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Conditions for predicting quasistationary states by rearrangement formula
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Predicting the long-lasting quasistationary state for a given initial state is one of central issues in Hamiltonian
systems having long-range interaction. A recently proposed method is based on the Vlasov description and
uniformly redistributes the initial distribution along contours of the asymptotic effective Hamiltonian, which is
defined by the obtained quasistationary state and is determined self-consistently. The method, to which we refer
as the rearrangement formula, was suggested to give precise prediction under limited situations. Restricting initial
states consisting of a spatially homogeneous part and small perturbation, we numerically reveal two conditions
that the rearrangement formula prefers: One is a no Landau damping condition for the unperturbed homogeneous
part, and the other comes from the Casimir invariants. Mechanisms of these conditions are discussed. Clarifying
these conditions, we validate to use the rearrangement formula as the response theory for an external field, and
we shed light on improving the theory as a nonequilibrium statistical mechanics.
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I. INTRODUCTION

Long-range interaction violates some assumptions intro-
duced in the equilibrium statistical mechanics and ther-
modynamics, for instance additivity [1,2]. One remarkable
phenomenon in such a system is the existence of long-lasting
nonequilibrium quasistationary states (QSSs) in the relaxation
process, and the lifetime of QSSs diverges in the limit of large
population [3–6]. In the mean-field limit, dynamics of the
system is described by the Vlasov equation (or collisionless
Boltzmann equation) [7–9], and QSSs are regarded as stable
stationary solutions to the Vlasov equation. QSSs are said to
be found in various scales in the nature, from the laboratory
scale as the plasma crystals [10–12] to extremely large scale
as the elliptic or spherical galaxies [3]. A central issue of
long-range interacting systems is to predict the QSS from a
given nonstationary initial state.

One theoretical approach is proposed by Lynden-Bell [13],
which is originally proposed for the self-gravitating systems
and is easy to use for the so-called waterbag initial states.
Several tests are performed for the theory in the self-gravitating
systems with one dimension [14,15], two dimensions [16], and
three dimensions [17], and the Hamiltonian mean-field (HMF)
model (or the globally coupled XY model) [18]. In the self-
gravitating systems, thanks to homogeneity of potential, initial
states are classified by the virial ratio, and the Lynden-Bell’s
theory gives good prediction of QSSs if initial states satisfy the
virial condition. The concept of virialization is extended for
nonhomogeneous potential of the HMF model [18] to avoid
parametric resonance making halo [19,20]. The generalized
virial condition helps to prepare initial states for which QSSs
are described by the Lynden-Bell’s theory. See also Ref. [21].
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Another approach is the rearrangement formula, or the
integrable (uncoupled) model. In this article we consider
asymptotic states of the Vlasov dynamics which are QSSs in
which we are interested. The idea to get the asymptotic state
is to redistribute the initial distribution along contours of the
asymptotic effective Hamiltonian, which is determined by the
asymptotic state, and to solve the self-consistent equation for
the asymptotic state. The rearrangement formula is introduced
without theoretical justification, but is successfully examined
in the HMF model for single-level [22,23] and multilevel [24]
waterbag initial states numerically. Further, the theory also
gives good prediction for three-dimensional self-gravitating
systems for the waterbag initial states, and for the parabolic
initial states [25].

The two different theories of the rearrangement formula
and of Lynden-Bell prefer the generalized virial states, but the
former is said to provide more accurate predictions than the
latter [24,25]. We then focus on the rearrangement formula
rather than the Lynden-Bell’s theory. Another reasoning to
focus on the rearrangement formula is that the formula is useful
even for nonwaterbag initial states. Indeed, for perturbed states
from stable stationary states, disordered thermal equilibria for
instance, the rearrangement formula is theoretically justified
[26] by the use of the asymptotic-transient field decomposition
and the transient (T-)linearized Vlasov equation [27–29].
We note that the naming is “linearization,” but the equation
includes a nonlinear term as shown later. A similar formula
is also derived via the variational principle in the context of
plasma waves [30,31]. However, as Lynden-Bell’s theory, the
rearrangement formula is not always precise and a previous
work [26] suggests that the stable stationary state with zero
Landau damping [32] rate is preferred as the unperturbed
states. We refer to this condition as the no Landau damping
condition.

It is still unclear if the no Landau damping condition is more
relevant than the virial condition, and if the former is solely
essential, since numerical tests have been performed for a
limited situation. Moreover, the no Landau damping condition
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is for the unperturbed states, and hence one may expect a
condition for the whole initial state including perturbation.
The main purposes of the present article are to confirm the
relevance of the no Landau damping condition and to reveal
one more condition relating to the Casimir invariance by
performing systematic numerical simulations of the Vlasov
equation.

It is important to clarify validating conditions of the
rearrangement formula from the following two contexts. One
is as the response theory for external field. The rearrange-
ment formula gives nonclassical critical exponents, and the
theoretical predictions are in good agreement with numerical
simulations [26,33,34]. We can further justify the nonclassical
critical exponents by showing that the validating conditions are
satisfied for computing the response. The other is related to
improvement of the theory. After confirming the validating
conditions, it might be possible to improve the theory by
including the Landau damping into the rearrangement formula,
for instance.

This article is organized as follows. We first introduce the
HMF model and the associated Vlasov equation in Sec. II. In
Sec. III, we briefly review the rearrangement formula, and give
theoretical predictions for the HMF model. Section IV is for
examinations of the two conditions: In Sec. IV A we explain
why one may expect the conditions. The no Landau damping
condition for the reference state is carefully confirmed in
Sec. IV B, and a new condition of the Casimir invariance is
reported in Sec. IV C. Based on the numerical findings, we
discuss validity for using the rearrangement formula as the
response theory to the external force, in particular to compute
the critical exponents, in Sec. V. The final Sec. VI is devoted
to a summary and discussions.

II. HAMILTONIAN MEAN-FIELD MODEL AND VLASOV
EQUATION

The HMF model [35,36] is a model of a ferromagnetic
body, and is expressed by the Hamiltonian

HN =
N∑

i=1

p2
i

2
+ 1

2N

N∑
i,j=1

[1 − cos(qi − qj )]

−
N∑

i=1

[hx(t) cos qi + hy(t) sin qi], (1)

where the last two terms express the interaction energy
between XY spins (rotators) and the external magnetic field
(hx(t),hy(t)). Response to the external field will be discussed
in Sec. V, and until then, the external field is set as zero. The
system is also looked on as a dynamical system with many
particles moving on the unit circle with attractive all-to-all
interactions, and the position and the conjugate momentum of
the ith particle are denoted by qi and pi respectively defined in
qi ∈ (−π,π ] and pi ∈ R. The HMF model is a paradigmatic
toy model, and the simple interaction provides advantages in
theory and in numerics.

When one takes the limit of N → ∞, temporal evolution
of the HMF model can be well described in terms of the single
particle distribution f (q,p,t) governed by the Vlasov equation

[7–9]

∂tf + {H[f ],f } = 0, f (q,p,0) = fI(q,p), (2)

where the Poisson bracket {a,b} is defined as

{a,b} = ∂a

∂p

∂b

∂q
− ∂a

∂q

∂b

∂p
(3)

for two functions on the μ space (−π,π ] × R. The effective
Hamiltonian H[f ] is given by

H[f ] = p2/2 + V[f ](q,t) (4)

with

V[f ] = −(Mx[f ] + hx) cos q − (My[f ] + hy) sin q. (5)

In this article, we look into the dynamics through the mag-
netization (or the order parameter) vector (Mx[f ],My[f ])
defined by

Mx[f ] + iMy[f ] =
∫∫

eiqf (q,p,t)dqdp. (6)

The magnetization vector has the modulus less than or equal
to 1, and measures how particles concentrate at a certain
direction on the circle. If particles are uniformly distributed,
thenMx[f ] = My[f ] = 0. If particles are squeezed at a point
on the unit circle, for instance q = 0, then Mx[f ] = 1 and
My[f ] = 0.

III. REARRANGEMENT FORMULA

A. General derivation

We shortly review the rearrangement formula in the absence
of the external field. See [26] for theoretical justification of the
formula.

We start from the initial state fI close to a spatially
homogeneous stable stationary state fS, and decompose it into
the two parts as

fI(q,p) = fS(p) + εgI(q,p), |ε| � 1. (7)

We note that we can construct the rearrangement formula
even if the unperturbed part is spatially inhomogeneous, but
we restrict ourselves to the homogeneous case for simplicity.
Our interest is to predict the asymptotic state of the Vlasov
dynamics denoted by fA, which is assumed to be stationary. It
should be noted that the perturbed state (7) possibly does not
go to a stationary state, but to an oscillatory state by forming
small traveling clusters under some conditions [37]. We do not
look into such states in the present article.

One standard method to analyze dynamics around fS is to
linearize the Vlasov equation (2) by expanding f into

f (q,p,t) = fS(p) + εg(q,p,t). (8)

The linearized Vlasov equation,

∂tg + {H[fS],g} + {V[g],fS} = 0, (9)

gives the well-known Landau damping [32] of perturbation. If
the Landau damping is strong enough, then the asymptotic state
fA may coincide with the initial stable stationary reference fS.
On the other hand, if the Landau damping rate is close to
zero, then nonlinear trapping [38] stops the damping, and the
system relaxes to a different asymptotic state from fS. In the
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latter case, due to the nonlinearity, predicting the asymptotic
state is nontrivial. The rearrangement formula is a powerful
tool in the latter case as shown in this article.

The key idea of the rearrangement formula is as follows.
Imagine that the initial state fI asymptotically goes to a sta-
tionary state fA, which is still unknown. The asymptotic state
constructs the asymptotic effective Hamiltonian HA = H[fA]
of the Vlasov equation, and the asymptotic Hamiltonian drives
the system for a long time and takes it to the asymptotic state
fA. Then, we check self-consistency between the imagined
asymptotic state and the driven asymptotic state.

The above idea is theoretically formulated as follows. We
decompose f into another way as

f (q,p,t) = fA(q,p) + εgT(q,p,t), (10)

where fA and εgT are respectively called the asymptotic (A)
and transient (T) parts. The A part fA is picked up by use of a
special case of the Abel’s formula,

fA(q,p) = lim
T →∞

1

T

∫ T

0
f (q,p,t)dt, (11)

and coincides with limt→∞ f (q,p,t) if it exists. According
to the A-T decomposition (10), the effective Hamiltonian is
similarly decomposed as

H[f ] = HA + εVT, (12)

where the A part and the T part are defined by

HA = p2/2 + V[fA], VT = V[gT], (13)

respectively. Substituting the decomposition (12) into the
Vlasov equation (2), we have

∂tf + {HA,f } + ε{VT,f } = 0. (14)

If f is always in an O(ε) neighborhood of fI, we can
approximate the above exact equation as

∂tf + {HA,f } + ε{VT,fI} = 0 (15)

by omitting the O(ε2) term which couples with the T part VT.
Nevertheless, we emphasize that the approximated equation
(15) is not just a linearized equation like Eq. (9) for O(ε)
terms, since f includes the O(1) term of fA. In other words,
the term {HA,f } has nonlinearity. We remark that the criteria
of truncation concerns to the surviving time scale of each term
[27–29].

We can show that, under some assumptions, the unknown
transient field VT appearing in the third term of the left-hand
side of Eq. (15) does not contribute to determine the effective
Hamiltonian HA [26]. Therefore, roughly speaking, the A
part fA is obtained as the asymptotic solution to the reduced
equation

∂tf + {HA,f } = 0. (16)

Temporal evolution of f is, hence, obtained as

f (q,p,t) = fI(q−t ,p−t ), (17)

where (qt ,pt ) is the orbit of the Hamiltonian dynamics
governed by HA with the initial condition (q,p). Abel’s

A
B A

B

FIG. 1. (Color online) Schematic picture for the rearrangement
formula (19) in the HMF model. The left panel shows μ space, and
dotted and solid lines represent contours of fI and fA respectively. The
right panel shows θ dependence of distribution functions, where the
angle variable θ is defined by the asymptotic effective Hamiltonian
HA, and the red solid line marked by A corresponds to the red solid
contour A of the left panel. Along the contour, the initial state fI

depends on the angle θ as described by the red dotted line in the right
panel. The blue solid contour marked by B is another example. For the
two examples A and B, the positive p axis corresponds to θ = 0. In
this schematic picture fI is assumed to be spatially homogeneous and
a decreasing function of energy, though the rearrangement formula is
also applicable to a spatially inhomogeneous fI.

formula (11) gives

fA(q,p) = lim
T →∞

1

T

∫ T

0
fI(q−t ,p−t )dt, (18)

and this is the time average of fI along the orbit of the
integrable Hamiltonian system HA. Thus, introducing the
angle-action variables (θ,J ) associated with HA, which is
written as a function of J only as HA(J ), the ergodiclike
formula replaces the time average of Eq. (18) with the iso-J
average

fA = 1

2π

∫ π

−π

fI(q(θ,J ),p(θ,J ))dθ = 〈fI〉HA
. (19)

This expression (19) is the rearrangement formula, which
we will discuss. The concrete forms of (θ,J ) and 〈•〉HA

are
exhibited in Appendix A with another equivalent practical
expression of the average.

An illustrative presentation of the rearrangement formula
(19) is to redistribute the height of the initial state fI

uniformly on each contour of the asymptotic Hamiltonian HA

as described in Fig. 1. This procedure is consistent with the
Jeans theorem [39] for constructing a stationary state, since
the resulting state is constant on each contour of HA. We
note that neither the asymptotic state fA nor Hamiltonian HA

are still known, since both sides of the formula (19) depend on
the asymptotic state. We have to determine the asymptotic
state as it satisfies the self-consistent equation, and the
determination will be done in Sec. III B for the HMF model.

It might be worth noting the similarity between the
rearrangement formula and Lynden-Bell’s theory. In the latter,
we consider a waterbag initial state and divide the phase space
into small phase space elements. Due to incompressibility
of the Vlasov flow, the phase space elements are exclusive,
and hence we redistribute them to phase space as maximizing
the Fermi-Dirac like entropy with keeping the invariants of
mass, momentum, and energy. In the former, we redistribute
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the phase space elements as Lynden-Bell’s theory, but the
redistribution is performed on each iso-J contour.

B. Application to the Hamiltonian mean-field model

From symmetry of the system, we may assume that
My = 0. We determine the asymptotic Hamiltonian without
the external field,

HA = p2/2 − MA cos q, (20)

by solving the self-consistent equation

MA =
∫∫

cos q〈fI〉HA
dqdp =

∫∫
〈cos q〉HA

fIdqdp. (21)

In the last equality we used the fact that dqdp = dθdJ . The
self-consistent equation (21) always has the solution of MA =
0 corresponding to the strong Landau damping case, but we
skip this trivial solution. The nonzero solution of MA, solved
numerically, is the theoretical prediction to be examined in Sec.
IV. Before going to numerical tests, we observe theoretically
obtained approximate solutions to the self-consistent equation
by expanding the self-consistent equation (21) with respect to
small MA [26]. The expansion leads to

A[fI]M
1/2
A + D[fI]MA + B[fI]M

3/2
A = O

(
M

7/4
A

)
, (22)

where the functional D is defined as

D[f ] = 1 + 1

2

∫∫
∂pf (q,p)

p
dqdp, (23)

which coincides with the dispersion function with zero
frequency when f does not depend on q. For simplicity again,
we assume that the initial perturbation gI = g(q,p,0) is even
with respect to both q and p, and can be expanded into the
Fourier series as

gI(q,p) =
∑
n�1

g̃I(n,p) cos(nq). (24)

We note that, in this case, the contribution of the transient
field VT to the asymptotic state is shown to vanish without
approximation (16). See Appendix B for details. Then, the
functional D[fI] is reduced to D[fS], and the functionals A

and B are expressed by

A[fI] = −
∑
n�1

g̃I(n,0)Cn (25)

and

B[fI] = −f ′′
S (0)C1 + O

(
εM

3/2
A

)
, (26)

where

Cn = M
−1/2
A

∫∫
cos(nq)〈cos q〉HA

dqdp. (27)

We remark that Cn does not depend on MA due to the scaling
of 〈cos q〉HA

, and the constant values are numerically obtained
as

C0 = 0, C1 	 5.169, C2 	 0.5360, C3 	 −0.1043.

(28)

Neglecting O(M7/4
A ) terms in Eq. (22), we have the solutions

as

√
MA = 0,

√
D2 − 4AB − D

2B
, (29)

where the second solution exists if and only if it is non-
negative.

IV. NUMERICAL TESTS OF THE REARRANGEMENT
FORMULA

A. Two conditions to be tested

The rearrangement formula (19) predicts the asymptotic
value of order parameter MA as the solutions to the self-
consistent equation (21), or as approximation (29). The zero
solution corresponds to the strong Landau damping case,
and hence the nonzero solution, in which we are interested,
might be realized with the no Landau damping condition.
However, validity of this expectation is still not clear since
the rearrangement formula was successfully tested for initial
waterbag states satisfying the generalized virial condition
[22–24]. Then, we will make competition between the no
Landau damping condition and a virial condition in Sec. IV B,
and will clarify that the former is more relevant in our setting.

The other condition comes from the Casimir invariants of
the Vlasov equation (2), where the invariants are functionals
of the form

S[f ] =
∫∫

s(f )dqdp, s : C1 function. (30)

The rearrangement formula keeps all the Casimirs up to the
linear order. This fact is shown from the expansion

S[fI] − S[fA] =
∫∫

s ′(fA)δf dθdJ + O((δf )2) = O((δf )2),

(31)
where δf = fI − fA. The part of s ′(fA) depends on J only,
and 〈δf 〉HA

= 0 from 〈fI〉HA
= fA. We again note that the

angle-action variables (θ,J ) associate with the asymptotic
Hamiltonian HA. The invariance, however, does not hold in
higher orders. Indeed, for the Casimir

S2[f ] =
∫∫

f 2dqdp =
∫∫

f 2dθdJ, (32)

we have the discrepancy as

S2[fI] − S2[fA] =
∫∫

〈(δf )2〉HAdqdp, (33)

which is not zero in general. Therefore, the rearrangement
formula may prefer initial states with which the Casimir is not
greatly modified.

The above two conditions are examined by performing
systematic numerical simulations of the Vlasov equation (2).
We use the second-order semi-Lagrangian scheme [40] with
the cubic B spline interpolations in each step. Throughout
this article we use the truncated single-particle phase space
(−π,π ] × [−4,4] and the time slice �t = 0.05. Asymptotic
values are computed by taking averages over the time interval
[500,1000] if no comment appears. The phase space is divided
into the grid of size G × G, which is called the grid size G.

042131-4



CONDITIONS FOR PREDICTING QUASISTATIONARY . . . PHYSICAL REVIEW E 92, 042131 (2015)

In this section, we consider the HMF model without external
field as in the previous section, and observe Mx = Mx[f ].

B. The no Landau damping condition

The generalized virial condition represents quasistation-
arity of a given waterbag initial state [18], and it is not
straightforward to apply it for other initial states. On the other
hand, the proper virial condition is not useful for spatially
periodic systems. Thus, for making competition with the no
Landau damping condition, we introduce another type of virial
condition with keeping the meaning of quasistationarity.

The proper virial condition is derived by differentiating
P (t) = ∑N

j=1 pjqj/N and taking the long-time average. The
periodic boundary condition of the HMF model suggests to
consider Q(t) = ∑N

j=1 pjϕ(qj )/N , where ϕ is an arbitrary
smooth periodic function. Taking the limit N → ∞, we re-
place the arithmetic mean with the average over the distribution
function f . If fI is stationary, we have the relation〈

p2 dϕ

dq
(q) − ϕ(q)

dV[fI]

dq
(q)

〉
I

= 0, (34)

where 〈•〉I = ∫∫ •fIdqdp. Hereafter we put ϕ(q) = sin q

which gives 〈
p2 cos q − sin q

dV[fI]

dq
(q)

〉
I

= 0. (35)

We refer to Eq. (35) as the periodic virial condition. We
note that the above condition is equivalent with M̈x(0) = 0,
and Ṁx(0) = 0 is also satisfied for even fI with respect to
p. These vanishing derivatives imply that the periodic virial
condition represents quasistationarity in a short-time interval.
The condition (35) will be compared with the no Landau
damping condition, which is explicitly written as

D[fS] = 0 (36)

since positive, negative, and vanishing D imply that fS is
stable, unstable, and marginal respectively.

For the competition, we prepare a family of initial states as

fI(q,p; T0,T1) = fMB(p; T0) + εfMB(p; T1) cos q, (37)

where fMB denotes the Maxwell-Boltzmann distribution

fMB(p; T ) = 1

2π
√

2πT
e−p2/2T . (38)

The unperturbed part gives

D[fMB] = 1 − 1

2T0
, (39)

and the no Landau damping condition D = 0 is realized at
the critical temperature T0 = Tc = 1/2 of the second order
phase transition [35,36]. The Maxwell-Boltzmann distribution
is stable for T > Tc. On the other hand, the periodic virial
condition (35) is realized at T1 = Tc = 1/2. The family (37),
therefore, can exclusively satisfy one of the two conditions as
follows:

Case 1. fI(q,p; Tc,T ) with T > Tc: The unperturbed term
fMB(p; Tc) satisfies the no Landau damping condition (36),
but fI breaks the periodic virial condition (35).

-0.02

-0.01

0
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0.02
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0.05

0.06

0.07

0.5 0.6 0.7 0.8 0.9 1

M
x

T

T1 = 0.5
T2 = 0.5

FIG. 2. (Color online) Asymptotic values of Mx for the initial
distributions (37). The red squares are for Case 1, and the green
circles are for Case 2. The open and filled symbols are computed
with the grid sizes G = 256 and 512 respectively. ε = 0.1. The red
solid and the green dashed lines are from the approximated theory
(29) for Case 1 and Case 2 respectively.

Case 2. fI(q,p; T ,Tc) with T > Tc: fI satisfies the periodic
virial condition (35), but the unperturbed term fMB(p; T )
breaks the no Landau damping condition (36).

As shown in Fig. 2, the rearrangement formula gives precise
prediction in Case 1 for all T > Tc and in Case 2 for T close
to Tc. In Case 2, the agreement between the rearrangement
formula and numerics becomes worse as T increases, that is,
the Landau damping rate gets larger, though the periodic virial
condition holds. From the numerical observation, we conclude
that the no Landau damping condition is more relevant than the
periodic virial condition for the perturbed Maxwell-Boltzmann
states (37).

C. Casimir invariance

The previous work [26] uses the initial perturbation gI

having only the first Fourier mode with respect to the position
q [see Eq. (24)], and shows that the rearrangement formula
gives precise predictions at the critical point even for rather
large perturbation. However, any Fourier modes can contribute
to the asymptotic value of order parameter MA through mode
couplings. We will reveal that initial perturbation is also
restrictive by adding the second Fourier mode to it, and
will qualitatively explain discrepancy between the theory and
numerics from the viewpoint of the Casimir invariance.

We prepare the initial state as

fI(q,p) = fMB(p; Tc)
2∑

k=0

εk cos kq, (40)

where ε0 = 1. We call the term εk cos kq the kth mode. We set
the stationary state as fS(p) = fMB(p; Tc) for an independent
test of the no Landau damping condition. The first mode is
included to escape from Mx = 0.

For a fixed value of ε1 = 0.1, we show ε2 dependence of
Mx in Fig. 3. The theoretical prediction is in good agreement
with numerics for small |ε2|, but discrepancy tends to grow
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FIG. 3. (Color online) ε2 dependence of Mx with the fixed ε1 =
0.1 for the initial state (40). The red solid line represents the full
theory (21), the orange dashed line is approximated theory (29), and
points are from numerics. The sizes of grid are G = 128 (purple
triangles), 256 (light blue circles), and 512 (blue squares).

for large |ε2|. Moreover, in the large ε2 region, the theoretical
prediction is smaller than numerics, while the Landau damping
mechanism provides the inverse result. Existence of the
second mode is, therefore, an independent mechanism to yield
discrepancy between the theory and numerics. We remark that
there is a nonregular dependence on ε2 around ε2 	 −0.08,
but the mechanism of this dependence is not clear yet.

Looking at Fig. 3, we expect that |ε2| must be much smaller
than |ε1|. The above expectation is confirmed by varying
ε1 for a fixed value of ε2 = 0.01. Values of the asymptotic
magnetization Mx are reported in Fig. 4 with the relative error
defined by

R = Mnumerics − Mtheory

Mtheory
, (41)

where Mtheory and Mnumerics are respectively obtained theoreti-
cally (21) and numerically. In the large ε1 region, the minus of
relative error grows as ε1 gets large. This growth of the relative
error of O(ε2

1 ) might be rather natural since we omitted O(ε2)
terms in Eq. (15). Interesting observations are that the relative
error changes the sign around the minimum point, and grows
even as ε1 decreases.

Let us discuss the mechanism of the ε1 dependence of the
relative error from the viewpoint of invariance of the Casimir
S2 (32). The initial value of S2 is computed as

S2[fI] =
∫∫

fI(q,p)2dqdp = 1

4π
√

πTc

(
1 + ε2

1

2
+ ε2

2

2

)
.

(42)

On the other hand, under some phenomenological assump-
tions, we approximate S2[fA] as

S2[fA] 	 1

4π
√

πTc

(
1 + ε2

1

2
+ 2c2ε1ε2 + c2

2ε
2
2

)
, (43)

where c2 = C2/C1 	 0.1 from the values of C1 and C2,
(28). See Appendix C for deriving the approximation (43).
Comparing the asymptotic value (43) with the initial value

0.001

0.01

0.1

1

11.010.0

M
x
,
R

,
−

R

1

Grid 256
Grid 512

FIG. 4. (Color online) ε1 dependence of Mx with the fixed ε2 =
0.01 for the initial state (40). The solid red line represents the full
theory (21), the orange dashed line is the approximated theory (29),
and filled points are from numerics. The grid sizes are G = 256 (light
blue circles) and 512 (blue squares). Open symbols represent relative
errors with the full theory: R for G = 256 (light blue circles) and 512
(blue squares), and −R for G = 256 (pink triangles) and 512 (purple
inverse triangles). The black solid line is a guide for eyes, and has
slope 2.

(42), we find that invariance of the Casimir S2 is realized for
ε2 satisfying

ε2
2 = 4c2ε1ε2 + 2c2

2ε
2
2 , (44)

which is approximately solved by

ε2 	 4c2ε1 	 0.4ε1. (45)

The relation (45) qualitatively explains the minimum point of
the relative error in Fig. 4.

The estimation of S2[fA], (43), also qualitatively explains
underestimation by the theory for large ε2/ε1. Suppose ε2 	
ε1. In this case S2[fI] is larger than S2[fA] due to the factor
c2 = C2/C1 	 0.1. In the full Vlasov system, S2 is conserved
and hence the lost part S2[fI] − S2[fA] must be covered by,
for instance, increasing amplitude of the first Fourier mode
relating to MA. Then, underestimation by the theory possibly
occurs.

V. RESPONSE THEORY TO THE EXTERNAL FIELD

We have dealt with the HMF model without external field
in Secs. III and IV. In this section, we consider the response
to the nonzero external field and the critical exponents γ± and
δ defined as

MA − MI ∝ |T − Tc|−γ±h, MA ∝ h1/δ (46)

in the limit of h → 0, where h is the strength of the external
field, MI is the initial order parameter, and γ+ and γ− are
defined in high- and low-temperature sides respectively. We
note that the considering family of states may be thermal
equilibrium states or QSSs, and a certain parameter plays the
role of temperature in the latter QSS case. The rearrangement
formula gives γ+ = 1 and the nonclassical exponents of
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γ− = 1/4 [33] and δ = 3/2 [26] in a wide class of one-
dimensional Vlasov dynamics with the periodic boundary
condition [34], while statistical mechanics gives γ+ = γ− = 1
and δ = 3.

We numerically found that the rearrangement formula
requires two conditions to be satisfied: One is the no Landau
damping condition and the other comes from the Casimir
invariance. These conditions restrict applicable initial states for
the rearrangement formula. However, the conditions reinforce
validity of use of the rearrangement formula as the response
theory to the external field, which turns on at the initial time and
goes to be constant asymptotically, since this setting satisfies
both the conditions as discussed in the following.

Performing the Laplace transform of the external field we
get a pole at the origin of the Laplace space (the complex
frequency plane), and the pole provides the asymptotically
surviving response [41,42]. We hence conjecture that this
pole effectively restores the no Landau damping condition
even if the unperturbed stationary state breaks the condition.
Moreover, for the critical exponents, the interesting reference
states are close to the critical state which satisfies the no Landau
damping condition.

It is not hard to see that the second condition, the Casimir
invariance, is satisfied for small h. As shown in Eq. (31),
invariance of all the Casimirs is satisfied by the rearrangement
theory up to the linear order. The critical exponents are defined
in the limit of small external field, and hence the Casimir
invariance is not an obstacle for computing them.

VI. SUMMARY AND DISCUSSIONS

We discussed conditions to use the rearrangement formula
around spatially homogeneous stable stationary states in the
HMF model, and numerically derived two conditions: One
is for the stable stationary reference state, and the other is
for the whole initial state. The former is the no Landau
damping condition, which was previously suggested [26]. We
compared this condition with a virial condition, which we
called the periodic virial condition, and numerically clarified
that the no Landau damping condition is more crucial than
the periodic virial condition. The latter comes from the
Casimir invariance: The theory prefers initial perturbed states
which keep the Casimirs well. Breaking the former and
the latter, theoretical predictions tend to overestimate and
underestimate respectively, and hence we may conclude that
the two conditions are independent.

Due to the conditions, the rearrangement formula is
restrictive for using as a nonequilibrium statistical mechanics.
Nevertheless, the theory is useful as a response theory to the
external field saturating to a small constant asymptotically,
since the conditions are satisfied in such a situation. In
particular, the conditions validate to compute the critical
exponents in the use of the rearrangement formula.

Another important benefit of the present work is that the
conditions suggest a direction for improving the rearrangement
formula: The theory could be improved by inputting the
Landau damping and the Casimir invariants. For instance, we
expect that nonlinear trapping plays an important role to form
a magnetized asymptotic state, and an improved theory may
be derived by considering the competition between the linear

Landau damping and the nonlinear trapping as discussed for
forming traveling small clusters [37]. Such an improvement is
interesting and worthwhile for constructing a nonequilibrium
statistical mechanics, but remains as a future work.

A similar formula with the rearrangement formula has been
also derived by de Buyl et al. [43] for a small system of
O(ε) contacting with a huge bath of O(1) through long-range
interactions. In this setting, magnetization in the huge bath
plays the role of external field for the system, and the
rearrangement formula possibly provides good predictions as
discussed in the present article, if the bath is huge enough and
static accordingly. We remark that the system is driven by the
bath magnetization only, and no self-consistent condition is
needed for the system magnetization, since the latter is small
enough and can be omitted.

This article dealt with the HMF model only, but, from
the physical mechanism leading the two conditions, one may
expect that generic systems having long-range interactions
share the two conditions. Examinations for several systems
remain to be done. We discussed initial states around stable
stationary states, but the rearrangement formula has been
successfully used in three-dimensional self-gravitating sys-
tems with waterbag initial conditions, which satisfy the virial
condition [25]. It also remains to reveal a relation between the
two types of initial states, which are perturbed stable stationary
states and waterbag states.

We end this article by mentioning the discussion on para-
metric resonance for initial states which are neither perturbed
stable stationary states nor waterbag states satisfying the virial
condition [25]. We have discussed the discrepancy induced
with the higher Fourier modes based on the Casimir invariants.
On the other hand, there is another explanation based on the
parametric resonance induced by the higher moments [25].
Clarifying the relation between the two explanations remains
for a future work.
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APPENDIX A: EXPLICIT FORM OF 〈•〉HA

The angle-action variables (θ,J ) are obtained by

θ = ∂W

∂J
(q,J ), J = 1

2π

∮
pdq, (A1)

where the integral is performed along a periodic orbit, and the
generating function W is

W (q,J ) =
∫ q

0
p(q ′,J )dq ′. (A2)

To express these variables for the asymptotic effective Hamil-
tonian system

HA = p2

2
− MA cos q, (A3)
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we use the variable k defined as

k ≡
√
HA + MA

2MA
, (A4)

and the Legendre elliptic integrals of the first and the second
kinds respectively defined by

F (φ,k) =
∫ φ

0

dx√
1 − k2 sin2 x

,

E(φ,k) =
∫ φ

0

√
1 − k2 sin2 xdx.

(A5)

These integrals induce the complete elliptic integrals of the
first and the second kinds respectively defined as

K(k) = F (π/2,k), E(k) = E(π/2,k). (A6)

The action and the angle variables are then expressed in the
forms

J =
{

8
√

MA

π
[E(k) − (1 − k2)K(k)], k < 1,

4
√

MAk

π
E(1/k), k > 1,

(A7)

and

θ =

⎧⎪⎨
⎪⎩

π
2 F (Q,k)/K(k), p � 0, k < 1,

π
2 [2 − F (Q,k)/K(k)], p < 0, k < 1,

πsgn(p)F (Q,1/k)/K(1/k), k > 1,

(A8)
where Q is defined as k sin Q = sin(q/2) for k < 1 and as
Q = q/2 for k > 1. See Ref. [44] for details.

Using the variable transforms from θ to Q, for an observable
B(q,p) even with respect to p, we can write the average of
B(q,p) over an iso-HA curve as

〈B〉HA
=

⎧⎪⎨
⎪⎩

1
2K(k)

∫ π/2
−π/2

B(q,p)√
1−k2 sin2 Q

dQ, k < 1,

1
2K(1/k)

∫ π/2
−π/2

B(q,p)√
1−k−2 sin2 Q

dQ, k > 1,
(A9)

where B(q,p) must be transformed to a function of (Q,k). The
average 〈B〉HA

is obtained as a function of k.
For a Hamiltonian system H(q,p), there is another expres-

sion of the average over isoenergy curves as

〈B〉δ =
∫∫

δ(H(q,p) − E)B(q,p)dqdp∫∫
δ(H(q,p) − E)dqdp

. (A10)

This expression has been applied to the HMF model [23,24]
and to the three-dimensional self-gravitating system [25]. We
can show the equality 〈B〉H = 〈B〉δ for the one-dimensional
case in each region of phase space where we can construct the
inverse function of the Hamiltonian H(J ). Using the relation
dqdp = dθdJ , and the variable change x = H(J ), we can
modify 〈B〉δ as

〈B〉δ =
∫∫

δ(x − E)B(θ,H−1(x))dθ dx
�(H−1(x))∫∫

δ(x − E)dθ dx
�(H−1(x))

= 1

2π

∫
B(θ,H−1(E))dθ = 〈B〉H, (A11)

where �(J ) = (dH/dJ )(J ), we used the fact that �(J ) > 0
except for J corresponding to the separatrix, and we denoted

the observable B as B(θ,J ) even in the angle-action coordinate
for simplicity of notation. The expression 〈B〉δ might be useful
when deriving the angle-action variables is hard.

APPENDIX B: DERIVATION OF THE REARRANGEMENT
FORMULA WITHOUT OMITTING THE TERM

INCLUDING T FIELD VT

Precisely, the asymptotic part fA is constructed by the two
terms of so-called the O’Neil term fO and the Landau term fL

defined by

fO = e−t{HA,•}fI,

fL = −
∫ t

0
e−(t−s){HA,•}{VT(s),fI}ds,

(B1)

respectively [28,29]. By use of them, the solution to the T-
linearized equation (15) indeed is written as fTL(q,p,t) =
fO(q,p,t) + εfL(q,p,t). The O’Neil term gives the expression
〈fI〉HA

in the limit t → ∞. The Landau term comes from the
neglected term of ε{VT,fI} [see Eq. (15)], and is neglected
since it has no contribution to the asymptotic Hamiltonian HA

[26]. Meanwhile, it has not been shown whether or not the
contribution of the Landau term to the asymptotic distribution
vanishes. We show that the Landau term completely vanishes
in the limit of t → ∞, when the initial state fI(q,p) is even
with respect to both q and p, that is, fI(q,p) = fI(−q,p) =
fI(−q, − p) = fI(q, − p). The initial conditions dealt with in
this article have this symmetry.

Let us show f (q,p,t) = f (−q, − p,t) for t � 0 if
fI(q,p) = fI(−q, − p) at initial. Changing variables by
(q,p) → (−q, − p), it is easy to show that f (−q, − p,t) is
also a solution to the Vlasov equation with the initial condition
fI(q,p). It is, then, shown that f (q,p,t) = f (−q, − p,t),
due to the existence and uniqueness of solution to the Vasov
equation [9]. The fact My[f ](t) = 0 is immediately shown,
and it is reasonable to consider that the asymptotic Hamiltonian
can be given in the form

HA(q,p) = p2/2 − MA cos q, (B2)

which says My[fA] = 0. Thus, the definition of the transient
part gT [Eq. (10)], induces that My[gT](t) = 0.

The asymptotic form of the Landau term is written in the
form

lim
t→∞ fL =

〈
sin q

∂fI

∂p

〉
HA

∫ ∞

0
Mx[gT](t)dt

−
〈
cos q

∂fI

∂p

〉
HA

∫ ∞

0
My[gT](t)dt. (B3)

The symmetry for q → −q of fI and of HA vanishes
in the first term of the right-hand side, and the fact that
My[gT](t) = 0 eliminates the second. We, therefore, conclude
limt→∞ fL = 0. This procedure can be applied to more general
one-dimensional periodic systems than we have dealt with
finite number of Fourier modes in Ref. [34].

APPENDIX C: ASYMPTOTIC VALUE OF THE CASIMIR S2

The Jeans theorem [39] states that a state is stationary if and
only if it depends on (q,p) solely through the first integrals, in
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our case, the effective Hamiltonian. The asymptotic stationary
state is, therefore, expressed as

fA(q,p) = FA(p2/2 − MA cos q). (C1)

Now MA is assumed to be small and we further assume that
FA accepts the Taylor expansion

FA(p2/2 − MA cos q) = FA(p2/2) − MA cos qF ′
A(p2/2)

+ M2
A

2
cos2 qF ′′

A(p2/2) + · · · .

(C2)

The validity of this assumption is not obvious due to the
averaging procedure fA = 〈fI〉HA which makes a cusp for
the function 〈cos q〉HA at the separatrix energy [26] for
instance. However, it helps us to discuss the Casimir S2

qualitatively.
We assume that FA(p2/2) is close to the unperturbed

Maxwell-Boltzmann distribution fMB(p; Tc) = FMB(p2/2),
where FMB(E) ∝ e−E/Tc , and write it as

FA(p2/2) = FMB(p2/2) + εG(p2/2) (C3)

with a small parameter ε of O(ε1) or O(ε2). Remembering that
MA is of O(ε), omitting O(ε3) and using F ′

MB = −FMB/Tc,
we have

fA 	
(

1 + M2
A

4T 2
c

)
FMB + εG +

(
MA

Tc
FMB − εMAG′

)
cos q

+ M2
A

4T 2
c

FMB cos 2q. (C4)

Straightforward computations give

S2[fA] 	 1

4π
√

πTc

(
1 + M2

A

T 2
c

+ 2ε

∫
FMBGdp∫
F 2

MBdp

+ ε2

∫
G2dp∫
F 2

MBdp

)
(C5)

by omitting O(ε3). Introducing c2 = C2/C1 and remembering
that

MA = −A

B
= Tc(ε1 + c2ε2 + · · · ) (C6)

at the critical point Tc from Eqs. (25), (26), and (29), the
asymptotic value is rewritten as

S2[fA] 	 1

4π
√

πTc

(
1 + (ε1 + c2ε2)2

2

)
+ 1

4π
√

πTc

×
(

(ε1 + c2ε2)2

2
+ 2ε

∫
FMBGdp∫
F 2

MBdp
+ ε2

∫
G2dp∫
F 2

MBdp

)
.

(C7)

It has been numerically reported that the rearrangement
formula gives precise predictions for ε2 = 0 [26]. Thus,
comparing (C7) with (42), we assume that the equality

ε2
1 + 4ε

∫
FMBGdp∫
F 2

MBdp
+ 2ε2

∫
G2dp∫
F 2

MBdp
= O(ε3) (C8)

holds for ε2 = 0 and for small ε2. This assumption induces the
asymptotic value of Eq. (43).
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