclockwise direction): (i) Binding of ATP to
the (empty) leading site; (ii) a mechanical step (brown edge, bottom),
i.e., the exchange of the leading and trailing site; (iii) release of ADP
from the (new) leading site; and (iv) hydrolysis (purple edge, top) of
ATP into ADP at the trailing site.
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The energy necessary for this active directed transport is
provided by the hydrolysis of adenosine triphosphate (ATP)
into adenosine diphosphate (ADP) and inorganic phosphate
(P). Unlike macroscopic motors, small molecular machines
operate at low Reynolds numbers and inertia plays no role:
Chemical energy is not converted into mechanical energy
by a transfer of momentum. Instead, kinesin’s mechanical
displacement is the result of a complex interplay of the
strength of the microtubule binding at the active sites, which
depends on their chemical composition. ATP-laden and empty
sites bind strongly, while ADP-laden sites bind more weakly
[16,17]. Under physiological conditions the mechanochemical
interaction can be described by the “forward cycle” depicted
in Fig. 2(b) [11]. Models that only treat the forward cycle
feature tight coupling between the hydrolysis reaction and the
stepping: Each hydrolysis of an ATP molecule gives rise to
exactly one motor step [14].

B. Experiments and models

An important biophysical question regards the force that
kinesin generates for different concentrations of the chemi-
cals ATP, ADP, and P involved in the hydrolysis reaction.
Typically, experiments measure this force by linking kinesin
to a dielectric colloidal bead which resides in an optical trap
[14–16,31]. Involved experimental setups allow the precise
control of the pulling force F that the optical trap exerts
on the motor against its typical direction of motion. The
independent driving parameters are the nondimensionalized
force f := (LF )/(kBT ) and the nondimensionalized chemical
potential difference �μ = log (Keq[ATP]/[ADP][P]), where
kB denotes Boltzmann’s constant, T the temperature, Keq the
equilibrium constant of the hydrolysis reaction, and [X] the
concentration of chemical species X. In the remainder of this
work, all physical quantities are expressed in units based on
the length scale L, time scale 1s, and energy scale kBT .

Many experiments probe the stalling force fstall(�μ), which
is defined as the value of the force needed to bring the motor
to a halt for a given chemical potential difference �μ. Under
physiological chemical conditions, kinesin hydrolyzes ATP
even at stalling forces [15,16]. The exact details of the kinesin
stepping mechanism under high mechanical loads remain
unknown and several models exist, cf. Refs. [11,12,17] and
the references discussed in these publications. While these
models differ in their details, they all feature more than only
the tightly coupled forward cycle.

A prominent example of a thermodynamically consistent
model was introduced in Ref. [11]. There the key idea is to
extend the forward cycle shown in Fig. 2(b) by the chemical
compositions obtained from exchanging the trailing with the
leading active sites, cf. Fig. 3(a). In addition to the forward
cycle F , the extended network features six states and has
two additional cycles, Figs. 2(b)–2(d): The backward cycle
B represents backward motion under hydrolysis, while the
dissipative slip cycle D represents the futile hydrolysis of two
ATP molecules without any stepping [28]. In such a multiple-
cycle model, hydrolysis and mechanical displacement are
no longer tightly coupled. In Sec. IV A we will address the
question of quasitight coupling, i.e., situations where the ratio

(a) (b)

(c)

(d)P1

2

3 4

5

6

P

FIG. 3. (Color online) (a) The six-state kinesin model from
Ref. [11] extends the forward cycle from Fig. 2(b) by two states.
For this model, We use the same spanning tree and chords as in the
example shown in Fig. 1(c). Then the fundamental cycles ζ1 ≡ F and
ζ2 ≡ D are the forward and dissipative cycles (b) and (d), respectively.
The backward cycle (c) is the linear combination B = ζ2 − ζ1, cf.
Ref. [10].

of the average number of chemical and mechanical events
predicted by the model is close to unity.

C. Network theory for the kinesin model

In order to study quasitight coupling, energy conversion,
and the predicted response to changes in the driving param-
eters, we apply the algorithm presented in Sec. II B to the
six-state model for kinesin, Fig. 3. For the first step of the
algorithm, we choose the spanning tree and its chords in
the same way as in Figs. 1(c) and 1(d). Consequently, the
fundamental cycles ζ1 ≡ F and ζ2 ≡ D correspond to the
forward and dissipative cycles, respectively.

The second step of the algorithm requires the determination
of the fundamental current vector c and the fundamental
covariance matrix C . With the enumeration of the vertices
as in Fig. 3(a) the matrix WH(q1,q2) reads:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1
1 w1

2 0 0 0 w1
6

w2
1 w2

2 w2
3 0 w2

5 eq1 0

0 w3
2 w3

3 w3
4 0 0

0 0 w4
3 w4

4 w4
5e

q2 0

0 w5
2e

−q1 0 w5
4e

−q2 w5
5 w5

6

w6
1 0 0 0 w6

5 w6
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is straightforward to write down its characteristic polynomial
χH(λ; q1,q2) =:

∑6
k=0 ak(q1,q2)λk and to extract the coeffi-

cients a0(q) ≡ detWH(q1,q2), a1, and a2. Differentiating with
respect to q1 and q2 and evaluating at q1 = q2 = 0 yields the
expressions ∂�ak appearing in Eqs. (9).

The third step requires the circulations of the jump observ-
ables of interest. For the present discussion, we consider the
displacement d = ϕ(2,5) and the hydrolysis count h = ϕ(6,1) +
ϕ(3,4), which indicate a transition along the brown and purple
edges in Fig. 3, respectively. Their matrix representations read

di
j = δi,2δj,5 − δi,5δj,2, (11a)

hi
j = δi,6δj,1 − δi,1δj,6 + δi,3δj,4 − δi,4δj,3, (11b)

where δm,n denotes the Kronecker δ, which yields one if m = n

and zero otherwise. The circulations of d and h simply count
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the number of the brown and purple edges in the fundamental
cycles ζ1 = F and ζ2 = D, cf. Figs. 3(b) and 3(d). The chord
representations of d and h thus are

dH = (d̊1,d̊2) = (1,0), (12a)

hH = (h̊1,h̊2) = (1,2). (12b)

Note that the choice of the chords is optimal for the
calculation of the present variables because one of the entries
of dH vanishes (d̊2 = 0), while this cannot be achieved for hH.
After all, all cycles contain at least one hydrolysis event.

The corresponding macroscopic currents, i.e., the velocity
c(d) and the hydrolysis rate c(h) are obtained from Eq. (10)
as:

c(d) = c1, (13a)

c(h) = c1 + 2c2. (13b)

Their scaled (co-)variances amount to

c(d,d) = C11,

c(h,h) = C11 + 4C12 + 4C22,

c(h,d) = C11 + 2C12.

In addition to displacement d and hydrolysis count h,
we are interested in the jump observable σ i

j = ln(wi
j/w

j

i )
corresponding to the dissipation. As discussed in Sec. II A
its circulations are the cycle affinities. The Hill-Schnakenberg
conditions are necessary for the consistency of a Markov jump
process with the thermodynamic notion of local equilibrium
[3,9]. They state that the affinity of a cycle must express
the (nondimensionalized) differences in the potentials of the
reservoirs, cf. Refs. [7,8,19]. Upon completing the forward
cycle F ≡ ζ1, an amount �μ of chemical energy is used
by the system to perform a (dimensionless) amount −f of
work against the pulling force. Similarly, a completion of
the dissipative cycle D ≡ ζ2 uses 2�μ of chemical energy.
Consequently, the chord representation of the dissipation reads

σH = (σ̊1,σ̊2) = (−f + �μ,2�μ).

The Schnakenberg decomposition thus lets us express the
average steady-state dissipation by physical parameters and
currents through fundamental chords

c(σ ) = (−f + �μ)c1 + (2�μ)c2. (14)

D. The cycle perspective

In the previous section, we expressed observable quantities
only by means of their circulations around fundamental
cycles and the fundamental first and second chord cumulants.
Nowhere in these expressions do the number of states or
the choice of a spanning tree appear explicitly. Hence, the
same expressions are reproduced by any model with the same
cycle topology, as long as the physics along the cycles, i.e.,
the circulations of antisymmetric jump observables, are the
same. As exemplified in Sec II A in Figs. 1(a) and 1(b),
one can formulate a model on four states with the same cycle
topology as the six-state model described in Fig. 3. Allowing

(a) (b) (c) (d)

1

2 3

4

P

P

FIG. 4. (Color online) A model with four states, which describes
the same physics as the six-state model shown in Fig. 3. In this
simpler model we combined the transitions for the ATP hydrolysis
on one active site with the ADP release on the other one into a
single transition. Details of the model construction are given in the
Appendix.

only for single edges between states, such a four-state model
is the minimal model featuring two independent cycles. An
interesting question is how this model (and other reduced
models) compare to more complicated ones.

In Ref. [13] we used the idea of preserving the cycle
affinities and circulations of jump observables along cycles (to-
gether with locality constraints) to develop a coarse-graining
algorithm for stochastic models. Its application to the six-
state kinesin model produced various topologically equivalent
models, which all preserved the fluctuation statistics of the
observables of interest almost perfectly. A disadvantage of
this coarse-graining algorithm is that the individual transitions
in the network of states lose their original interpretation.

In contrast, Fig. 4 shows a four-state model with a clear
interpretation of the transitions. This has the advantage that
the parametrization of the transition rates is found by the
same physical arguments as the ones used in Ref. [11] for
the six-state model. Details of the construction of this model
are given in the Appendix. We will see in the next section
that all the predictions of the six-state model are also found in
topologically equivalent four-state models. This observation
underlines the virtue of viewing models in ST from the
perspective of cycles—an idea that was pioneered by Hill
[7,19] and Schnakenberg [8] and has regained considerable
attention recently [11,13,28,33,34].

IV. RESULTS

One of the main messages of this work is that the algorithm
presented in Sec. II B allows us to probe parametric models
used in stochastic thermodynamics in a systematic way. In
order to demonstrate the efficiency of our approach, we report
on various nontrivial predictions of the six-state kinesin model.
At the end of this section we will compare these results with
other models.

Throughout this section, we choose the parameter range
similar to Ref. [28] and vary −30 � f,�μ � 30. Then, in
physical units, the pulling force F varies between about −15
and +15pN . Following Ref. [11], the chemical potential
difference is adjusted by changing the ATP concentration
while fixing the other chemical concentrations at physio-
logical values (see Appendix). The physiologically relevant
region for the chemical driving parameter is limited to about
20 < �μ < 30. Negative values of the chemical potential
correspond to extremely low ATP concentrations. In particular,
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FIG. 5. (Color online) (a) Operation modes as identified in Ref. [28]. (b) Decadic logarithm of the absolute value of the average velocity
c(d) (left) and hydrolysis rate c(h) (right). White lines indicate where the currents vanish and correspond to the region boundaries displayed in
panel (a). Signs of the currents are indicated as an overlay. Contour lines show that the macroscopic currents are proportional away from these
lines. (c) Plotting the ratio c(h)/c(d) makes this proportionality visible directly. The proportionality constant has an absolute value very close
to unity, indicating quasitight coupling for most parameter values (see discussion in the main text). Note that the values of the ratio are cropped
at absolute values of 2, most prominent in the dark regions surrounding the singularities of the ratio.

the “homeopathic limit” is reached at about �μ < −14: At
that point there is less than one ATP molecule in an experiment
containing 1 liter of solution.

The reason we still present our results for the entire pa-
rameter range −30 � f,�μ � 30 is twofold: First, it enables
a direct comparison with previous work [11,28]. Second, it
demonstrates the effectiveness of our algorithm in predicting
results that vary over many orders of magnitude. Still, we
emphasize that nontrivial results are encountered exactly in
the experimentally accessible region, where we consider the
model as valid.

A. Velocity, hydrolysis rate, and their quasitight coupling

Figure 5(a) reproduces a central result of Ref. [28]
concerning the operations modes of kinesin. These modes are
defined by the signs of the average currents, i.e., of the velocity
c(d) and the hydrolysis rate c(h). However, the resulting phase
diagram contains no information regarding their magnitude.
Based on the expressions (13) we provide a detailed account
on their numerical values in Fig. 5(b). Note that these currents
vary over about 20 orders of magnitude. This underlines
the importance of having analytical expressions to generate
the plots. A brute-force numerical approach will either be
prohibitively expensive in terms of computer resources or it
will suffer from severe inaccuracies when dealing with this
vast range of numerical values.

The analytical expressions for the currents also reveal an
interesting relation between the average currents. In Fig. 5(c)
we plot the ratio c(h)/c(d) of the hydrolysis rate and the
velocity. Again, access to the analytical expressions for the
currents is crucial to determine the ratio. After all, both its
numerator and denominator are of the order 10−18 in the lower
left corner of the parameter space.

The most prominent feature of Fig. 5(c) is that away from
the zero-current lines, the ratio of average hydrolysis rate
and velocity takes values very close to ±1. Consequently, on
average, the completion of a cycle yields one mechanical step
and one chemical event. We say that chemical and mechanical
currents are quasitightly coupled. Experimentally, it was found

that kinesin hydrolyzes one ATP molecule for each mechanical
step [14]. According to the model considered here, quasitight
coupling is a generic feature that holds more generally: Even
in the region where kinesin moves backward while consuming
ATP, the absolute values of the currents are locked to a ratio
of 1.

Knowing the absolute values of the currents rather than only
their signs also allows us to treat kinesin’s thermodynamic cy-
cles in more detail. In Ref. [28] this discussion was based on the
signs of Hill’s (excess) cycle fluxes [7]. With the current ratio
we interpret the regions shown in the phase diagram Fig. 5(a) in
terms of dominant cycles—at least away from their boundaries:
In the upper left and lower right regions the forward cycle
F dominates such that average hydrolysis and velocity are
directly proportional, c(h) ∼ c(d). The difference between
those regions is the angular direction: Counterclockwise
completion leads to a forward movement accompanied by ATP
hydrolysis, whereas clockwise completion yields backward
stepping and ATP synthesis. In contrast, in the upper right and
lower left regions hydrolysis and velocity are antiproportional,
c(h) ∼ −c(d): A counterclockwise (backward, hydrolysis) or
a clockwise (forward, synthesis) completion of the backward
cycle B dominates the average dynamics, respectively. This
result, which is based on the values of physiological currents,
thus complements and extends the discussion presented in
Ref. [28].

B. Efficiency of energy conversion

Under physiological conditions, kinesin uses the chemical
energy released by the ATP hydrolysis to perform mechanical
work. Energy efficiency is one of the most important questions
for molecular machines involved in cellular energy conversion
[35–37], just as it is for macroscopic machines. A framework
for a quantitative analysis is based on the notion of conjugate
currents and forces from irreversible thermodynamics [23].
Generally, a complete set of conjugate currents c(ϕi) and forces
Ei yields the average dissipation as the bilinear form

c(σ ) =
∑

i

c(ϕi)Ei =:
∑

i

c(σi),
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where σi = ϕiEi denotes the distinct contributions to the
entropy production.

Using Eqs. (13) and (14) we find that

c(σ ) = (−f )c(d) + (�μ)c(h)

=: c(σmech) + c(σchem). (15)

We see that in the kinesin model, velocity c(d) and hydrolysis
rate c(h) are conjugate to the negative pulling force −f and
the chemical potential �μ, respectively. For a system with
two independent contributions to the entropy production, σ =
σ1 + σ2, one may define the efficiency of energy conversion
in general terms [36]. To that end note that c(σ ) is always
positive. This, however, does not imply that both contributions
c(σi) are positive. Indeed, systems act as energy converters
only if one of the contributions, say, σ1, is negative. Then, a
(positive) average power output Ẇout := −c(σ1) is sustained by
a (positive) average power input Ẇin = c(σ2). Note that c(σ2)
is positive and larger in magnitude than c(σ1), because c(σ ) =
c(σ1) + c(σ2) � 0 must always hold. Hence, the efficiency of
energy conversion is defined as

0 � η̂ := Ẇout

Ẇin
= |σ1|

σ2
< 1. (16)

It is always positive and smaller than unity.
In the framework of stochastic thermodynamics, this

efficiency has been studied under various aspects (cf. e.g.,
Refs. [35–38]). In Fig. 6, we give the efficiency of energy con-
version η̂ for the kinesin model. The regions A–D correspond
to different types of energy conversion where the system acts
as either a motor (A and C) or a chemical factory (B and
D). Outside these regions both contributions to the entropy
production are positive and no energy conversion takes place.

We note the following prediction: For any fixed value of �μ

in the physiological range, i.e., for 20 < �μ < 30, the value
of the force at maximum efficiency is around f ≈ 10.5. This
suggest that kinesin might be optimized to encounter (elastic)
forces of around 5pN , independent of the ATP concentration.
It will be interesting to explore the implications of this result
for the collaborative behavior of multiple kinesin molecules
involved in the viscous transport of organelles.

Finding the parameters of a system that extremize ther-
modynamic quantities is a generic problem. Recently, many
authors have discussed the notion of efficiency at maximum
power (see, e.g., Refs. [35,39] and therein). Having fully
parameter-dependent symbolic expressions for the various
contributions to the entropy production establishes a general
(analytic) approach to this optimization problem.

C. Diffusion constant and randomness parameter

So far, we have only investigated average currents, which
are also available if the steady-state distribution π is known, cf.
Eq. (1). Higher-order statistics of fluctuating currents cannot
be expressed by means of the stationary distribution only,
although a perturbation expansion exists [40]. The method
presented here provides direct access to the (co-)variance of
fluctuating currents via Eq. (10b), without the knowledge of
the stationary distribution.

For motor proteins we are mostly interested in the
second scaled cumulant of the time-averaged displacement.

FIG. 6. (Color online) Efficiency of energy conversion in the
kinesin model. The four regions A–D correspond to four different
ways of energy conversion. In the regions outside the solid curves,
no conversion between mechanical and chemical energy takes place.
In regions A and C kinesin acts as a motor converting chemical into
mechanical energy against the external force. In regions B and D
kinesin resembles a chemical factory that uses mechanical energy to
produce ATP and ADP, respectively, against the chemical potential
provided by the solution. The sketches in the upper right and lower
left illustrate the combination of thermodynamic forces acting on
the motor in the respective quadrant. In the upper right, kinesin is
pulled backward (i.e., against its standard direction of motion) in an
ATP-rich environment. In the lower left, kinesin is pushed forward
in an ADP-rich environment. Energy conversion occurs only in the
regions where both mechanical and chemical currents have the same
sign and the forward cycle dominates, cf. Fig. 5.

It quantifies the (linear) scaling of the (fluctuating part of) the
mean-square displacement and thus defines (up to a factor of
2) the nonequilibrium diffusion constant D = D(f,�μ):

c(d,d) ≡ lim
T →∞

1

T
(〈d(T )2〉 − 〈d(T )〉2) =: 2D.

In Fig. 7(a) we show the diffusion constant in the six-state
kinesin model. Like the average velocity, its values span a
range of about 20 orders of magnitude. Under physiological
conditions (f = 0,�μ ≈ 25) the diffusion constant is about
10 orders of magnitude larger than at equilibrium.

A direct measurement of the parameter dependence of D

is difficult. An observable that is more easily accessible in ex-
periments is the so-called randomness parameter (sometimes
called Fano factor) [15,17,41,42],

r = lim
T →∞

〈d(T )2〉 − 〈d(T )〉2

〈d(T )〉 = c(d,d)

c(d)
. (17)

It is a dimensionless measure of the temporal irregularity
of the mechanical displacement. While r = 0 indicates a
deterministic motion without any fluctuations, a value of
|r| = 1 amounts to a Poisson motor [41]. In Fig. 7(b) we plot
its inverse, r−1, which is a smooth function. We see that the
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FIG. 7. (Color online) (a) The diffusion constant D = 1
2 c(d,d)

on a decadic logarithmic scale. (b) The inverse randomness param-
eter r−1 = c(d)/c(d,d) ≡ c(d)/(2D) compares the velocity and the
diffusion constant. Away from the white stalling line, it obtains an
absolute value close to unity. The black solid lines show where |r| = 1
holds exactly.

six-state model predicts Poissonian behavior |r| ≈ 1 in a large
area away from the stalling lines. This is in agreement with
recent experimental results and theoretical predictions from an
alternative model [17].

Our method to calculate the second scaled cumulant and
thus the diffusion constant avoids all of the combinatorial
complexity of previous approaches [42,43]. Reference [44]
treats drift velocity and diffusion in Markovian models
formulated for a periodic lattice in arbitrary dimensions. In the
present work the topology of physical space is independent
from the structure of the graph, which represents the topology
of the model: If a system like a molecular motor moves in
more than one spatial dimension, one defines a distinct jump
observable di for each of these dimensions i. Up to a factor
of 2, the scaled covariance matrix c(di,dj ) then equals the
diffusion tensor.

D. Response theory

Equation (15) states that the average velocity c(d) and
hydrolysis rate c(h) are conjugate to the mechanical and
chemical driving forces −f and �μ. Response theory studies
the dependence of averaged currents J = (c(ϕi))i to the
conjugate fields E = (Ei)i . For B independent conjugate
current-field pairs, (c(ϕi),Ei)i , the response matrix R(E) is
a B × B matrix with entries

Ri,j (E) := ∂c(ϕi)

∂Ej

∣∣∣∣
E

. (18)

Fluctuation dissipation relations (FDR) relate the response
of average currents to their fluctuation statistics. In particular,
the Einstein relation relates the mobility of a particle (or
its inverse, the friction coefficient) to its diffusion constant.
So-called Green-Kubo relations [45] express equilibrium
transport coefficients by time-correlation integrals, Eq. (6).
Here these time-correlation integrals are obtained as second-
order scaled cumulants c(ϕi,ϕj ). The fluctuation relation for
the entropy production [6,20] ensures the validity of the

−30 −20 −10 0 10 20 30

f

−30

−20

−10

0

10

20

30

Δ
µ

−2.0

−1.6

−1.2

−0.8

−0.4

0.0

0.4

0.8

1.2

1.6

2.0

FIG. 8. (Color online) Normalized mechanical response Tmech.
The dashed green curves indicate Tmech = 1, such that a Green-Kubo
FDR (19) holds. One of these curves coincides with the stalling line
f = fstall(�μ) where the average velocity vanishes (white solid line).
The dotted blue line indicates a vanishing transport coefficient. To its
right lies a region of negative differential response.

following equilibrium FDR [21,24]:

Ri,j (E = 0) = 1

2
c(ϕi,ϕj )

∣∣
E=0. (19)

With analytical expressions for the average currents c(ϕi)
one can calculate their derivatives Rij . Because the correlation
integrals c(ϕi,ϕj ) are known, our method enables us to probe
the nonequilibrium response properties predicted by models
of stochastic thermodynamics. As an example, we discuss
kinesin’s mechanical response using the normalized response
coefficient

Tmech(f,�μ) := 2

c(d,d)

∂c(d)

∂(−f )
= − 1

D

∂c(d)

∂f
. (20)

The equilibrium FDR (19) implies that Tmech(0,0) = 1. As the
transition matrix depends smoothly on the driving parameters
(−f,�μ) [11], we expect that there will be a one-dimensional
curve in parameter space where Tmech(f,�μ) = 1.

Figure 8 depicts Tmech. As expected, we see that
Tmech(f,�μ) = 1 holds along two lines originating from
the origin, such that a nonequilibrium FDR holds for these
parameter values. Remarkably, one of these lines coincides
with the stalling line f = fstall(�μ), i.e., for parameters where
the average velocity vanishes.

Another nontrivial feature of Fig. 8 is the region where
the normalized mechanical response is negative. Since the
diffusion constant D is positive, Tmech < 0 implies that the
derivative ∂c(d)/∂(−f ) of the mechanical current with respect
to its conjugate force is negative. This phenomenon is known
as negative differential mobility [46] or, more generally,
negative differential response (NDR) [18,47]. The kinesin
model predicts negative differential mobility for large-enough
pulling forces beyond stalling, i.e., in situations where the
motor walks backwards. Then, by pulling more one gets less,
i.e., the velocity in pulling direction becomes smaller. This
feature might already be visible in the experimental data found
in Refs. [16,17]. Although we do not expect to see NDR for
arbitrarily high pulling forces in real experiments, explicitly
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looking for it in the region for small superstalling forces seems
worthwhile.

E. Model comparison

Direct access to the nontrivial features of physical currents
allows us to compare different models in detail, both qualita-
tively and quantitatively. We start by quantitatively comparing
the results for the six-state model (Fig. 3) with the simpler
four-state model (Fig. 4). Recall that the latter is constructed
following the same physical arguments as the former (cf. the
Appendix for the details). The results plotted in Figs. 5–8 are all
derived from c(d), c(h), and c(d,d) = 2D. In Fig. 9 we plot the
relative deviations of these quantities between the four-state
and the six-state model. Throughout most of the parameter
space, they are only a few percentages. This is remarkable,
because the observables themselves vary over many orders
of magnitude. Note that at the boundaries between different
operation modes [Fig. 5(a)], the first cumulants vanish. Hence,
we have a divergence in the relative errors unless this happens
exactly at the same parameter values in both models.

For the hydrolysis rate c(h) such a divergence is visible in
Fig. 9(b) around (f,�μ) � (16,14). In principle, this diver-
gence is present wherever c(h) vanishes in the six-state model.
In practice, however, the curves of zero average hydrolysis rate
c(h) = 0 agree almost perfectly, such that the region where
the divergence has an effect is extremely small. For most
parameters it is hidden due to the finite plotting resolutions
and thus not visible in Fig. 9(b). In contrast, the prediction
of the stalling forces fstall(�μ) agrees exactly between the
two models: Figure 9(a) does not exhibit any singularities. In
Ref. [13] we introduced a coarse-graining procedure which
preserves the cycle topology of a model. By construction, the
first cumulants of all currents agree between the original and
the coarse-grained models. Moreover, the relative error in the
diffusion constant is comparable in magnitude to what we see
in Fig. 9(c). These quantitative results emphasize the value
of the cycle perspective introduced in Sec. III D: In order to
construct thermodynamically consistent models, one should
think of the physics of cycles rather than focusing only on
individual transitions.
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FIG. 9. (Color online) Comparison of our four-state model with
the six-state model of Ref. [11]. We show the relative errors
X4/X6 − 1 of the corresponding quantities X4 and X6 calculated in
the four- and six-state models, respectively. Throughout the parameter
range considered, they are almost everywhere well below 15%. Note
that for the average hydrolysis rate the relative error diverges close to
the line c(h) = 0 where the hydrolysis rate in the six-state vanishes.
Remarkably, this is not the case for the average velocity, where the
stalling lines in both models agree exactly.

Finally, we compare the six-state model to a general model
for molecular motors presented in Ref. [48], which was studied
in detail in Ref. [12]. Unlike the six-state model studied so
far, that model features only two states, which correspond
to a strongly and a weakly bound configuration. Multiple
transition between these two configurations are possible and
represent either an active (i.e., accompanied by a chemical
event) or passive displacement along the microtubule. The
cycles of the two models differ both in their topology
and their interpretation. In particular, the two-state model
of Refs. [12,48] has no reference to the “hand-over-hand”
stepping mechanism of the forward cycle of Ref. [11], depicted
in Fig. 2(b). Moreover, the two-state model was fitted to the
experiments of Refs. [14,15], whereas the six-state model used
the experimental data from Ref. [16]

Due to the simple structure of the two-state model, an ana-
lytical parameter-dependent expression of the scaled cumulant
generating function was found in Ref. [12]. Consequently,
analytical expression for the scaled cumulants are known and
can be compared to the results obtained for the six-state model
of Ref. [11], which we used so far. Due to the different nature
of the models, we do not expect their predictions to agree
quantitatively. In particular, this is the case for parameter
values that are far away from values that are realized in
the actual experiments, i.e., for small (or even negative)
chemical potentials �μ, or negative values of the pulling force.
However, for experimentally accessible parameters, it makes
sense to look for qualitative agreements in the features of the
two different kinesin models.

Figure 10 shows the normalized mechanical response
Eq. (20) in both models for sensible chemical potential
differences (5 � �μ � 30) and positive pulling forces. As
expected, the models do not agree quantitatively. In particular,
the stalling lines are at different positions. However, they show
the same qualitative features: the validity of an Einstein FDR
at stalling and the emergence of negative differential mobility
just above stalling. Together with the experimental hints
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FIG. 10. (Color online) Normalized mechanical response Tmech

for the six-state model of Ref. [11] studied in the present work (left)
and the model from Ref. [12] (right). For experimentally sensible
parameters both models predict the same qualitative behavior: The
validity of a nonequilibrium Einstein FDR (dashed green curves) at
stalling (solid white curve) as well as negative differential response
(regions to the right of the dotted blue curve) for superstalling
forces. Other features (like the overall structure and magnitude of
the response) show the same qualitative behavior of the two models.
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from Ref. [16], we consider this agreement as evidence that
negative differential mobility is a generic feature of kinesin—a
prediction that should be studied by future experiments.

V. CONCLUSION

In the present work, we gave an explicit procedure for the
analytical, i.e., fully parameter-dependent, calculation of the
statistics of fluctuating currents in stochastic thermodynamics.
The algorithm applies to any finite and dynamically reversible
Markov model and has been made available as Ref. [26].
We focused on its efficiency in exploring the parameter
space of models for the motor protein kinesin, while the
mathematical background of the algorithm was the subject of
an accompanying paper [10]. In the following we summarize
conceptual and physical insights.

From a conceptual point of view, we find the following
points particularly noteworthy:

(i) Our algorithm is efficient. After obtaining the funda-
mental chord cumulants, Eqs. (10) provide fully parameter-
dependent expressions for averages and time correlations of
arbitrary currents.

(ii) Our algorithm is purely symbolic. Thus it allows
simplification and cancellation of zeros. This prevents floating-
point inaccuracies even in expressions that vary over many
orders of magnitude, cf. Fig. 5(b) or Fig. 7(a).

(iii) Having access to symbolic expressions allows further
(algebraic) manipulation and thus the study of derived expres-
sions, cf. Fig. 5(c) or Fig. 7(b). Taking derivatives with respect
to external parameters is needed to explore response properties,
cf. Eq. (20) and approach (thermodynamic) optimization
problems (e.g., efficiency at maximum power, cf. Sec. IV B).

From a physical perspective, our method allows the sys-
tematic comparison of the predictions made by various kinesin
models, cf. Sec. III. In particular, we gave a detailed account
on (quasi-)tight coupling, efficiency of energy conversion,
diffusion, and mechanical response for a well-known kinesin
model [11] in Secs. IV A–IV D. Moreover, in Sec. IV E we
compared these predictions with other models. Regarding the
modeling of molecular motors, we emphasize the following:

(i) Current statistics correspond to experimentally ob-
servable quantities, like the average motor velocity or its
nonequilibrium diffusion constant. Our systematic approach
thus extends and unifies previous approaches for calculating
these quantities [42–44].

(ii) Thinking of stochastic models in terms of its physical
cycles is useful. It allows model reduction, cf. Sec. IV E and
Ref. [13].

(iii) Independent models predict two interesting nonequi-
librium response properties of kinesin: the validity of a
nonequilibrium fluctuation-dissipation relation at mechanical
stalling and negative differential mobility for superstalling
forces. Both of these predictions lie in realistic parameter
regions and can be tested in future experiments.

Modeling the dynamics of molecular motors as random
transitions on a biochemical network of states is only one
of many appliations of finite Markovian jump processes.
The methods established in the present paper apply to any
other dynamically reversible model and are easily extended
to systems with multiple transitions between states. Thus,

they provide a powerful framework to fully explore the
physical predictions of any model described by stochastic
thermodynamics.
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APPENDIX: TRANSITION RATES OF THE
FOUR-STATE MODEL FOR KINESIN

The parametrization of the kinesin model on four states
(Fig. 4) follows the steps in Ref. [11] for the six-state model
(Fig. 3). Transition rates

wi
j := κi

j Ci
j �i

j (f )

are obtained as first-order rate constants κi
j , which are

multiplied by concentration and force-dependent factors. In
accordance with first-order rate kinetics, the chemical factor
reads

Ci
j :=

{∏
X[X] if compound X is attached,

1 else.

For chemical concentrations which are not too high, the
nondimensional chemical potential difference is given by
�μ = ln (Keq

[ATP]
[ADP][P] ), where Keq = 4.9 × 1011μM is the

chemical equilibrium constant for the ATP hydrolysis reaction
happening at kinesin’s active sites. Like in Ref. [11] we
fix [ADP] = [P] = 1μM at physiological values and, conse-
quently, vary the concentration of ATP as

[ATP] = e�μ

49
10−10μM .

The force-dependent factors �i
j depend on the nondimen-

sionalized pulling force f = LF/(kBT ). They have a different
form for mechanical and chemical transitions:

�i
j (f ) :=

⎧⎨
⎩

exp (−θf ) , if (i → j ) = (1 → 3)
exp [(1 − θ )f ] , if (i → j ) = (3 → 1),

2
1+exp [χi

j f ]
, else,

where θ and χi
j = χ

j

i are additional experimental parameters.
For the six-state model the transitions of the forward cycle

F = ζ1 reflect experimental data. We briefly outline how
we use the arguments of Ref. [11] for the parametrization
of the four-state model shown in Fig. 4. First note that
transitions associated to the edges (1 ↔ 3) and (1 ↔ 4) are
also present in the six-state model. We thus use similar
parametrizations. Transition (3 → 4) combines ADP release at
the leading site with hydrolysis (and immediate P release) at
the trailing one. In the six-state model, the same numerical
value of the mechanical parameter χi

j = 0.15 is used for
both of these transitions. We take this as a motivation for
using χ3

4 = χ4
3 = 0.15 in the four-state model. Now the

only undetermined parameters in the forward cycle are the
first-order rate constants κ3

4 and κ4
3 . The Hill-Schnakenberg
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TABLE I. Numerical values of the parameters of the four-state model for kinesin. All first-order reaction rates κ are given in units of
s−1 or, if attachment of n chemicals is involved, s−1 μM−n. Values correspond to the experimental data in Ref. [16] as stated in Ref. [11].
The equilibrium constant of the ATP hydrolysis reaction is Keq = 4.9 × 1011μM. The parameter θ = 0.65 enters the mechanical factor of the
transition rates.

Mechanical transition κ1
3 = 3 × 105 κ3

1 = 0.24
Chemical transitions κ1

4 = 100 κ4
1 = 2.0

(forward cycle) κ4
3 = 2.52 × 106 κ3

4 = Keqκ4
3 κ1

4 κ3
1

κ4
1 κ1

3
= 49.3

Chemical transitions κ3
2 = (

κ3
1

κ1
3

)
2

κ1
4 = 6.4 × 10−11 κ2

3 = κ4
1 = 2.0

(backward cycle) κ2
1 = κ4

3 = 2.52 × 106 κ1
2 = κ3

4 = 49.3

Mechanical load χ 3
4 = χ 4

3 = χ 1
2 = χ 2

1 = 0.15 χ 4
1 = χ 1

4 = χ 2
3 = χ 3

2 = 0.25

condition σ̊1 = −f + �μ for vanishing mechanical driving
f = 0 yields one additional constraint which can be cast into
the expression

κ3
4 κ4

1 κ1
3

κ4
3 κ1

4 κ3
1

!= Keq.

Finally, we take κ4
3 as a fit parameter that we use to adjust our

model to experimental results at the physiological parameter
values: We choose it such that the six-state and four-state
models yield the same average velocity c(d) for f = 0 and
[ATP] = [ADP] = [P] = 1μM.

The parameters of the remaining transitions are obtained
by symmetry. The exception is the first-order constant κ3

2 ,
associated with ATP release from the leading head. Similarly
to Ref. [11] we adjust it in order to account for the Hill-
Schnakenberg conditions. On the dissipative cycle D = ζ2 this

constraint amounts to σ̊2 = 2�μ and yields κ3
2 = ( κ3

1

κ1
3
)
2
κ1

4 .

At this point, we have determined all the parameters of the
four-state model while ensuring the physical and thermody-
namic consistency with the original six-state model. Fitting
yields κ4

3 = 2.52 × 106, which proves to be a good choice
globally, cf. Fig. 9. All model parameters are summarized in
Table I.
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