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The concept of a nonequilibrium interfacial tension, defined via the work required to deform a system such that
the interfacial area is changed while the volume is conserved, is investigated theoretically in the context of the
relaxation of an initial perturbation of a colloidal fluid towards the equilibrium state. The corresponding general
formalism is derived for systems with planar symmetry and applied to fluid models of colloidal suspensions and
polymer solutions. It is shown that the nonequilibrium interfacial tension is not necessarily positive, that negative
nonequilibrium interfacial tensions are consistent with strictly positive equilibrium interfacial tensions, and that
the sign of the interfacial tension can influence the morphology of density perturbations during relaxation.
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I. INTRODUCTION

The equilibrium interfacial tension between two coexisting
fluid phases is a well established concept of enormous rele-
vance to numerous research areas such as capillarity, wetting,
the morphology of drops and bubbles, interface dynamics, and
the adsorption of surfactant molecules or colloidal particles at
interfaces [1,2]. It is well known that the equilibrium interfacial
tension can be equivalently viewed either mechanically in
terms of the difference of the normal and the transversal
pressure tensor components or thermodynamically via the
work required to reversibly deform a system in such a way
that the interfacial area is changed while the system volume
is preserved [3]. Both interpretations require the notion of
the position of the interface, i.e., of the nonuniform part of
the system, which can be defined via the concept of a Gibbs
dividing interface [3]. However, it can be shown that the value
of the equilibrium interfacial tension between two fluid phases
is independent of the choice of the Gibbs dividing interface
[3].

In contrast, the general concept of an interfacial tension
in nonequilibrium situations, e.g., a nonequilibrium interface
between two coexisting equilibrium bulk phases or an interface
between two bulk phases not at coexistence with each other,
has not been uniquely established yet. Several attempts have
been made to extend the notion of an interfacial tension to
nonequilibrium systems in order to interpret dynamic phe-
nomena at interfaces [4,5]. The approaches range from time-
resolved interfacial tension measurements [6] via integrations
of the Gibbs equation [7–10] to capillary wave analyses [11].
The overall assumption underlying all these nonequilibrium
interfacial tensions is that of a sufficiently weakly perturbed
equilibrium interface. In fact, it has been shown recently
that the interfacial structure between two fluid bulk phases
not in thermodynamic equilibrium with each other converges
rapidly towards that of the equilibrium interface between the
two coexisting bulk phases at the same temperature [12].
Hence, different notions of dynamic interfacial tensions can
be expected to coincide quantitatively provided they do so
for equilibrium interfaces. However, unlike for equilibrium
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interfaces, the value of the nonequilibrium interfacial tension
depends on the choice of the Gibbs dividing interface [13].

It is well known that the interfacial tension of equilibrium
fluid-fluid interfaces is strictly positive because otherwise the
interface would be unstable with respect to capillary wave
fluctuations. The aim of the present work is to demonstrate that
this is not necessarily the case for nonequilibrium interfacial
tensions. To that end, the relaxation of an initial nonuniformity
of a fluid deep inside the one-phase region of the phase diagram
is considered. Under these conditions the equilibrium state
is uniform, i.e., no equilibrium interface exists. Therefore,
the initial non-uniformity, i.e., the interface, is a purely
nonequilibrium structure, which ultimately vanishes during
relaxation towards equilibrium.

The present analysis is based on the notion of a nonequilib-
rium interfacial tension similar to the thermodynamic defini-
tion related to the work of reversible isochoric deformations. It
has been shown in Ref. [12] that this notion of a nonequilibrium
interfacial tension is not only consistent with the equilibrium
interfacial tension but also useful in the context of interfaces
between phases separated by a fluid-fluid phase transition.
In order to avoid the difficulty due to the dependence of the
nonequilibrium interfacial tension on the choice of the Gibbs
dividing interface, setups are considered for which the cross
sections of the system perpendicular to one spatial direction
(z axis) are all congruent. For such setups the number density
profiles of the fluid vary only along the z axis and the interfacial
area equals the area of any of the congruent cross sections.
Then locating the interface position is not necessary.

In order to apply the definition of the nonequilibrium
interfacial tension as the work due to a reversible isochoric
deformation in practice, the deformation has to be performed
faster than the relaxation of the fluid under consideration.
However, this is not possible in practice for simple fluids,
since deformations have to be induced by deformations of the
container walls, from where they propagate into the fluid via
particle-particle interactions. Hence reversible deformations
of a simple fluid cannot be achieved on time scales faster than
the relaxations.

One way out of this dilemma is to consider fluids of
colloidal particles which are dispersed in a molecular solvent.
In that situation, deformations of the container walls induce
deformations of the molecular solvent which propagate on time
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scales much shorter than the relaxation time of the colloids.
Hence the solvent is the tool that exerts the force generated
by the container walls onto the colloidal particles, which are
considered as the fluid to be studied.

The general formalism used in this work is derived in
Sec. II. First some notations to model colloidal suspensions
are introduced in Sec. II A. The nonequilibrium properties
as well as the interfacial structures of colloidal fluids can
be described simultaneously within dynamic density func-
tional theory (DDFT) [14–19], the relevant concepts of
which are summarized in Sec. II B. The expression of the
interfacial tension as a functional of the interfacial density
profile is derived in detail in Sec. II C. The evaluation of
the interfacial tension for temporally evolving density profiles
obtained within DDFT leads to the time dependence of the
interfacial tension in Sec. II D. The the application of the
general formalism of Sec. II is illustrated in Sec. III for three
realistic fluid models, all of which exhibit negative values of
the nonequilibrium interfacial tension. Conclusions from the
possibility of negative nonequilibrium interfacial tensions and
the property of strictly positive equilibrium interfacial tensions
are drawn in Sec. IV.

II. GENERAL FORMALISM

A. Colloidal suspensions

Consider a three-dimensional monodisperse suspension of
colloidal particles which interact amongst each other via an
isotropic pair potential U (r),r = |r1 − r2|. The temperature T

and the mean number density �̄ of colloidal particles are chosen
such that in the absence of an external field the equilibrium
state of the system is that of a uniform isotropic fluid well
inside a one-phase region of the phase diagram.

The fluid structure of that uniform equilibrium state is given
by the isotropic direct correlation function c̄(r) := c(r,�̄),r =
|r1 − r2|. It can be shown very generally that if U (r) decays
to zero for r → ∞ faster than some power law ∼ r−s ,s >

5, i.e., if there exists some s > 5 with lim
r→∞ rsU (r) = 0, the

three-dimensional Fourier transform of c̄(r) is given bŷ̄c(q) = ̂̄c0 +̂̄c2q
2 + R(q) (1)

with q = |q| and with R(q) decaying to zero for q → 0
faster than q2; the derivative R′(q) of R(q) with respect
to q turns out to decay to zero for q → 0 faster than q.
The situation just described covers practically all cases of
isotropically interacting colloids, e.g., nonretarded dispersion
forces in dense suspensions, retarded dispersion forces in
dilute suspensions, orientationally averaged magnetic dipole
interaction, as well as pure screened Coulomb interaction for
suspensions with the index of refraction of the solvent being
matched to that of the colloids.

At time t < 0 a static external field is applied to the
colloidal suspension giving rise to a nonuniform equilibrium
number density profile �0(r) with mean number density �̄ =

1
|V |

∫
V

d3r �0(r). At time t = 0 the external field is switched
off leaving the colloidal suspension in a nonequilibrium
state, which relaxes for t → ∞ towards the equilibrium state
with the uniform number density �̄. In the following the
temporal evolution of the nonequilibrium state of the colloidal

suspension is investigated in terms of the time-dependent
number density profile �(r,t), which at time t = 0 is given
by �(r,0) = �0(r) and which attains the long-time limit
lim
t→∞ �(r,t) = �̄. The deviation of the number density �(r,t)

from its long-time limit �̄ is denoted as φ(r,t) := �(r,t) − �̄,
which decays to zero in the long-time limit: lim

t→∞ φ(r,t) = 0.

B. Dynamic density functional theory

The relaxation of colloidal suspensions can be described as
an overdamped conserved dynamics (model B), which can be
formulated in terms of dynamic density functional theory [15].
If the system is prepared in an arbitrary initial state �(r,t = 0),
its state �(r,t > 0) evolves with time t such that the Helmholtz
free energy F [�(t)] reaches a minimum at t → ∞.

The Helmholtz free energy density functional F [�] can be
written as

βF [�] =
∫

d3r �(r)(ln (�(r)�3) − 1) + βF ex[� − �̄] (2)

with the inverse temperature β = 1/(kBT ). The excess free
energy functional βF ex[φ] can be expanded in a functional
Taylor series in powers of φ = � − �̄, which results in the
virial expansion

βF ex[φ] =βF ex[0] − c(1)(�̄)
∫

d3r φ(r)

− 1

2

∫
d3r

∫
d3r ′ c(2)(|r−r′|,�̄)φ(r)φ(r′)+O(φ3).

(3)

The term linear in φ drops out because
∫

d3r φ(r) = 0, and
c(2)(r,�̄) = c(r,�̄) = c̄(r). Since φ(r,t) → 0 for t → ∞, the
approximation

βF ex[φ] � βF ex[0] − 1

2

∫
d3r

∫
d3r ′ c̄(|r − r′|)φ(r)φ(r′)

(4)

is applicable, at least at sufficiently late times t .
Since the colloidal processes considered in the present

work, which are described in terms of �(r,t), are much slower
than the molecular degrees of freedom, one can assume local
thermodynamic equilibrium and define the local chemical
potential [15]

βμ(r,[�(t)]) = δβF

δ�(r)
[�(t)]

= ln (�(r,t)�3) + βμex(r,[φ(t)]) (5)

with

βμex(r,[φ(t)]) = δβF ex

δφ(r)
[φ(t)]

� −
∫

d3r ′ c̄(|r − r′|)φ(r′,t). (6)

The local force −∇μ(r,[�(t)]) generates a flux [15]

j(r,[�(t)]) = βD(−∇μ(r,[�(t)]))�(r,t)

= −D

(∇�(r,t)
�(r,t)

+ ∇βμex(r,[φ(t)])
)

�(r,t)

042128-2



NONEQUILIBRIUM INTERFACIAL TENSION DURING . . . PHYSICAL REVIEW E 92, 042128 (2015)

= −D(∇�(r,t)︸ ︷︷ ︸
=∇φ(r,t)

+�̄∇βμex(r,[φ(t)])) + O(φ2)

� −D(∇φ(r,t) + �̄∇βμex(r,[φ(t)])) (7)

with the diffusion constant D. From the continuity equation of
the particle number,

∂�(r,t)
∂t

= −∇ · j(r,[�(t)]), (8)

one obtains the conserved dynamics (model B [20]) equation
of motion of φ(r,t):

∂φ(r,t)
∂t

� D(∇2φ(r,t) + �̄∇2βμex(r,[φ(t)])). (9)

For the sake of simplicity only planar density profiles
�(r,t) = �(z,t), and hence φ(r,t) = φ(z,t), are considered in
the following. Writing

φ(z,t) =:
1

2π

∫
dqz φ̂(qz,t) exp(iqzz) (10)

one obtains from Eq. (6)

βμex(z,[φ(t)]) � − 1

2π

∫
dqẑ̄c(|qz|)φ̂(qz,t) exp(iqzz) (11)

with ̂̄c(q), q = |q|, denoting the three-dimensional Fourier-
transform of c̄(r), r = |r| [see Eq. (1)]. Hence, the equation of
motion (9) for φ̂(qz,t) reads

∂φ̂(qz,t)

∂t
� −Dq2

z (1 − �̄̂̄c(|qz|))φ̂(qz,t), (12)

which is readily solved by

φ̂(qz,t) = φ̂(qz,0) exp(−Dq2
z t(1 − �̄̂̄c(|qz|)))

= φ̂(qz,0) exp

(
− Dq2

z t

S(|qz|)
)

, (13)

where

S(q) = 1

1 − �̄̂̄c(q)
(14)

is the colloidal structure factor of the uniform suspension.
Equation (13) expresses the relaxation of the Fourier mode
φ̂(qz,t) towards zero on the qz-dependent time scale

τ (|qz|) := S(|qz|)
Dq2

z

. (15)

C. Interfacial tension

Consider a system with density profiles �(r,t) = �(z,t),
i.e., φ(r,t) = φ(z,t), inside a container with all cross sections
perpendicular to the z axis being congruent of area A. The
interfacial tension is defined via the work which is required to
change the interfacial area A at constant temperature, volume,
and particle number [3]. In colloidal suspensions such a change
of the interfacial area can be achieved by deforming the
incompressible molecular solvent, which drags the colloidal
particles with it. Due to the separation of molecular and
colloidal time scales, one is able to perform this deformation,
on the one hand, sufficiently slowly in order to stay in the
regime of low Reynolds numbers to avoid dissipation due to

turbulence, and, on the other hand, sufficiently fast such that the
colloidal distribution �(z,t) is practically not evolving during
the measurement.

By slowly deforming the boundaries of the container in
a time interval of length tdeform, a flow field v(r,t) of the
solvent is induced, which fulfills the Stokes equation within
the regime of low Reynolds numbers. Here tdeform has to be
long compared to the relaxation time of the molecular solvent
(typically nanoseconds) and short compared to the relaxation
time of the colloids (at least milliseconds). Moreover, if the
velocity of the container walls is negligible compared to the
sound velocity of the solvent, no pressure gradients occur
inside the solvent so that the Stokes equation reduces to
the Laplace equation ∇2v(r,t) = 0. Complementary to the
Eulerian description of the flow in terms of the velocity v(r,t)
at position r and time t one can use the Lagrangian description
in terms of the displacement W(r,t) within the time interval t

of a fluid element originally located at position r, where both
descriptions are related by

∂W
∂t

(r,t) = v(r + W(r,t),t), W(r,0) = 0. (16)

From W(r,t) one obtains the displacement field w(r) :=
W(r,tdeform) experienced by fluid elements during the time
tdeform. This displacement field w(r) corresponds to the de-
formation map r �→ rw := r + w(r) of the three-dimensional
space (see Fig. 1). It is assumed that the container is much
larger than the colloidal particles so that w(r) is slowly varying
on colloidal length scales. Due to the incompressibility of the
solvent, i.e., ∇ · v(r,t) = 0,

∇ · w(r) = O(‖w‖2) (17)

holds for small deformations ‖w‖ → 0. Since the considered
deformations conserve the volume as well as the number
of colloidal particles of the fluid elements (see Fig. 1), the
number densities are not changed by the deformation map:
�w(rw) = �(r).

Upon deformation of φ(r) = �(r) − �̄ with the dis-
placement field w(r), the excess free energy in Eq. (4)

w→

FIG. 1. (Color online) Sketch of the effect of the displacement
field w(r) of the molecular solvent induced by a deformation of the
container walls. Dispersed colloidal particles are dragged along with
the solvent so that the volume as well as the number of contained
colloids is conserved for each fluid element (small black frame).
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leads to

βF ex[φw] − βF ex[0]

� −1

2

∫
d3rw

∫
d3r ′

w c̄(|rw − r′
w|)φw(rw)φw(r′

w)

= −1

2

∫
d3r

∫
d3r ′ c̄(|r − r′ + w(r) − w(r′)|)φ(r)φ(r′).

(18)

Writing c(2)(r) := c̄(|r|), the direct correlation function in
Eq. (18) can be expanded for small deformations:

c(2)(r − r′ + w(r) − w(r′))

= c(2)(r−r′)+[wk(r) − wk(r′)]
∂c(2)

∂rk

(r−r′) + O(‖w‖2),

(19)

where an implicit summation over the vector components k ∈
{x,y,z} is performed. Since ∂c(2)

∂rk
(r − r′) vanishes for distances

|r − r′| large compared to colloidal length scales whereas w(r)
varies smoothly on colloidal length scales, the term wk(r) −
wk(r′) in Eq. (19) can be approximated by

wk(r) − wk(r′) ≈ (r
 − r ′

)

∂wk

∂r


(
r + r′

2

)
(20)

with 
 ∈ {x,y,z}. Therefore Eq. (19) can be rewritten as

c(2)(r − r′ + w(r) − w(r′))

= c(2)(r−r′)+Bk


(
r+r′

2

)
∂c(2)

∂rk

(r−r′)(r
−r ′

)+O(‖w‖2),

(21)

where the gradient

Bk
(r) := ∂wk

∂r


(r) (22)

has been introduced. Using the relation

i(r
 − r ′

) exp[iq · (r − r′)] = ∂

∂q


exp[iq · (r − r′)] (23)

an integration by parts leads to

∂c(2)

∂rk

(r − r′)(r
 − r ′

)

=
∫

d3q

(2π )3
iqk̂ c̄(|q|)(r
 − r ′


) exp[iq · (r − r′)]

= −
∫

d3q

(2π )3

∂

∂q


(qk̂c̄(|q|)) exp[iq · (r − r′)]

= −
∫

d3q

(2π )3

(
δk
̂c̄(|q|)+qkq


|q| ̂̄c ′(|q|)
)

exp[iq · (r−r′)].

(24)

Noting Bkk(r) = ∇ · w(r) = O(‖w‖2) [see Eqs. (17) and
(22)], one obtains from Eq. (21)

c̄(|r − r′ + w(r) − w(r′)|)

= c̄(|r − r′|) −
∫

d3q

(2π )3

qkq


|q| Bk


(
r + r′

2

)̂
c̄ ′(|q|)

× exp[iq · (r − r′)] + O(‖w‖2). (25)

Using Eqs. (10) and (25) in Eq. (18) yields

βF ex[φw] = βF ex[φ] + 1

2

∫
dqz

2π

∫
dpz

2π
|qz|B̂zz(0,0,pz)

× ̂̄c ′(|qz|)φ̂
(

qz−pz

2

)
φ̂

(
− qz−pz

2

)
+ O(‖w‖2)

(26)

with B̂zz(p) being the Fourier transform of Bzz(r). Whereas
B̂zz(0,0,pz) in Eq. (26) contributes only for small wave num-
bers pz corresponding to those large length scales on which
the displacement field w(r) varies, ̂̄c ′(|qz|) contributes only
for wave numbers qz corresponding to colloidal length scales.
Consequently |pz| � |qz| holds for the dominant contributions
to the integrals in Eq. (26) so that the approximations

φ̂

(
± qz − pz

2

)
≈ φ̂(±qz) (27)

apply, thus

βF ex[φw] =βF ex[φ] + 1

2

∫
dpz

2π
B̂zz(0,0,pz)

×
∫

dqz

2π
|qz|̂̄c ′(|qz|)|φ̂(qz)|2 + O(‖w‖2).

(28)

Due to Eqs. (17) and (22), the first integral in Eq. (28),∫
dpz

2π
B̂zz(0,0,pz)

=
∫

drx

∫
dry

∂wz

∂rz

(rx,ry,0)

= −
∫

drx

∫
dry

(
∂wx

∂rx

(rx,ry,0) + ∂wy

∂ry

(rx,ry,0)

)
+ O(‖w‖2)

= −(Aw − A) + O(‖w‖2), (29)

is related to the change Aw − A of the cross-sectional area A

upon deformation of the container. This renders the value of
the full free energy equation (2) after deformation

βF [�w] =
∫

d3rw �w(rw)(ln (�w(rw)�3) − 1) + βF ex[φw]

=
∫

d3r �(r)(ln (�(r)�3) − 1) + βF ex[φw]

= βF [�] − Aw − A

4π

∫
dqz |qz|̂̄c ′(|qz|)|φ̂(qz)|2

+ O(‖w‖2). (30)

Therefore, the interfacial tension γ can be expressed as

βγ = lim
‖w‖→0

βF [�w] − βF [�]

Aw − A

= − 1

4π

∫
dqz |qz|̂̄c ′(|qz|)|φ̂(qz)|2

= − 1

2π

∫ ∞

0
dqz qẑ̄c ′(qz)|φ̂(qz)|2. (31)
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It is worth noting that this expression, according to the deriva-
tion given above, is independent of the kind of deformations of
the cross sections of the container perpendicular to the z axis,
provided the container is larger than the size of the colloids
such that the displacement field induced by a deformation of
the container walls varies slowly on colloidal length scales.

D. Time dependence of the interfacial tension

Using Eqs. (13)–(15) in Eq. (31) leads to the time-
dependence of the interfacial tension:

βγ (t) = − 1

2π

∫ ∞

0
dqz qẑ̄c ′(qz)|φ̂(qz,0)|2 exp

(
− 2t

τ (qz)

)
.

(32)

In the following the example of a steplike initial profile,

φ(z,t = 0) =
{+��/2, z < 0,

−��/2, z � 0,
(33)

with �� > 0 is considered, which leads to the initial Fourier
transform

φ̂(qz,t = 0) = i
��

qz

. (34)

For this case, Eq. (32) reads

βγ (t) = −��2

2π

∫ ∞

0
dqz

̂̄c ′(qz)

qz

exp

(
− 2t

τ (qz)

)
, (35)

which allows the determination of the time dependence of the
interfacial tension βγ (t) by means of the Fourier transform̂̄c(q) of the direct correlation function. This procedure is
exemplified in the next section for some fluid models.

The particular shape of the initial profile φ(z,t = 0), i.e.,
whether it is steplike as in Eq. (33) or smoothly varying, can be
expected to be irrelevant for the long-time asymptotic behavior
βγ (t → ∞). Using Eq. (1) in Eq. (35) leads to

βγ (t) = −��2

2π

∫ ∞

0
dqz

(
2̂c̄2 + R′(qz)

qz

)
exp

(
− 2t

τ (qz)

)
.

(36)

Due to the exponential factor in the integrand, only wave num-
bers qz with 2t/τ (qz) � 1 contribute significantly to βγ (t).
Hence the long-time asymptotics βγ (t → ∞) is governed by
wave numbers qz corresponding to large time scales τ (qz).
Since inside the one-phase regions of the phase diagram
0 � S(q) � S(qmax) < ∞ holds for all q ∈ [0,∞), the time
scale τ (qz) defined in Eq. (15) is large only for small wave
numbers qz → 0. For qz → 0 the limiting behavior

|2̂c̄2| 
∣∣∣∣R′(qz)

qz

∣∣∣∣ and τ (qz) � S(0)

Dq2
z

(37)

applies, which renders Eq. (36)

βγ (t → ∞) � −��2

2π

∫ ∞

0
dqz 2̂c̄2 exp

(
− 2Dt

S(0)
q2

z

)
= −̂c̄2��2

√
S(0)

8πDt
. (38)

Therefore, at long times t → ∞, the interfacial tension
βγ (t → ∞) is asymptotically proportional to the square ��2

of the density difference �� and inversely proportional to the
square root

√
t of the time t . The latter property is of course

consistent with the ultimate vanishing of the interfacial tension
due to the disappearance of the interface upon relaxation.
However, the most interesting feature is that βγ (t → ∞) is
proportional to the coefficient ̂̄c2 of the small-q expansion,
Eq. (1), of the Fourier transform ̂̄c(q). Depending on the sign
of this coefficient ̂̄c2, the interfacial tension βγ (t → ∞) can
approach zero with positive or with negative values, i.e., the
relaxation of the colloidal suspension towards a uniform fluid
takes place via an interface of low or of high curvature; high
curvature interfaces typically exhibit fringes (“fingers”).

III. APPLICATIONS

In order to illustrate the general formalism derived in the
previous Sec. II, three examples of model fluids are discussed
in detail here: polymer solutions, charge-stabilized colloids,
and colloid-polymer mixtures.

A. Polymer solutions

As the most simple example consider a polymer solution
described within the Gaussian core model [21], i.e., two
polymer chains interact via the Flory-Krigbaum potential [22]

βU (r) = βU0 exp

(
− r2

2d2

)
(39)

with U0 > 0 measuring the interaction of two polymer chains
located at the same position and d corresponding to the radius
of gyration. Within the random-phase approximation (RPA)
c̄(r) = −βU (r) one obtains

̂̄c(qz) = −βU0(2π )3/2d3 exp

(
− (qzd)2

2

)
= −βU0(2π )3/2d3

(
1 − (qzd)2

2
+ O((qzd)4)

)
, (40)

hence [see Eq. (1)] ̂̄c0 = −(2π )3/2βU0d
3, (41)

̂̄c2 =
√

2π3βU0d
5. (42)

Figure 2 displays the temporal evolution of the interfacial
tension γ (t) for the case of interaction strength βU0 = 1 and
packing fractions η := π�̄d3/6 ∈ {0.05,0.1,0.2,0.5,1}. The
thick lines correspond to the full expression (35) based on
the direct correlation function (40), whereas the thin lines in
Fig. 2(b) are the long-time asymptotics, Eq. (38). Note that,
according to Eq. (35), the interfacial tension scales ∼ (�η/η)2

with the initial relative density difference ��/� = �η/η.
The interfacial tension γ (t) for this system turns out to

be negative for all times t � 0 [see Fig. 2(a)] because ̂̄c(qz)
in Eq. (40) is a monotonically increasing function of qz, i.e.,̂̄c ′(qz) > 0, so that, according to Eq. (35), γ (t) < 0. This is,
in particular, in accordance with Eq. (38) and ̂̄c2 > 0 from
Eq. (42). Figure 2(b) indicates that the asymptotic behavior
γ (t) ∼ t−1/2 in Eq. (38) can be expected to apply at times
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FIG. 2. (Color online) Nonequilibrium interfacial tension γ (t)
during the relaxation of polymer solutions described by a Gaussian
core model, Eq. (39), with polymer number densities �̄ corresponding
to packing fractions η = π�̄d3/6 ∈ {0.05,0.1,0.2,0.5,1}. Thick lines
represent the full expression (35), whereas thin lines in panel (b)
correspond to the long-time asymptotics, Eq. (38). Panel (a) shows
that, for this system, the interfacial tension is negative, γ (t) < 0, for
all times t � 0. From panel (b) one can infer that the asymptotic
expression (38) applies for times t � d2/D.

beyond the Brownian time scale t � d2/D; this statement
applies to a wide range of the parameters βU0 and η, the
results of which are not shown here.

According to Refs. [23,24], the interaction potential,
Eq. (39), with interaction strength βU0 = 1.58 and d =
Rg

√
2/3 = 60 nm is valid to describe the interaction of pairs

of poly(α-methyl styrene) chains with molecular mass Mw =
2.96 × 106 g/mol in toluene at 25 ◦C in the dilute regime
η � 0.22. At the Brownian time t = d2/D = 46 ms, where
D = 0.079 μm2/s is the experimental diffusion constant,
one finds βγ (t)d2 = −0.13(�η/η)2 for η = 0.22; i.e., for
an initial perturbation of |�η| = 0.1η the free energy kBT is
gained by interface fluctuations which increase the interfacial
area by 2.77μm2.

B. Charge-stabilized colloids

As a second example consider a colloidal suspension of
charge-stabilized colloids of diameter d in a solvent with
inverse Debye length κ . Here the interaction of two colloidal
particles is modeled by the potential

βU (r) =
⎧⎨⎩∞, r � d

βUd

exp[−κ(r − d)]

r/d
, r > d,

(43)

where the strength βUd > 0 of the double layer repulsion
increases with the charge of the colloids. The direct correlation
function of the colloidal suspension within the RPA of the
double layer repulsion in excess of the hard-sphere reference
system is given by

c̄(r) =
⎧⎨⎩cHS(r), r � d,

−βUd

exp[−κ(r − d)]

r/d
, r > d,

(44)

where the Percus-Yevick direct correlation function of hard
spheres with diameter d and packing fraction η is [25]

cHS(r) =
{

c
(0)
HS(η) + c

(1)
HS(η) r

d
+ c

(3)
HS(η)

(
r
d

)3
, r � d,

0, r > d,
(45)

with

c
(0)
HS(η) = − (1 + 2η)2

(1 − η)4
,

c
(1)
HS(η) = 6η(1 + η/2)2

(1 − η)4
,

c
(3)
HS(η) = −η(1 + 2η)2

2(1 − η)4
.

(46)

Figure 3 displays the temporal evolution of the interfacial
tension γ (t) for the case of interaction strength βUd = 1,
inverse Debye length κd = 1, and packing fractions η ∈
{0.1,0.2,0.3,0.4,0.5}. The thick lines correspond to the full
expression (35) based on the direct correlation functions
(44)–(46), whereas the thin lines in Fig. 3(b) are the long-time
asymptotics, Eq. (38).

The interfacial tension γ (t) for charge-stabilized colloids,
as for polymer solutions in the previous Sec. III A, is negative,
γ (t) < 0, for all times t � 0 [see Fig. 3(a)], which is also
in agreement with the positive values ̂̄c2 > 0 entering in the
long-time asymptotics, Eq. (38). Figure 3(b) indicates that the
asymptotic behavior γ (t) ∼ t−1/2 in Eq. (38) sets in, as for
polymer solutions in the previous Sec. III A, at times beyond
the Brownian time scale t � d2/D.

It has to be noted that the interaction strength βUd of
some real charge-stabilized colloids can exceed unity by
orders of magnitudes: In Ref. [26], e.g., an aqueous dispersion
(κ−1 = 161 nm) of polystyrene sulfate spheres of diameter
d = 652 nm and packing fraction φ ≈ 0.04 is reported with
βUd = 463. For such a large value of βUd the RPA equation
(44) is not justified so that one has to use more reliable schemes
to evaluate c̄(r).
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FIG. 3. (Color online) Nonequilibrium interfacial tension γ (t)
during the relaxation of suspensions of charge-stabilized colloids
interacting via the potential (43) with strength βUd = 1 of the double
layer repulsion, inverse Debye length κd = 1, and packing fractions
η ∈ {0.1,0.2,0.3,0.4,0.5}. Thick lines represent the full expression
(35), whereas thin lines in panel (b) correspond to the long-time
asymptotics, Eq. (38). Panel (a) shows that, for this system, the
interfacial tension is negative, γ (t) < 0, for all times t � 0. From
panel (b) one can infer that the asymptotic expression (38) applies
for times t � d2/D.

C. Colloid-polymer mixtures

As a final example consider a colloid-polymer mixture
composed of colloidal hard spheres of diameter d suspended in
a solution of polymer coils of diameter 
. Within the Asakura-
Oosawa-Vrij theory [27–29], the polymer coils with packing
fraction ηp give rise to an effective depletion interaction

βV (r) = −ηp

(
1 + d




)3(
1 − 3r

2(d + 
)
+ r3

2(d + 
)3

)
(47)

between colloidal particles for distances in the range r ∈
(d,d + 
). The direct correlation function of the colloidal
suspension within the RPA of the depletion interaction in

∼ t−1/2

(b)

t D/d2

|γ
( t

)|
β
d
2
(η

/
Δ

η
)2

104102110−210−4

1

10−2

10−4

0.00, +0.8923
0.01, +0.6860
0.02, +0.4797
0.05, -0.1392
0.10, -1.1707
0.20, -3.2337

ηp, c̄2/d5

= 2
= 0.2η

(a)

γ
(t

)
β
d
2
(η

/
Δ

η
)2

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

FIG. 4. (Color online) Nonequilibrium interfacial tension γ (t)
during the relaxation of colloid-polymer mixtures described within
the Asakura-Oosawa-Vrij model, Eq. (47), with colloidal packing
fraction η = 0.2, polymer-to-colloid size ratio 
/d = 2, and poly-
mer packing fractions ηp ∈ {0,0.01,0.02,0.05,0.1,0.2}. Thick lines
represent the full expression (35), whereas the thin lines in panel
(b) correspond to the long-time asymptotics, Eq. (38). Panel (a)
demonstrates that the interfacial tension γ (t) as a function of time t

can be positive [γ (t) > 0, see case ηp = 0.2] or negative [γ (t) < 0,
see cases ηp ∈ {0,0.01,0.02}] or it can change its sign (see cases
ηp ∈ {0.05,0.1}). From panel (b) one can infer that the asymptotic
expression (38) applies for times t � d2/D.

excess of the hard-sphere reference system is given by

c̄(r) =
⎧⎨⎩cHS(r), r � d,

−βV (r), r ∈ (d,d + 
),
0, r � d + 
.

(48)

Figure 4 displays the temporal evolution of the interfacial
tension γ (t) for the colloidal packing fraction η = 0.2, the
size ratio 
/d = 2, and the polymer packing fractions ηp ∈
{0,0.01,0.02,0.05,0.1,0.2}. The thick lines correspond to the
full expression Eq. (35) based on the direct correlation function
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Eq. (48), whereas the thin lines in Fig. 4(b) are the long-time
asymptotics Eq. (38).

In accordance with Eq. (38), the asymptotic decay
γ (t) → 0 is from below for weak depletion attractions, ηp ∈
{0,0.01,0.02}, with positive values ̂̄c2 > 0, whereas it is from
above for strong depletion attractions, ηp ∈ {0.05,0.1,0.2},
with negative values ̂̄c2 < 0. This demonstrates that it can
be possible to alter the sign of the asymptotic decay by simply
changing the polymer concentration. Moreover, the cases
ηp ∈ {0.05,0.1} in Fig. 4 show that the sign of the interfacial
tension γ (t) < 0 at early times t → 0 has no influence on the
sign γ (t) > 0 at late times t → ∞. Figure 4(b) indicates that
also in these systems the asymptotic behavior γ (t) ∼ t−1/2 in
Eq. (38) can be expected to apply at times beyond the Brownian
time scale t � d2/D.

IV. CONCLUSIONS

It has been shown in Sec. II that, under the mild conditions
of an interaction potential U (r) decaying for r → ∞ faster
than ∼ rs with s > 5 (see Sec. II A) and of an underlying
model B dynamics (see Sec. II B), an initially perturbed
colloidal fluid relaxes towards equilibrium accompanied by a
time-dependent nonequilibrium interfacial tension γ (t) which
is not necessarily positive.

Here the nonequilibrium interfacial tension γ (t) is defined
via the work required to deform the system such that the
interfacial area changes while the fluid volume is preserved
(see Sec. II C). An experimental determination of the nonequi-
librium interfacial tension γ (t) requires, on the one hand, a
sufficiently slow dynamics of the system such that the structure
does not change appreciably during the measurement and, on
the other hand, a sufficiently fast dynamics to preserve local
equilibrium during deformation. Colloidal suspensions and
polymer solutions with their wide separation of solvent and
solute time scales (nanoseconds vs milliseconds) are systems
for which the negative nonequilibrium interfacial tension could
be realized. There the fluid, whose nonequilibrium interfacial
tension is to be measured, is formed by the colloidal particles,
whereas the solvent acts as a medium whose Stokes flow due
to agitation of the container walls leads to the deformation of
the colloidal fluid.

The nonequilibrium interfacial tension γ (t) is, under the
above-mentioned conditions, determined by the equilibrium
structure, the diffusion constant, and the initial density dif-
ference �� from equilibrium (see Sec. II D). In particular,
Eq. (35) leads to γ (t) ∼ ��2, which is reminiscent of the
expression for the interfacial tension of equilibrium interfaces
within the square-gradient approximation [3]. However, the
square-gradient approximation is applicable only if the square-
gradient contribution, and hence the interfacial tension, is
positive, because otherwise all uniform bulk states would be
unstable with respect to density fluctuations. A positive square-
gradient contribution corresponds to a negative coefficient̂̄c2 < 0 of the quadratic term ∼ q2 in Eq. (1), but this term is not
required to be negative beyond square-gradient approaches,
where the higher-order terms R(q) are not neglected. The
interesting and rather general finding of Eq. (38) shows that the
long-time limit γ (t → ∞) is proportional to this coefficient̂̄c2

of the quadratic contribution ∼ q2 in Eq. (1). The reason is that

the relaxation time τ (q) in Eq. (15) decreases with increasing
wave number q so that the contributions of large wave numbers
q decay quickly [see Eq. (35)].

Several examples of realistic systems have been proposed
in Sec. III for which negative nonequilibrium interfacial
tensions γ (t) during relaxation can be expected to occur: poly-
mer solutions (Sec. III A, Fig. 2), charge-stabilized colloids
(Sec. III B, Fig. 3), and colloid-polymer mixtures (Sec. III C,
Fig. 4). The latter system even offers the possibility to switch
between an asymptotically positive [γ (t → ∞) > 0)] and
an asymptotically negative [γ (t → ∞) < 0] nonequilibrium
interfacial tension. As a rule of thumb, ̂̄c2 < 0, and hence
γ (t → ∞) > 0, corresponds to an interaction potential U (r)
with the attractive contribution being sufficiently strong as
compared to the repulsive contribution, whereas ̂̄c2 > 0, and
hence γ (t → ∞) < 0, is the result of an interaction potential
U (r) with the repulsive contribution being sufficiently strong
as compared to the attractive contribution.

Positive and negative values of the nonequilibrium inter-
facial tension γ (t) lead to different morphologies of density
perturbations: The relaxation towards a uniform equilibrium
state takes place by minimizing the interfacial area for γ (t) > 0
and by maximizing the interfacial area for γ (t) < 0. Hence,
localized density perturbations tend to spatially shrink with
interfaces being smooth for γ (t) > 0 while they tend to spread
out with increasingly rough interfaces for γ (t) < 0.

It is important to realize that the relaxation of a density
perturbation is driven not by the nonequilibrium interfacial
tension, which can be positive or negative [Fig. 4(a)], but by the
nonuniformity of the local chemical potential [see Eq. (5)]; the
interfacial tension is merely related to the interfacial structure
formed during the relaxation process. It is straightforward to
show with Eqs. (5), (7), and (8) that the Helmholtz free energy
F [�(t)] is a monotonically decreasing function of time t ,

dF [�(t)]

dt
= − 1

βD

∫
d3r

j(r,t)2

�(r,t)
< 0, (49)

and it is this decrease which leads to the irreversibility of the
relaxation towards equilibrium. In contrast, the nonequilibrium
interfacial tension in Eq. (31) quantifies the linear response
of the system to reversible deformations, and it has been
shown in Sec. II C that this linear response is independent
of the type of deformation. Beyond linear response one may
find a dependence of the system’s response on the type of
deformation, but such a behavior has to be described by a
different quantity than the interfacial tension.

Based on these comments, one can reconcile the nonequi-
librium interfaces during relaxation studied in the present
work with equilibrium interfaces between two coexisting
bulk phases: First, equilibrium interfaces, whose interfacial
tensions do not vanish, exhibit a time-independent structure
because the local chemical potential in equilibrium is uniform.
Second, bulk coexistence is possible only for a sufficiently
strong attractive contribution to the interaction potential U (r)
as compared to the repulsive contribution, which typically
leads to ̂̄c2 < 0, i.e., γ (t → ∞) > 0. Conversely, a negative
equilibrium interfacial tension requires an interaction potential
U (r) with the repulsive contribution dominating the attractive
one, but under these condition no bulk coexistence, and thus
no equilibrium interface, occurs.

042128-8



NONEQUILIBRIUM INTERFACIAL TENSION DURING . . . PHYSICAL REVIEW E 92, 042128 (2015)

In conclusion, a rather general expression for the inter-
facial tension of a relaxing planar nonequilibrium interface
is derived and applied to realistic systems of colloidal
suspensions and polymer solutions. It is shown that the
nonequilibrium interfacial tension is not necessarily positive,
that negative nonequilibrium interfacial tensions are consis-
tent with strictly positive equilibrium interfacial tensions,
and that the sign of the interfacial tension can influence
the morphology of density perturbations during relaxation.
The present study highlights that the useful concept of a
nonequilibrium interfacial tension shares some but not all

properties with the equilibrium interfacial tension. Until now
concepts of nonequilibrium interfacial tensions have been
introduced only for systems close to equilibrium, whose
known relaxation dynamics towards equilibrium allows for
generalizations of the equilibrium interfacial tension. It is a
future task of enormous relevance to understand the properties
of nonequilibrium interfaces also far away from equilibrium.
Whether the interfacial tension is a useful concept also
far away from equilibrium or whether its applicability is
restricted to the vicinity of equilibrium is an interesting open
question.
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