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Loopy belief propagation (LBP), which is equivalent to the Bethe approximation in statistical mechanics,
is a message-passing-type inference method that is widely used to analyze systems based on Markov random
fields (MRFs). In this paper, we propose a message-passing-type method to analytically evaluate the quenched
average of LBP in random fields by using the replica cluster variation method. The proposed analytical method
is applicable to general pairwise MRFs with random fields whose distributions differ from each other and can
give the quenched averages of the Bethe free energies over random fields, which are consistent with numerical
results. The order of its computational cost is equivalent to that of standard LBP. In the latter part of this paper,
we describe the application of the proposed method to Bayesian image restoration, in which we observed that

our theoretical results are in good agreement with the numerical results for natural images.
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I. INTRODUCTION

Loopy belief propagation (LBP) [1], which is a message-
passing-type inference method, is widely prevalent in various
fields, including computer science, as a powerful tool for sta-
tistical procedures in systems based on Markov random fields
(MRFs) [2,3]. LBP is equivalent to the Bethe approximation
in statistical mechanics [4,5] and is also known as the cavity
method. An analysis of the statistical behaviors of LBP is
important to develop an understanding of LBP. In this paper,
we focus on LBP in pairwise MRFs with random fields and
we present a statistical analysis of it, namely an analysis of
the quenched average of LBP over random fields. The topic of
pairwise MRFs in random fields is an important research field
in statistical mechanics [6,7]. As described below, a statistical
analysis of LBP in random fields is also important for the field
of Bayesian signal processing in computer science.

Bayesian image restoration [8], in which images degraded
by noise are restored using the Bayesian framework, is
an important generic technique for various types of signal
processing. Suppose that there is an original image and that the
original image is degraded through a specific noise process.
We observe only the degraded image as the input, and we
want to produce the restored image as the output. From the
statistical mechanics point of view, the standard framework
of Bayesian image restoration corresponds to the framework
of a two-dimensional ferromagnetic spin model in random
fields [9,10]. In this correspondence, the input image, namely
the degraded image, is regarded as the random fields in the
Bayesian image restoration system.

Since the model used in the Bayesian image restoration
system is designed by using an intractable pairwise MRF, LBP
is often applied to implement it. Hence, in the evaluation of the
statistical performance of the implemented image restoration
system, we encounter the evaluation of the quenched average
of LBP over the random fields, namely over the input images.
For this purpose, for Ising systems, the authors proposed an
analytical evaluation method for it [11,12]. In the previous
method, the evaluation of the quenched average of LBP
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is reduced to solving simultaneous integral equations with
respect to the distributions of the messages. However, the
method is not very practical, because the computational
cost of solving the integral equations is considerable and
its approximation accuracy is poor. Furthermore, the method
cannot evaluate the quenched average of the free energy and
is formulated only in Ising systems.

In this paper, we propose a new analytical method for
evaluating the quenched average of LBP over random fields
based on the idea of the replica cluster variation method
(RCVM) [13,14]. The presented method allows the quenched
average of the Bethe free energies over random fields in general
pairwise MRFs to be evaluated, unlike the previous method.

The remaining part of this paper is organized as follows.
A brief explanation of LBP is given in Sec. II. Section III
constitutes the main part of the paper. The proposed method is
shown in Sec. III C, and some numerical results for checking
its validity are shown in Sec. IIID. In Sec. IITE, we show a
case that is exactly solvable by the present method. In Sec. IV,
we explain the framework of the framework of Bayesian image
restoration and compute the statistical performance of the
Bayesian image restoration system using the proposed method.
Finally, Sec. V closes the paper with concluding remarks.

II. LOOPY BELIEF PROPAGATION IN RANDOM FIELDS
A. Model definition

Let us consider an undirected graph G(V,E) consisting
of n vertices and some edges, where V = {1,2,...,n} is the
set of vertices, and E = {{i,j}} is the set of edges between
a pair of vertices, where {i,j} denotes the undirected edge
between vertices i and j. On the graph, with the discrete
random variables S € {S; | i € V}, let us define the pairwise
MRF expressed by

P(S|h.p) = exp[—BH(S: )], (D

1
Z(h.B)
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FIG. 1. (a) Square graph with four vertices. (b) Cluster decom-
position of the Bethe approximation of the CVM for (a). The vertices
and two connected vertices are selected as the clusters.

where

H(S:h) = =) ¢i(Sih) — D i (S;.5))

iev {i,j)eE
is the Hamiltonian of the MRF. Here ¢;(S;,h;) is a specific
function of the variable S; and the random field %; on vertex
i, and ¢; ;(S;,S;) is a specific function on edge {i,j}. The
notations Z and B are the partition function and inverse
temperature, which takes a positive value, respectively. In
this paper, only random fields h are treated as the quenched
parameters.

B. Loopy belief propagation

Itis known that LBP is derived from the minimum condition
of the variational Bethe free energy [5]. In this section, we give
a brief explanation of the derivation of LBP according to the
cluster variation method (CVM) [15,16]. The free energy of
the MRF in Eq. (1) is defined by

F(h,p):=Y  H(S;m)P(S | h.p)
S

1
T 5 S PGS |h.AHIPES | hL. (2
M

In the Bethe approximation in the CVM, we approximate the
MRF by

[l_Lev bi(Si)] [n{i,j}eE bi,j(Siij)]
[ jyer bi(Sb;(S))

where b;(S;) and b; ;(S;,S;) are the one-vertex and two-
vertex marginal distributions (or the beliefs) of the MRF.
This approximation corresponds to the cluster decomposition
shown in Fig. 1. The right-hand side of Eq. (3) is the product of
the marginal distributions of the clusters divided by the product
of the marginal distributions of the double-counted clusters.
By applying this approximation to P(S | &) in the logarithmic
function of the last term in Eq. (2), we obtain the variational
Bethe free energy expressed by

Foethe[{Di i, j}]

1
=Y H(S;P(S | h,p)+ 5 Y P(S|hp)
N N

P(S|h.p)~ . )

[HieV bi(Si)] [H{i,j}eE bi,j(Si’Sj)]
H{i,j}EE bl(Sl)bj(Sj)

== > $i(Suh)bi(S)

ieV §;

X In
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Y S S bS5 + = 3 Hilb]

{i,J}€E S;.S; p ieV
+ % ]Z (Halbr ;1 — Halbi] = Halb; D), )
where
Hulbi] =Y bi(S:)Inbi(S)
Si
and

Halb; ] = Z b ;j(S;,8;)Inb; ;(S;,S;)
Si,S;

are the one-vertex and two-vertex negative entropies.

LBP is obtained by the variational minimization of the
variational Bethe free energy with respect to the beliefs.
By minimizing the variational Bethe free energy under the
normalizing constraints, } s bi(S;) = >, 5, bi,j(5:1,8)) =1,
and the marginalizing constraints, b;(S;) = Zs,- bi ;j(S:,S))
and b;(S;) = Zsi b; ;(S;,S;), we obtain the message-passing
equation of LBP:

Mij(Sj) o Y exp Bli(Si.hi) + i j(S;.S))]

Si

< [ Miei(Sh), )

kedi\{j}

where M;_, ;(S;) is the message (or the effective field) from
vertex i to vertex j. Using the messages satisfying the message-
passing equation, we can compute the beliefs that minimize
the variational Bethe free energy as

bi(Si) o< explBepi (i h)l [ | Mj—i(S), 6)

jeoi
b; j(S;,S;) ocexp Blei(Si,hi) + ¢i(S;.hj) + i ;(Si,S))]
< [T Meitso T Meisp,

kedi\{j) ledj\{i}

where i is the set of vertices connected to vertex i: di = {J |
j €V, {i,j} € E}. The Bethe free energy of the MRF is the
minimum of the variational Bethe free energy,

Foee(h,B) := {{Jn}]r_l_}fbethe[{biabi,j}],
and is obtained by substituting the beliefs obtained by Eqgs. (6)
and (7) into the variational Bethe free energy in Eq. (4). In LBP,
the beliefs obtained by equations (6) and (7) are regarded as
the Bethe approximations of the true marginal distributions
of the MRF. When an undirected graph G(V,E), on which
the MRF is defined, has no loops, the Bethe free energy and
the beliefs are equivalent to the true free energy and the true
marginal distributions of the MREF, respectively.

The main proposal presented in this paper is a method for
evaluating the quenched average of the Bethe free energy over
the random fields:

[Fbethe(h:ﬁ)]h = fdh |:1_[ pi(hi):| Fbelhe(hs,B)a (8)

ieV
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Bethe approximation

FIG. 2. Procedures of obtaining the quenched average of the
Bethe free energy. (a) Principled procedure. (b) Procedure of the
proposed method based on the RCVM.

where the notation [- - -] represents the average value over
the random fields and p;(h;) is the distribution of the field
on vertex i, where these distributions can vary by vertex in
general.

III. PROPOSED METHOD

According to Eq. (8), in principle, we have to perform the
averaging operation after constructing the Bethe free energy
to obtain [Fpeme(h,B)]n [see Fig. 2(a)]. However, it is not
straightforward to directly integrate the Bethe free energy.
Thus, we adopt another strategy.

In this paper, we propose an approximate method based on
the idea of the RCVM [13,14]. Figure 2(b) shows the procedure
of our method.

In the method, we first take the average of the free energy
using the replica method and CVM, namely the RCVM
(Sec. IITA) and then we apply the Bethe approximation to
the resulting form of the RCVM (Sec. III B). If the exchange
of the order of the two operations, the Bethe approximation
and the quenched averaging operation, is allowed, then we
can expect to obtain a good approximation of the quenched
average of the Bethe free energy.

A. Replica cluster variation method

First, we obtain the quenched average of the true free energy
of the MRF in equation (1), that is,

_% / dh []‘[ pi(h»] InZ(h,B).

ieV

[F(h.B)ln =

In the context of the replica method [9,17], we have

Fh.B)ly = — lim 25— ! 9
[ ( 7/3)]h__Exl_I}}) X s ()

where

= / dh[l_[ m(h»]zm,ﬂ)x.

ieV
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By assuming that x is a natural number, we obtain

X—Zexpﬁ YoeSn+ Y Zwl, S¢.59) |

eV {i,j}eE a=1

where S, ={S¥|lieV,a=12,...x}, S =
1,2, ...,x}, and the function ¢;(S;) is defined by

e,(S,) = %ln/dh p,(h) exp |:,3 Z¢, (Sla,/’l):|

a=1

{§F la=

We regard Z, as the partition of the x-replicated system and
define the x-replicated free energy as

1
F..=——InZ,
B
==Y Y eSS+ Y ) Hin(S)Q"(SY)
ieV S; a=1 S
+5 2 PASIInPA(S)) (10
Sx

where

P(S) _—exp,3|:Ze,(S)—ZHmt(S ):|

ieV a=1

is the Gibbs distribution of the x-replicated system and
8% ={S? | i € V}. The energy function H;n(S) is defined by

Hin(S) == Y ¥:;(5.5))

{i,j}eE

and is just the interaction term of the original system. The dis-
tributions, Q;(S;) and Q%(S%), are the marginal distributions
of the distribution P,(S,). The factor graph representation of
the x-replicated system is shown in Fig. 3(a).

In accordance with the cluster decomposition based on the
CVM shown in Fig. 3(b), by using the marginal distributions,
{0i(S;),0%(S*)}, together with the one-variable marginal
distributions of P.(Sy), { Q7 (S{)}, we approximate the Gibbs
distribution of the x-replicated system as

Py(Sx)
~ [niev 1_[2:1 Q?(qu)][niev Qi(Si)][na | Q°(8%) ]
X a\12

[HiEV l_[ot:l Q;x (Sl )]

— [Hiev Qi(Si)][Hé:l Qa(sa)]

[Trev [Tam 07(S7)

As in Eq. (3), Py(Sy) is approximated by the product of the
marginal distributions of the clusters divided by the product
of the marginal distributions of the double-counted clusters.

By applying this approximation to P,(S;) in the logarithmic
function in the last term in Eq. (10), we obtain the expression

(1)
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FIG. 3. (a) Factor graph representation of P,(S,) when n = 2. (b) Cluster decomposition for (a). In the decomposition, the three different
types of clusters are employed: The clusters consist of S7, of §;, and of §¢.

of the variational free energy as

=) VI Q]+Zv,m

ieV

——ZZH, 1. a2

IEVOtl

where the functionals, V;[Q;] and Vi, [ O], are defined as

fECVM[{QiﬂQan

Vi[0i] Ze(S>Q<S>+ ZQ(S)an(S)
) (13)

Vil Q%1 =Y Hn(S)Q*($) + Z Q“(S*)In Q*(S%).
v v 14)

In the context of the CVM, the x-replicated free en-
ergy in Eq. (10) is approximated by the minimum of
the variational free energy in Eq. (12) with respect
to the marginal distributions {Q;,0% 0%}, ie., F, =~
mingg, g« o) FrOVM[{Qi, 0%, Q%}]. Note that, at the mini-
mum point, the normalization constraints for {Q;, 0%, O} and
the marginal constraints,

U(S) = Y 0iS) (15)
Si\{S7'}
and
Q07 (S5) Z Q*(5%), (16)
should hold.

In order to minimize the variational free energy with respect
to {Q;(S;)}, by using the Lagrange multipliers, we perform the
variational minimization of

LIOMN =) V01— a; ZQ(S)
ieV ieV
- ZZZA:Y(S?) Z 0i(S)— Q¥(S7)
ieV a=1 S* Si\{5¢}

with respect to { Q;(S;)}. From the result of this minimization,
we obtain

Qi(Si) expﬂ[ei(si) +y A:-*(S,-“)]. (17)

a=1

The Lagrange multipliers, A; = {AJ(S;) |a =1,2,...,x},
are determined such that they satisfy Eq. (15). By substituting
Eq. (17) into Eq. (13), while noting the marginal constraints
in Eq. (15), we obtain the partially minimized variational free
energy,

7 e ol = minm I 0 0% 07

as

R (0", 07)]

= Zef\gtr XX:ZA?(S,D‘)Q?(S,‘%) - %ln/dh pi(h)

iev ' la=l s¢

T expslo

a=1 S

+ 3 Vil 01— %ZZHI[Q?], (1)
a=l1

ieV a=I

S k) + Af(ST)]

where the notation “extr” denotes the extremum with respect
to the assigned parameters.

B. Bethe approximation and replica symmetric ansatz

The functional Vi [ Q%] can be interpreted as the variational
free energy for the interaction term of the original system [see
Eq. (14)]. Since this variational free energy is intractable in
general, we approximate it by use of the Bethe approximation.
As in Eq. (3), we approximate Q*(S%) by

iy 07 ()T pyer 97, (5757)]

0%(8*) ~
l_[{i,j}eE o7 (Szw) Q(}l (57)

. (19
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where the distributions, Q%(S{) and Q;’fj(Sf‘,S;‘), are the
marginal distributions of Q%(S%), so the marginal constraints,

ZQ (.85) = 05(s%)

and

ZQ,, (57.55) = Q7 (S7).
are satisfied. By applying Eq. (19) to Q*(S%) in the logarithmic
function in the last term of Eq. (14), we obtain the Bethe
approximation of Vi, [ Q%] as

virel{or.of ] = - Z Z i (S5.59) Q7 (S7.8%)

li.j)eE s7.5%

+= ZHI ,3 Z (Hz[Qlaj]
eV {i,j}eE
—Hi[0F] - [ 0F])-

By substituting the Bethe approximation in Eq. (20) into
Eq. (18), we obtain the Bethe approximation of Eq. (18):
FROM{Q*, 0811 ~ FBPI{OF, 0F ;}]. After the Bethe ap-
proximation, we make the replica symmetric (RS) assumption
[9,17] in FLBP[{Q?, 0f ;}1, and, subsequently, by taking the
limit as x — 0, we finally reach the variational free energy
expressed as

FEBPRI10:, 0i 1

—Zextr ZA (S)Q0:i(S) —

ieV

(20)

dh p;(h
;3/ pi(h)

x In Z exp Bl (Si,h) + Ai(S)]

Si

D i i(5:1.8)Q:(S:.8))

{i.J}€E Si.S;

41 @1
5

The detailed derivation of this variational free energy is shown
in Appendix A. We expect that the minimum of this variational

> (M2l Qi j1 = Hil Qi — Hal QD).

{i,jeE

71 .0_

>

N

5} B

=

[

3

& —1.5f

¢ LBP

3 RLBP
0.0 1.0 2.0
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free energy is the approximation of the quenched average of the
Bethe free energy in Eq. (8): [ Foetme (B, B)]n ~ FEBPRS) where

Fon = min FPEEI0, 00501 (22)
At the minimum of the variational free energy,
FLBPRS[{Q;, ; ;}], the normalization constraints,
0= 0i(S.5) =1, (23)
Si S,',Sj
and the marginal constraints,
> 0ii(5.8) = Q;(S)) (24)
Si
and
> 0:(81.5) = Qi(S)). (25)
Sj
should hold.

C. Message-passing equation

In this section, we show the message-passing equation for
minimizing the variational free energy in Eq. (21) obtained in
the previous section.

The message-passing equation for our method is obtained
as

Mji(S;) ZQ,/'(S.;') expl BV j (S, S (S)H™',  (26)
Sj
exp Blgi(Si,h) + Ai(S)]
(S = [ dh p;(h , (27
Qi) / P S e BLa (S + Al
BAKS) =Y In ei(S)). (28)

kedi
The quantity w;_, ;(S;) is the message from vertex i to vertex
j, and the Lagrange multipliers {A;(S;)} in Equation (28)
satisfy the extremal conditions in the first term in Eq. (21).
By using the messages and {Q;(S;)}, the two-vertex marginal
distributions {Q; ;(S;,S;)} are obtained as

0,.;(8:,8;) o Qi(5)0;(S;)exp[Bi, ;j(Si,S5))]

X i (S i j (S (29)

—1.0F
—1.2F
.
5 —1.4r
g 1
8716_
-1

i $ LBP
—L.8F RLBP

0.0 0.2 0.4 0.6 0.8 1.0
J

FIG. 4. Quenched Bethe free energies per variable for ¢ = 2. The left panel shows the free energies versus o with J = 0.2, and the right
panel shows the free energies versus J with o = 1. The error bars are the standard deviation.
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FIG. 5. Quenched Bethe free energies per variable for g = 3. The left panel shows the free energies versus o with J = 0.2, and the right
panel shows the free energies versus J with o = 1. The error bars are the standard deviation.

The detailed derivation of Egs. (26)—(29) is shown in Ap-
pendix B. The order of the computational cost of the proposed
message-passing equation is equivalent to that of standard LBP
in Sec. II B.

When the distributions of the random fields are Dirac §
functions, p;(h) = §(h — h;), namely the fields are not the
quenched parameters but the fixed parameters, the method
presented in Egs. (26)—(29) is reduced to the standard LBP in
Egs. (5)-(7). In this case, FI%E]P(RS) in Eq. (22) is equivalent to
the Bethe free energy Foepne(h,B).

After numerically solving the simultaneous equations
in Egs. (26)-(29), by substituting the solutions, {Q;(S;)},
{Q;,;(S:i,S))}, and {A;(S;)}, into Eq. (21), we obtain the
minimum values of the variational free energy, FLBP®RS) and
regard it as the approximation of [ Fyeme (B2, 8)]5 in Eq. (8).

For the moment, we suppose that the function ¢;(S;,4;) can
be divided as ¢; (Si,h;) = ¢\ (Si,h;) + ¢\ (S;). The variations
in the quenched average of the Bethe free energy in Eq. (8)
with respect to ¢>i(l)(S,<) and v; ;(S;,S;) are

S Foethe (B, B)1n

i = —[6:(S)n (30)
8¢; " (Si)
and
S[ Foetme(h, B)]n
Tt D by (S5 31
(Swl‘,j(Si,Sj) [ ,j( ])]h ( )
—1.4f
—1.6
&>’3 B
2 —1.8F
[}
3 B
E 2.0
B ¢ LBP
22k RLBP
OIO I ITO I 2I0

respectively, which are the quenched average of the beliefs
obtained from LBP. On the other hand, the variations in
FLBPRS) with respect to d)fl)(Si) and y; ;(S;,S;) are obtained as

§ FLBPRS)
—mas = —QiS) (32)
8¢, (S)
and
5 FLBPRS)
2lin g, (8.5, 33
8 i (Si,S;) Q:.j(5i-5)) 53)

respectively. By comparing Egs. (30) and (31) with
Egs. (32) and (33), it can be expected that if FLBPRS jg
a good approximation of [Fyeme(R,8)]n, then the marginal
distributions, Q;(S;) and Q;;(S;,S;), are also good
approximations of the quenched averages of the beliefs,
[b:(S)]n and [b; ;(S;,S;)]n, respectively.

D. Numerical experiment

In this section, we describe the evaluation of the validity
of our method by using numerical experiments. In the
experiments, we used the model expressed as

1
P(S|h)=Z(h)exp DohiSi+ > JiSiSi |, 34

eV {i,jleE

which is defined on a certain graph, where S; takes ¢
real values in the interval [—1,1] as S; € {2S5/(q — 1) —

—1.6F

| |
—_ —_
o
1 1

|
—_
\O
T

free energy
1

LBP
RLBP

|
L
(e}

T
2 2}

|
N
—
T

FIG. 6. Quenched Bethe free energies per variable for ¢ = 4. The left panel shows the free energies versus ¢ with J = 0.2, and the right
panel shows the free energies versus J with o = 1. The error bars are the standard deviation.
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FIG. 7. Quenched magnetizations versus J, where ¢ =2 and
o=1

118§=0,1,2,...,g — 1}, ie, S; € {+1, — 1} when g = 2,
S; € {+1,0, — 1} when g = 3, and so on. The fields h are
independent and identically distributed random fields drawn
from the Gaussian distribution with a mean of zero and a
variance of o2, N'(h; | 0,0%).

We compared the free energy per variable obtained by our
method, FLBP®RS) /, with the quenched average of the Bethe
free energy (per variable) shown in Eq. (8), which was obtained
by numerically averaging the Bethe free energy in Eq. (4)
over the random fields, and we compared the behaviors of the
quenched average of the magnetizations obtained by the two
different methods. The magnetizations obtained from LBP and
our method are given by Mygp :=n""3",, > Si[bi(S)]n

and Mgy gp :=n""! Diev ZS, S; Qi(S;), respectively.

1. Square lattice

We show the results when the model in Eq. (34) is defined
on a graph of an 8x8 square lattice with the free boundary
condition and when all of the interactions are unique, J;; = J.
Figures 4-6 show the plots forg = 2,4 = 3,andg = 4. “LBP”
represents the results obtained by the numerically averaged
Bethe free energy, and “RLBP” represents the results obtained
by our method. Each plot of LBP is numerically averaged over
10000 realizations of the random fields. In almost all cases,
the results of our method are consistent with the numerically
averaged Bethe free energies, as expected. However, in the

—1.6F
~1.8
>
n L
)
£ 20
g |
fiet
22| § LBP
- RLBP
72'4_ 1 1 1 1 1
0.0 1.0 2.0
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cases of large J, mismatches between the two methods are
observed.

Figure 7 shows the plot of the quenched average of the
magnetizations, Mygp and Mgygp, When the model shown
in Eq. (34) is defined on a graph of a 14x 14 square lattice
with periodic boundary conditions and when g = 2. We
observe that the two methods show the different nature of
the magnetizations. The magnetization obtained by standard
LBP continuously increases with the increase in J, whereas
that obtained by the proposed method drastically increases,
like a first-order transition, around J ~ 0.88. This different
physical picture probably causes the mismatches between the
two methods in the cases of large J in Figs. 4-0.

Our formulation allows for the approximate evaluation of
the quenched average of Bethe free energy over the random
fields with disordered interactions. We show the results when
the model in Eq. (34) is defined on a graph of a 14 x 14 square
lattice with free boundary conditions and when the interactions
{Ji;} are independently drawn from N (Jij | 0,8%). Figure 8
shows the results of the free energies versus o for g = 5.
Each plot obtained by LBP is numerically averaged over 100
realizations of the random fields and over 200 realizations of
the interactions and that obtained by our method is averaged
over 200 realizations of the interactions. Since the error bars of
our method are quite small compared to LBP, we omit them in
the figure. The results obtained by our method are consistent
with the numerically averaged Bethe free energies.

To see the effect of the disorder in the interactions on
the behavior of the magnetization, we show the plot of the
quenched average of the magnetizations when the model
shown in Eq. (34) is defined on a graph of a 14x 14 square
lattice with periodic boundary conditions and when g = 2
and the interactions {J;;} are independently drawn from
N (Jij | ¢,8%) in Fig. 9. We observe that the magnetizations
obtained by our method show the first-order transition, as in
Fig. 7. However, the values of the magnetizations after the
transition are quite small compared to those in Fig. 7.

2. Random regular graph

A random regular graph (RRG) is a random graph in which
the degrees of all vertices are fixed by the constant d. Figure
10 shows the results when the model in Eq. (34) is defined on
an RRG with 200 vertices and d = 4 and when J;; = J and

-1.8F
>\ -
o0
S 2.0F
(0]
: |
= 202
| § LBP
—p4f | RLBP
0.0 1.0 2.0

FIG. 8. Quenched Bethe free energies per variable versus o for ¢ = 5. The left panel shows the free energies when § = 0.2 and the right
panel shows the free energies when 6 = 0.4. The error bars are the standard deviation.
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FIG. 9. Quenched magnetizations versus ¢ for § = 0.2 and § =
0.5wheng =2ando = 1.

g = 2. Each plot obtained by LBP is numerically averaged over
100 realizations of the random fields and over 100 realizations
of the structure of graph and that obtained by our method is
averaged over 100 realizations of the structure of graph. Since
the error bars of our method are quite small compared to LBP,
we omit them in the figure, as in Fig. 8. The behaviors of the
quenched magnetizations, My gp and Mgy gp, obtained by the
two methods in this case are shown in Fig. 11. The behaviors
of the quenched magnetizations in this figure are similar to
those shown in Fig. 7.

LBP is asymptotically justified on an RRG [7], because
an RRG is quite sparse. Therefore, we can expect that the
results obtained by LBP are close to the exact solutions.
Except for the RS assumption, our method consists of
two approximations: the approximation in Eq. (11) and the
approximation in Eq. (19). Since the latter approximation is the
Bethe approximation, it can be justified on a sparse graph such
as an RRG. This suggests that the mismatch between the two
methods in the right panel in Fig. 10 is mainly caused by the
first approximation and that the first approximation produces
the metastable state that causes the first-order transition in
Fig. 11.

Asin Sec. III D 1, we again see the case with the disordered
interactions. Figure 12 shows the plots of the quenched Bethe
free energies versus o for ¢ = 5 when the model in Eq. (34) is
defined on an RRG with 200 vertices and d = 4 and when the
interactions {J;;} are independently drawn from N(J;; | 0,6%).

—1.0f
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g B
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2
= —1.5F
¢ LBP
- RLBP
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0.0 1.0 2.0
o
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FIG. 11. Quenched magnetizations versus J on the RRG, where
g=2ando = 1.

Each plot in the figure is obtained in the same manner as the
case in Fig. 8. As is the case in Fig. 8, the results of our
method are consistent with the numerically averaged Bethe
free energies. Figure 13 shows the plot of the quenched average
of the magnetizations when the model in Eq. (34) is defined
on an RRG with 200 vertices and d =4 and when g =2
and {J;;} are independently drawn from N (J;; | c,8%). It can
be observed that the transition of the magnetization obtained
by our method is nearly continuous with the increase in the
magnitude of the disorder. This suggests that the disorder in
the interactions violates the metastable state of the quenched
Bethe free energy obtained by our method in the case of an
RRG.

E. Exactly solvable case: Ferromagnetic mean-field model
in random fields

In this section, we consider the ferromagnetic mean-field
model in random fields expressed as [6]

1
P(S | ) ocexpB| Y ¢S+~ D~ 8(S)8(S)) |.
ieV i<j

(35)

where the second summation represents the summation over
all of the distinct pairs of vertices, and {4; } represents the inde-
pendent and identically distributed random fields drawn from

—1.0F
—-1.2F
> n
? 1.4_
S _1 6_
18k
| ¢ LBP
—2.0F RLBP
[ R N T TR T SR MR R T
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 10. Quenched Bethe free energies per variable for ¢ = 2 on the RRG. The left panel shows the free energies versus o with J = 0.2,
and the right panel shows the free energies versus J with o = 1. The error bars are the standard deviation.
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FIG. 12. Quenched Bethe free energies per variable versus o for ¢ = 5 on the RRG. The left panel shows the free energies when § = 0.2,
and the right panel shows the free energies when § = 0.4. The error bars are the standard deviation.

the distribution p,(h;). By using the Hubbard-Stratonovich
transformation, the free energy (per variable) of this model,
f := F(h,B)/n, can be expressed as

f= —éln/dmexpn{—gmkl—%Zanexpﬂ

ieV S

2
XZ[¢(S,hi>+mg(s>—g(S) ” L2

2 T B 2
ieV n l’l,3 T

For a sufficiently large n, we can compute the integration by
using the saddle-point method and the summation over i € V
in the exponent by using the law of large numbers, so the free
energy can be expressed as

1
f= §m2 — = | dh ) Iny_ exp BLo(S.h) + mg(S)]
N

(36)

in the thermodynamic limit, where m is the solution to the
saddle-point equation:

25 8(S) exp BIB(S,h) + mg(S)]
>sexp BlP(S,h) +mg(S)]
Since the free energy in Eq. (36) does not depend on {A;}, the

quenched average of the free energy over the random fields,
[F(h,B)]n/n, coincides with Eq. (36).

m— / dh pu(h) (37)

1Lof
0.8
=
s e
g 0.6 ‘
D 0.4F LBP (0.2)
= L E— LBP (0.5)
0.2 o RLBP(0.2)
«  RLBP(0.5)
0.0 — 1 1 1 1
0.5 1.0 1.5 2.0
C

FIG. 13. Quenched magnetizations versus ¢ on the RRG for
6=02and 5§ =0.5wheng =2ando = 1.

Since ¥; ;(S;,S;) = g(8i)g(S;)/n, the message-passing
equation in Eq. (26) can be expanded as

In gt (Si)
= ln Q](S])exp[ﬂwz,/(sl,S])]Ml_)](sl)fl + co
Sj
T / +a+0 ,
" ZS/ QJ(S])I’LIHJ(S])_] €1 (l’l )
(38)

where ¢y and ¢ are constants unrelated to S;. From this
equation, we ensure that all of the messages are constants
unrelated to S for a sufficiently large n, because u;_.;(S;) =
explc; + O(n~")] ~ exp(c;). Therefore, from Eqgs. (28) and
(38), we obtain

S;
Ais) = SO0 S 3 005055+ e2 = ma(s) + e

jedi S,
(39)

for a sufficiently large n, where ¢, is a constant unrelated
to S;, and we redefine m :=n="'y", ., Y5 8(S)Q;(S). By
substituting Eq. (39) into Eq. (27), we obtain the same
expression for m as Eq. (37). Since all of the messages are
constants, from Eq. (29), we have

0;,i(8:,8;) = 0i(S)Q;(S)).

By substituting this equation and Eq. (39) into Eq. (21), we find
that the equality f = FLBP®RS) /; holds in the thermodynamic
limit. From this result, we can conclude that our message-
passing method can exactly compute the quenched average of

]Dlikc(h | S)
Ppri(s) additive noise
prior
original /4\ degraded
image N "|  image
estimateT Pros(S | 1)
pusterlor

FIG. 14. Scheme of Bayesian image restoration.
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FIG. 15. (Color) Original three-bit colored images I: (a) lenna,
(b) parrots, and (c) sailboat.

the free energy of the model in Eq. (35) in the thermodynamic
limit.

IV. APPLICATION TO BAYESIAN IMAGE RESTORATION

In this section, we describe the estimation of the statistical
performance of the Bayesian image restoration system using
LBP by using the proposed method. In images, each pixel
is allocated in a two-dimensional grid and has an intensity
value corresponding to the color at its position. For an image
Ie{l;|ieV}theentryl; € {0,1,...,qg — 1} represents the
intensity of the ith pixel.

Suppose that the original image I is degraded to h through
a specific noise process. In the Bayesian image restoration
system, we assume that the original image is the sample
drawn from the specific distribution Py;(S) known as the prior
distribution. We observe only the degraded image as the input,
and we want to estimate the original image from the input
degraded image. To do the image restoration, we compute
the posterior distribution of the original image, Pposi(S | h)
Piie(h | S)Pyii(S), where Pi(h | S) is the noise process
referred to as the likelihood. We use the posterior distribution
to produce the restored image as the output. The scheme of
Bayesian image restoration is shown in Fig. 14.

A. Bayesian image restoration using LBP

For the original image I, suppose that the degraded image
h is generated by adding additive white Gaussian noise, i.e.,
h; = I; + n;, where n; is the random noise drawn from the
Gaussian distribution N'(n | 0,02).

PHYSICAL REVIEW E 92, 042120 (2015)

We define the prior distribution of the images S as

Pyi(S | @) ocexp | D &(Si.S)) |, (40)

{i,j}eE

which is defined on a square lattice corresponding to the
configuration of pixels. The energy function £(S;,S;) defines
the relationship among neighboring pixels, and it often takes
a form that emphasizes the smoothness among neighboring
pixels, e.g., §(S;,S;) = —|S; — S;|. The positive parameter o
controls the strength of the smoothness. For the original image,
the distribution of the degraded image, i.e., the likelihood, is
expressed as

Pielh | S =1,07) =[N | o). 1)

ieV

From Egs. (40) and (41), given a specific degraded image h,
the posterior distribution of the original image is obtained by

Ppost(s | h,a’az) & Piige(h | S,Uz)Ppri(S | o)

(Si —hi)’
ocexp | — Z ot Z £SLSH | @2
ieV {i.jleE
The posterior distribution is the special case of Eq. (1). The
degraded image is regarded as the random fields in the posterior
distribution.
In maximum posterior marginal (MPM) estimation, the ith
pixel of the restored image is obtained by

SZMPM = arg mSax Prost(Si | h,oe,oz), 43)

where  Ppogt(S; | h,a,0?) is the marginal distribution of the
posterior distribution in Eq. (42) [10]. In practice, we approxi-
mate the true marginal distributions by the beliefs obtained by
LBP for the posterior distribution,

S,MPM ~ S[MPM(LBP) ‘= arg msax bi(S)), (44)

where the belief b;(S;) is obtained by LBP described in
Sec. IIB with (]5,'(S,',l’l,') = —(Sl — hi)2/20'2, Iﬁ,”j(Si,Sj) =
a&(S;,S;), and B = 1. The performance of the restoration is
often measured by the mean-square error (MSE) between the

03F 035F
i LBP [ + Lo i LBP
o3l RLBP 0ask RLEP L — RLBP
. 0261 . 03f
S S o4l S
0.25F i i
0.22f
- i 025}
02}
1 1 1 1 1 =1 1 1 1 1 1 1 1 1 1
0.0 0.5 1.0 0.0 1.0 0.0 0.5 1.0
a a a

FIG. 16. Plots of D, (I ,«,0?) versus & when ¢ = 0.5 and £(S;,8)) =—(S — Sj)2/2 for the original images shown in Fig. 15: The left,
middle, and right plots show the results for Figs. 15(a), 15(b), and 15(c), respectively. The error bars are the standard deviation.
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0.4 0.4
Qa 0.3F S ) d 0.3F
02} ¢ LBP 02F ¢ LBP
| RLBP | RLBP
0.1E 1 1 1 1 1 1 1 0.1F 1 1 1 1 1 1 1
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o

FIG. 17. Plots of D, (I,«,0?%) versus ¢ when o = 0.4 and £(Si,S) =—(S — S_,)2/2 for the original images shown in Fig. 15: The left,
middle, and right plots show the results for Figs. 15(a), 15(b), and 15(c), respectively. The error bars are the standard deviation.

original image and the restored image,

1
D(I,h,ot,o’z) = _Z[Il _ S}V[PM(LBP)]Z' (45)
nx
ieV
This MSE is for the specific input degraded image that is drawn
from the likelihood in Eq. (41), and it should take different
values for different degraded images in general.
For the original image I, we attempt to estimate the average
value of the MSE in Eq. (45) over all possible degraded images,

Doy(I,0,6%) := [D(I,h,a,0°)]p, (46)

where p;(h) = N(h | I;,0%), because the average value corre-
sponds to the statistical performance of the presented Bayesian
restoration system for the original image. By considering
the input degraded image as the quenched parameter, the
right-hand side of Eq. (46) can be regarded as the quenched
average of the MSE obtained by LBP. Thus, we approximate
it using the message-passing method presented in Sec. III C.

Using the proposed message-passing method, we approxi-
mate Eq. (46) as

Dy(I,a,0%) ~ 12 / dh N(h | 1;,0H) L =ri(P,  (47)
n ieV
where

ri(h) = arg mSaX[¢i(S,h) + Ai(9)].

The detailed derivation of this approximation is shown in
Appendix C.

B. Numerical experiment

In this section, we describe the estimation of the perfor-
mance of Bayesian image restoration for the 64 x64 original
colored images shown in Fig. 15. Colored images consist of
three different channels: red, green, and blue (RGB) channels,
I = {141 green, Ivie}. The pixels in each channel in the
original images have eight intensities, i.e., ¢ = 8. In the
following experiments, we assume that the three different
channels are independently degraded by the same noise
process in Eq. (41), and we restore the generated degraded
images, h = {Req,Mgreen Powe}, by separately applying the
Bayesian image restoration based on the posterior distribution
in Eq. (42) to the RGB channels. The value of o2 used in the
restoration is the same as that used in the noise process, and
we use the same values of the parameters, o and o2, in the
restorations for the three different channels. The total MSE
of the restoration is obtained by the average of the MSEs of
the RGB channels, i.e., D(I,h,,0%) = {D(I1ed,Bred,,0%) +
D(Igreenyhgreen,avaz) + D(Iblue,hbluesavaz)}/3~

For the original colored images in Fig. 15, we evaluated
the average of the MSE, D,,(I,a,0?), by using two types of
methods: LBP and the proposed analytical method in Eq. (47).
In LBP, we approximated D,,(I,o,0?) by the sample average
of D(I,h,a,0%) over 10000 different degraded images, which
are generated from the original image I through the noise
process shown in Eq. (41).

At first, we show the results obtained by setting the
function £(S;,S;) as £(S;,S;) = —(S; — Sj)2/2 in the prior
distribution in Eq. (40). In Figs. 16 and 17, we show the
plots of D,,(I ,a,0%) versus « and o, respectively, obtained

i 03 -

ol i LBP ¢ LBP 028} ¥ LBP

: RLBP - RLBP L RLBP
i 0251 026
& 025+ & L o024l
- 021 i
022}
021 = L
. 0.15} 021
0.0 0.5 1.0 0.0 1.0 0.0 0.5 1.0
o o a

FIG. 18. Plots of D,,(I,«,0°?) versus @ when o = 0.5 and £(S;, §;) = —I8; — S;| for the original images shown in Fig. 15: The left, middle,
and right plots show the results for Figs. 15(a), 15(b), and 15(c), respectively. The error bars are the standard deviation.
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FIG. 19. Plots of D, (I,«,0%) versus ¢ when o = 0.4 and £(S;,S;) = —I|S; — §;| for the original images shown in Fig. 15: The left, middle,
and right plots show the results for Fig. 15(a), 15(b), and 15(c), respectively. The error bars are the standard deviation.

by use of the two different methods: the sample average of the
LBP restorations, “LLBP,” and the proposed analytical method,
“RLBP.” Figure 16 shows the plots of D,,(I ,a,0%) versus
o when o = 0.5, and Fig. 17 shows the plots of Dy (I,0,0%)
versus o when o = 0.4. Each plot obtained by LBP restoration
is averaged over 10000 realizations of the stochastically
generated degraded image. We can observe that the results
obtained by our method in Eq. (47) are in good agreement
with those obtained by LBP restoration.

Next, we show the results obtained by setting the function
§(5i,S8;)as&€(S;,S)) = —ISi — Sj|2. Figure 18 shows the plots
of Dy (I,a,07%) versus & when o = 0.5, and Fig. 19 shows
the plots of Dy (I,o,02) versus o when o = 0.4. The results
obtained by use of our method are in good agreement with
those obtained by LBP restoration.

V. CONCLUSION AND REMARKS

In this paper, we proposed an analytical method based
on the idea of the RCVM to approximately evaluate the
quenched average of the Bethe free energy, obtained by LBP,
of the pairwise MRF in Eq. (1) in random fields %. Since
our message-passing-type formulation allows any form of the
functions ¢;(S;,h;) and v; ;(S;,S;) in the Hamiltonian and
allows any form of the distributions of the random fields
{pi(h;)}, except for the cases where correlations among fields
exist, the proposed method is applicable to a wide range
of applications in physics and in computer science. In the
argument in Sec. III E, we found that this approximation is
justified in the ferromagnetic mean-field model in random
fields.

Although the results obtained by our analytical method in
almost all cases were consistent with those obtained by the
numerical method, as seen in the artificial model presented
in Sec. IIID and in the Bayesian image restoration presented
in Sec. IV B, some mismatches, especially in the behaviors
of the phase transitions of the magnetizations in Sec. IIID,
between the results obtained by our method and by the
numerical method were observed. As mentioned in Sec. 111 D 2,
the mismatches are considered to be mainly caused by the
approximation based on the CVM in Eq. (11). However,
a detailed understanding of its mathematical meaning is
still unclear, even though it is one of the most important
components of our method, because the approximation is

for the system replicated by the replica method; thus, the
development of a mathematical understanding of how it
affects the present method is not straightforward. It should
be considered in future studies.

We employed the Bethe approximation in Eq. (19) for the
purpose of evaluating the quenched average of the Bethe free
energy. Our approximate framework, however, allows us to
employ other mean-field approximations instead of the Bethe
approximation, and the resulting form can be expected to be an
approximation of an employed approximation method. Thus,
in accordance with the presented framework, it is expected
that we can evaluate the quenched averages of the employed
mean-field methods for random fields.
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APPENDIX A: DERIVATION OF EQ. (21)

By substituting Eq. (20) into Eq. (18), we obtain the Bethe
approximation of FREVM[{Q% 0%}] as

e el

= Zextr ZZA?(S?)Q?(S;X)

iev ' |a=l s¢

- %m / dh pi() [T exp i (S2.h) + A% (S9)]

a=1 §¢

-y e ?,Qﬁj}]—%ZZHl[Q?]. A1)
a=1

ieV a=1

At the minimum point of this variational free energy, we
make the RS assumption; that is, the relations QY(S;) =
0;(S;) and Qj?fj(Si,Sj) = 0, ;(S;,S;) hold for any a. Un-
der this assumption, the minimum of Fr*P[{Qf, 0 }] is
equivalent to the minimum of the RS variational free energy
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expressed as

FLBPRO10:, 0 )

= Yot S ar(s)0i(s7) - i [ an

iev ' |e=l s¢

< TT 3 exp Bl (52.0) + A% (55)]

a=1 $*

+XVE (0, 0; 1} — %ZHl[Qi]. (A2)
ieV

From the convexity of the first term of this equation with
respect to A; and the extremal conditions of A;, it can be
ensured that the relation A¥(S;) = A;(S;) holds for any « at the
extremal points of A;. Therefore, Eq. (A2) can be reduced to

FLBPRS[0;,0: 1

= Zeﬁtr X ZAi(Si)Qi(Si) - %ln/dh pi(h)
i SI'

ieV

xexp § xIn ) " exp Bl¢i(Si,h) + Ai(S))]
Si

+ VR0, 0 1 — % Y Hileil, (A3)

ieV

and we regard the minimum of this variational free energy as
the Bethe approximation of the true x-replicated free energy
in Eq. (10).

From Egs. (9), (10), and (A3), our desired variational free
energy is obtained by

FBPROM0, 01
1 i P (= BFBPRINQ;,0:51) — 1

—— 11m
ﬂ x—0 X

(A4)

This leads to Eq. (21).

APPENDIX B: DERIVATION OF THE
MESSAGE-PASSING EQUATION

To perform the conditional minimization of the variational
free energy in Eq. (21), we use the Lagrange multipliers as

LEBPRI 0, 0,1

= FPEON01, Qi1 = ) ar| ) 0i(S) — 1

ieV Si

= 3 b Y 00sss) — 1

{i.j}eE 5i.8;

PHYSICAL REVIEW E 92, 042120 (2015)

DAY | D 0818 — Qi)

{l',j}EE S,’ Sj

+ D M| Y 00i(SS) — Qi(S) | ¢t
S; Si

J

where the Lagrange multipliers, {a;,b;;} and {A; ;(S;)},
correspond to the normalization constraints in Eq. (23) and
the marginal constraints in Eqs. (24) and (25), respectively.
From the minimum conditions of ELBP(RS)[{Q,-,QH}] with
respect to Q;(S;) and Q; ;(S;,S;), we obtain

B
Qi(S) ox exp ooy [Ai(si) +> Ak,ms,-)} (B1)

kedi
and
0i,j(8:,8;) ccexp Bl j(Si,S;) + A j(S;) + A;,i(S)], (B2)
respectively, where the notation | - - - | denotes the number of

entries of the assigned set. By introducing the messages in the
form

Misi(S;) = exp{ |:Ai(Si)_,311n 0:(S)

19i] — 1

+> xk,,-(sa} - ﬁxj.i(si)},

kedi
we obtain
explBA;,i(S)] = Qi(S;) exp[—BAi(S;)] 1_[ ki (S;).
kedi\{j}
(B3)
From Egs. (B1) and (B3), we obtain the relation
BAS) =) Inpui(S) +ci, (B4)

kedi

where ¢; is a constant unrelated to S;. Since the value of ¢;
does not affect our results, without loss of generality, we set
{c;} to zeros.

By substituting Eqs. (B1) and (B2) into the marginal
constraints in Egs. (24) and (25) and using Eq. (B3), we obtain
the message-passing equation as

1ji(5) o ) QS exp BL—Aj(S)) + i i (S;,S))]

S

X l_[ i j(S})

kedj\{i}

o Y 0;(Sp)explByi (S, S)li— j(S;)~". (BS)
S

Here, from the first line to the second line of this equation, we
use the relation in Eq. (B4). From the extremal conditions for
{A;(S;)} in the first term in Eq. (21), we obtain Eq. (27).
From Egs. (B2), (B3), and (B4), the two-vertex marginal
distributions {Q; ;(S;,S;)} can be expressed as Eq. (29).
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APPENDIX C: APPROXIMATION IN EQ. (47)

Using the belief obtained by LBP and any real value y, we
define the new distribution as
Gi(Sily) = Qe
> bi(Si)Y
_ expylBi(Sihi) + ) In Mji(S)]
Y expyIBhi(Sihi) + Y s In M i(S)]
(CDH)

Assuming b;(S;)” has a unique maximum with respect to S;,
we obtain the equality

[(arg max bi(5)'], = lim ;Sf [6(Si 1 ¥)ln (C2)

for any k.
As mentioned in Sec. IIIC, the distribution Q;(S§;) in
Eq. (27),

0i(S;) = /dh pi(h)gi(S; | h),

where
exp Bl¢i(Si h) + Ai(S)]
> s, exp Bloi(Si,h) + Ai(S)]
is regarded as the approximation of the quenched average

of the belief, [b(S;)]n. According to Eq. (C1), we define the
distribution as

qi(Si | h) ==

qi(Si | b)Y
i(Si | hy) = =————
picSi L hy) > s qi(Si | h)yY
_ _expyBldi(Sih) + Ai(S)]
> s, expyBloi(Si,h) + Ai(S)]

As mentioned in Sec. IIIC, when the distributions of the
random fields are Dirac § functions, p;(h) = 6(h — h;), the
proposed method is reduced to standard LBP. Thus, in this
case, since ¢;(S; | h;) = b;(S;), the equality p;(S; | hi,y) =
£i(S; | y) holds. From this relation, it is expected that the
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quenched average of ¢;(S; | y) is approximated as

() | )l ~ / dh piWpi(S: | 1),

Using this approximation, we approximate the right-hand side
of Eq. (C2) by

: E ki (Q.
VILH(}O - Si [{l(Sl | y)]h
Iy K (Mo (S:
~ ylggo ES S; /dh pith)pi(S; | h,y)

= / dh pi(hyri(h-, (C3)
where
ri(h) := argmax[i(S,h) + Ai(S)].

Using Egs. (44), (C2), and (C3), we obtain the approxima-
tion as

[(SIMPM(LBP))k]h ~ /dh D), )
for any k, where p;(h) = N'(h | I;,0?). By using this approx-
imation,

Dy (I,a,07)
1 2 MPM(LBP) MPM(LBP)2
= LY (a2 [, (s,
ieV
is approximated by

Dy(I.a.0%) ~ %Z [1,.2 — 2, f dh pi(hyri(h)

ieV

- / dh pi(mr,»(h)z]

1
-y / dh piWL; — ri()P.

ieV

[1] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference (Morgan Kaufmann, San Fran-
cisco, CA, 1988).

[2] M. Opper and D. Saad (eds.), Advanced Mean Field Methods—
Theory and Practice (MIT Press, Cambridge, MA, 2001).

[3] M. Mézard and A. Montanari, Information, Physics and Com-
putation (Oxford University Press, Oxford, 2009).

[4] Y. Kabashima and D. Saad, Belief propagation vs. TAP for
decoding corrupted messages, Europhys. Lett. 44, 668 (1998).

[5]1J. S. Yedidia, W. T. Freeman, and Y. Weiss, Constructing
free-energy approximations and generalized belief propagation
algorithms, IEEE Trans. Inform. Theor. 51, 2282 (2005).

[6] T. Schneider and E. Pytte, Random-field instability of the
ferromagnetic state, Phys. Rev. B 15, 1519 (1977).

[7] F. Krzakala, F. Ricci-Tersenghi, and L. Zdeborov4, Elusive Spin-
Glass Phase in the Random Field Ising Model, Phys. Rev. Lett.
104, 207208 (2010).

[8] S. Geman and D. Geman, Stochastic relaxation, Gibbs distri-
butions and the Bayesian restoration of images, IEEE Trans.
Pattern Anal. Machine Intell. 6, 721 (1984).

[9] H. Nishimori, Statistical Physics of Spin Glass and Information
Processing: Introduction (Oxford University Press, Oxford,
2001).

[10] K. Tanaka, Statistical-mechanical approach to image processing,
J. Phys. A: Math. Gen. 35, R81 (2002).

[11] S. Kataoka, M. Yasuda, and K. Tanaka, Statistical performance
analysis in probabilistic image processing, J. Phys. Soc. Jpn. 79,
025001 (2010).

[12] K. Tanaka, S. Kataoka, and M. Yasuda, Statistical performance
analysis by loopy belief propagation in Bayesian image model-
ing, J. Phys.: Conf. Ser. 233, 012013 (2010).

[13] T.Rizzo, A. Lage-Castellanos, R. Mulet, and F. Ricci-Tersenghi,
Replica cluster variational method, J. Stat. Phys. 139, 375
(2010).

042120-14


http://dx.doi.org/10.1209/epl/i1998-00524-7
http://dx.doi.org/10.1209/epl/i1998-00524-7
http://dx.doi.org/10.1209/epl/i1998-00524-7
http://dx.doi.org/10.1209/epl/i1998-00524-7
http://dx.doi.org/10.1109/TIT.2005.850085
http://dx.doi.org/10.1109/TIT.2005.850085
http://dx.doi.org/10.1109/TIT.2005.850085
http://dx.doi.org/10.1109/TIT.2005.850085
http://dx.doi.org/10.1103/PhysRevB.15.1519
http://dx.doi.org/10.1103/PhysRevB.15.1519
http://dx.doi.org/10.1103/PhysRevB.15.1519
http://dx.doi.org/10.1103/PhysRevB.15.1519
http://dx.doi.org/10.1103/PhysRevLett.104.207208
http://dx.doi.org/10.1103/PhysRevLett.104.207208
http://dx.doi.org/10.1103/PhysRevLett.104.207208
http://dx.doi.org/10.1103/PhysRevLett.104.207208
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://dx.doi.org/10.1088/0305-4470/35/37/201
http://dx.doi.org/10.1088/0305-4470/35/37/201
http://dx.doi.org/10.1088/0305-4470/35/37/201
http://dx.doi.org/10.1088/0305-4470/35/37/201
http://dx.doi.org/10.1143/JPSJ.79.025001
http://dx.doi.org/10.1143/JPSJ.79.025001
http://dx.doi.org/10.1143/JPSJ.79.025001
http://dx.doi.org/10.1143/JPSJ.79.025001
http://dx.doi.org/10.1088/1742-6596/233/1/012013
http://dx.doi.org/10.1088/1742-6596/233/1/012013
http://dx.doi.org/10.1088/1742-6596/233/1/012013
http://dx.doi.org/10.1088/1742-6596/233/1/012013
http://dx.doi.org/10.1007/s10955-010-9938-3
http://dx.doi.org/10.1007/s10955-010-9938-3
http://dx.doi.org/10.1007/s10955-010-9938-3
http://dx.doi.org/10.1007/s10955-010-9938-3

STATISTICAL ANALYSIS OF LOOPY BELIEF ...

[14] A.Lage-Castellanos, R. Mulet, F. Ricci-Tersenghi, and T. Rizzo,
Replica cluster variational method: The replica symmetric
solution for the 2D random bond Ising model, J. Phys. A: Math.
Theor. 46, 135001 (2013).

[15] R. Kikuchi, A theory of cooperative phenomena, Phys. Rev. 81,
988 (1951).

PHYSICAL REVIEW E 92, 042120 (2015)

[16] A. Pelizzola, Cluster variation method in statistical physics and
probabilistic graphical models, J. Phys. A: Math. Gen. 38, R309
(2005).

[17] M. Mezard, G. Parisi, and M. Virasoro, Spin Glass Theory
and Beyond: An Introduction to the Replica Method and Its
Applications (World Scientific, Singapore, 1987).

042120-15


http://dx.doi.org/10.1088/1751-8113/46/13/135001
http://dx.doi.org/10.1088/1751-8113/46/13/135001
http://dx.doi.org/10.1088/1751-8113/46/13/135001
http://dx.doi.org/10.1088/1751-8113/46/13/135001
http://dx.doi.org/10.1103/PhysRev.81.988
http://dx.doi.org/10.1103/PhysRev.81.988
http://dx.doi.org/10.1103/PhysRev.81.988
http://dx.doi.org/10.1103/PhysRev.81.988
http://dx.doi.org/10.1088/0305-4470/38/33/R01
http://dx.doi.org/10.1088/0305-4470/38/33/R01
http://dx.doi.org/10.1088/0305-4470/38/33/R01
http://dx.doi.org/10.1088/0305-4470/38/33/R01



